Lattice supersymmetric field theories - Part 2

David Schaich (University of Liverpool)

Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography
International Centre for Theoretical Sciences, Bangalore, 24 August 2021

Any questions about last time?

Overcoming challenges opens many opportunities for lattice studies of supersymmetric QFTs

Motivation, background, formulation
\checkmark Supersymmetry breaking in discrete space-time Supersymmetry preservation - wrap up

Applications with significant recent progress
Maximal $\mathcal{N}=4$ super-Yang-Mills
Lower dimensions $d<4$
Minimal $\mathcal{N}=1$ super-Yang-Mills
Remaining challenges: Super-QCD;
Sign problems

Any questions about last time?

Overcoming challenges opens many opportunities for lattice studies of supersymmetric QFTs

Motivation, background, formulation - wrap up
Applications with significant recent progress

Remaining challenges

Conceptual focus with interaction encouraged "It's better to uncover a little than to cover a lot" (V. Weisskopf)

Lattice $\mathcal{N}=4$ SYM - recap
Lattice action $S_{\text {lat }}=\frac{N}{4 \lambda_{\text {lat }}} \operatorname{Tr}\left[\mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a}-\frac{1}{2} \eta d\right)-\frac{1}{4} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}\right]$

Gauge invariance \longleftrightarrow trace over closed loops

Fixes orientations of lattice variables and finite-difference operators

Site variables

Link variables

Plaquette variables

$$
\begin{array}{ll}
G(n) \eta(n) G^{\dagger}(n) \quad & G(n) \psi_{a}(n) G^{\dagger}\left(n+\widehat{\mu}_{a}\right) \\
& G(n) \mathcal{U}_{a}(n) G^{\dagger}\left(n+\widehat{\mu}_{a}\right) \\
& G\left(n+\widehat{\mu}_{a}\right) \overline{\mathcal{U}}_{a}(n) G^{\dagger}(n)
\end{array}
$$

Lattice $\mathcal{N}=4$ SYM — recap

Site variables

Link variables
Plaquette variables
$G(n) \eta(n) G^{\dagger}(n)$

$$
\begin{aligned}
& G(n) \psi_{a}(n) G^{\dagger}\left(n+\widehat{\mu}_{a}\right) \\
& G(n) \mathcal{U}_{a}(n) G^{\dagger}\left(n+\widehat{\mu}_{a}\right) \\
& G\left(n+\widehat{\mu}_{a}\right) \overline{\mathcal{U}}_{a}(n) G^{\dagger}(n)
\end{aligned}
$$

Examples:

$$
\begin{aligned}
& \operatorname{Tr}\left[\eta \overline{\mathcal{U}}_{a} \psi_{a}\right] \\
& \operatorname{Tr}\left[\chi_{a b} \mathcal{U}_{a} \psi_{b}\right]
\end{aligned}
$$

Lattice $\mathcal{N}=4$ SYM — geometric structure

Return to dimensional reduction, treating all five \mathcal{U}_{a} symmetrically

Start with hypercubic lattice
in 5d momentum space

Symmetric constraint $\sum_{a} \partial_{a}=0$ projects to 4d momentum space

Result is A_{4} lattice
\longrightarrow dual A_{4}^{*} lattice in position space

A_{4}^{*} lattice of five links spanning four dimensions

Return to dimensional reduction, treating all five \mathcal{U}_{a} symmetrically
$A_{4}^{*} \sim 4 \mathrm{~d}$ analog of 2d triangular lattice

Basis vectors linearly dependent and non-orthogonal

Large S_{5} point group symmetry

S_{5} point group symmetry

S_{5} irreps precisely match onto irreps of twisted $\mathrm{SO}(4)_{\mathrm{tw}}$

$$
\begin{array}{rlrl}
\psi_{a} & \longrightarrow \psi_{\mu}, \bar{\eta} & \text { is } & \mathbf{5} \longrightarrow \mathbf{4} \oplus \mathbf{1} \\
\chi_{a b} \longrightarrow \chi_{\mu \nu}, \bar{\psi}_{\mu} & \text { is } & \mathbf{1 0} \longrightarrow \mathbf{6} \oplus \mathbf{4}
\end{array}
$$

