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Exercise 1

Perform the region analysis for the integral
M m
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Solution
We first derive the exact expression for the integral using
that

1 1 1

p p M p m M m p2 m m
12
p 142

1m

p ma

We now employ a standard formula for one loop integrals

One loop master integral
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This leads to the exact answer
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We now performs the region analysis in I

dimensional regularization We need to
I 142

consider 5 regions in total
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The integrals can be evaluated using a masterformula
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This leads to

Ie fire it Yule milit ii Ii t I
we can not only evaluate the leading term but also

power corrections in MYM2 41
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0 scaleless integrals
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0 scaleless integrals

Notice that non zero contributions arise only if the
loop momentum is assumed to be commensurate with

one of the external scales Ip4 n M2 or Ip4 n m

Note also that in all cases we integrate over all Loop

momenta after the expansions of the integrand have
been performed The scene I t I precisely reproduces
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the exact result on page A 1 including the power
suppressed corrections

It is instructive to take a closer look at these two

integrals Notice that

I r ITIp cpyicp.my lit II iii t I
is UV finite but receives IR singular contributions

from the region where p2 so Expanding the result

in C we obtain

I Ere ite lift n let n'I Ii t I

yLpp te re ten4K t ln tf 1 t Ole t OfY

I hard

similarly the integral

I r id is prep my in let II Ii
t 1

is IR finite but UV divergent for Ip4 o Expanding

in c we find
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m
II jarµ Lt te te ten4T en f t l t 0TH t OffUH

I soft

The divergences arise because after theTaylor expansion

II no longer contains the IR regulator in and I no

longer contains the UV regulator M In the sum

I hard t Isoft firm tea tent but t Met t OfY
the divergent terms cancel out In EFT jargon the

hard contribution is absorbed into a Wilson coefficient

while the soft contribution corresponds to the matrix
element of an EFT operator

1104

M2 hardcontr n entf Wilson coefficient
CCM r

m
m

softcontr n th EFTmatrixelement

O mu
0

By construction the dependence on the factorization
scale µ cancels between the two contributions
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Exercise 2

Evaluate the collinear contribution

to i E f fdik io Ktp io 2K Pattio

to the Sadakov forumfactor and give an EET

interpretation
Solution
We combine the first two factors in the denominator using
a standard Feynman parameter

io Ktp Iti o k't2xk.pl tx pf tio
2

For propagators that are linear in the loop momentum

it is convenient to use Feynman paraters de lo C

and the following waster formula

Feynman parameters for linear propagators
b 1

1 aThatb
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linearpropagators
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This gives
I

io Ktpatio 12k patio

2 d d
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We now use that

2Pa Pat e g Q2 up to OCI corrections

pi io Pi

A Xx Q't x a Hpi

changing variables from K to l Ktxpathpat yields
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Using the identity
1

fix 1
b Plate P b 1

o
P atb 2

we finally obtain
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This agrees with the expression given in the lectures

It is interesting to give a diagrammatic EFT interpretation

of this integral obtained by shrinking the hard propagator
to a point

shrinkhard
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The SCET Feynman rules must reproduce the collinear

loop graph shown on the right To this end SCET

must contain an unusual qqg8 vertex not present
in the full theory
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Exercise3

Evaluate the integral
a

x E
o c ped tI dx

x try
E 2

using the method of regions dropping terms of OG

Solution

The integral depends on two scales the lower

integration limit xmin 1 and the parameters We can
rewrite

I Jax É O x 1
0

The exact expression for the integral is rather complicated
One finds hypergeometric function

I 1 Fifi E HE 11
package
HYPEXP

I g ga p ng p 1 E pi Ie t 044

Let us reproduce this result including the first order
correction in p using the method of regions The two
relevant regions are x 1 and x pi
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Region 1 X n I

I fax Y 1 ax t OGJ O x 1

Pdx x t e p Pdx x t 044

xEli I x2
e

t OG
x 1

I t Ie t 044

Note that the first integral converges for e o while for
the second one we need to assume that e 2 But this
is ok since at the final result is defined by
analytic continuation in e to the region e 2

Region 2 xu pi
This region is chosen such that the two terms in the
denominator are of the same order Setting x Yu
we obtain

y
mustexpand since y OG

in this region
Iz dy
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changing variables from y to z y we find

I peek de IIII I 1 µ SCH
t Obey

The contribution from the Dirac S function converges
if we assume that E c 2 and if that condition is

satisfied it evaluates to zero The integral for the

first term converges for 2e es o Setting w plz
we find

de IIII Idwwe Uwit Hit E M E

This gives
CIz

Iz M Nlt E M E t OGe't
2

1 ME Tht E Ni E t OGe'tC

The sum In Iz correctly reproduces the exact result

for I given on page A 9 including the power correction

of 041 Any other region of values leads to

scaleless integrals