More explicitly,

$$
\begin{aligned}
\psi_{\mu} & =P_{\mu a} \psi_{a} & \chi_{\mu \nu} & =P_{\mu a} P_{\nu b} \chi_{a b} \\
\bar{\eta} & =P_{5 a} \psi_{a} & \bar{\psi}_{\mu} & =P_{\mu a} P_{5 b} \chi_{a b}
\end{aligned}
$$

$$
P=\left(\begin{array}{ccccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} & 0 & 0 \\
\frac{1}{\sqrt{12}} & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{12}} & -\frac{3}{\sqrt{12}} & 0 \\
\frac{1}{\sqrt{20}} & \frac{1}{\sqrt{20}} & \frac{1}{\sqrt{20}} & \frac{1}{\sqrt{20}} & -\frac{4}{\sqrt{20}} \\
\frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}}
\end{array}\right)
$$

Projection matrix, $P^{-1}=P^{T}$
$P_{\mu a}=\left(\widehat{e}_{a}\right)_{\mu}$ are basis vectors of A_{4}^{*} lattice

Restoration of \mathcal{Q}_{a} and $\mathcal{Q}_{a b}$ supersymmetries

S_{5} irreps precisely match onto irreps of twisted $\mathrm{SO}(4)_{\mathrm{tw}}$

$$
\begin{aligned}
\psi_{a} & \longrightarrow \psi_{\mu}, \bar{\eta} & \text { is } & \mathbf{5} \longrightarrow \mathbf{4} \oplus \mathbf{1} \\
\chi_{a b} \longrightarrow \chi_{\mu \nu}, \bar{\psi}_{\mu} & & \text { is } & \mathbf{1 0} \longrightarrow \mathbf{6} \oplus \mathbf{4}
\end{aligned}
$$

More explicitly,

$$
\begin{aligned}
\psi_{\mu} & =P_{\mu \mathrm{a}} \psi_{a} & \chi_{\mu \nu} & =P_{\mu a} P_{\nu b} \chi_{a b} \\
\bar{\eta} & =P_{5 a} \psi_{a} & \bar{\psi}_{\mu} & =P_{\mu a} P_{5 b} \chi_{a b}
\end{aligned}
$$

Continuum limit (I)

Assuming RG blocking transformation that preserves \mathcal{Q} and S_{5}
compare lattice action and most general long-range $S_{\text {eff }}$ allowed by symmetries

$$
\begin{aligned}
S_{\text {lat }} \sim & \operatorname{Tr}\left[\mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a}-\frac{1}{2} \eta d\right)-\frac{1}{4} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}\right] \\
S_{\text {eff }} \sim & \operatorname{Tr}\left[\mathcal{Q}\left(\alpha_{1} \chi_{a b} \mathcal{F}_{a b}+\alpha_{2} \eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a}-\frac{\alpha_{3}}{2} \eta d\right)-\frac{\alpha_{4}}{4} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}\right] \\
& +\gamma \mathcal{Q}\left\{\operatorname{Tr}\left[\eta \mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]-\frac{1}{N} \operatorname{Tr}[\eta] \operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]\right\}
\end{aligned}
$$

Eliminate three α_{i} by rescaling fields and 't Hooft coupling

Continuum limit (I)

$$
\begin{aligned}
S_{\text {lat }} \sim & \operatorname{Tr}\left[\mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a}-\frac{1}{2} \eta d\right)-\frac{1}{4} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}\right] \\
S_{\text {eff }} \sim & \operatorname{Tr}\left[\mathcal{Q}\left(\alpha_{1} \chi_{a b} \mathcal{F}_{a b}+\alpha_{2} \eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a}-\frac{\alpha_{3}}{2} \eta d\right)-\frac{\alpha_{4}}{4} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}\right] \\
& +\gamma \mathcal{Q}\left\{\operatorname{Tr}\left[\eta \mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]-\frac{1}{N} \operatorname{Tr}[\eta] \operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]\right\}
\end{aligned}
$$

Eliminate three α_{i} by rescaling fields and 't Hooft coupling

$$
\left.\left.\begin{array}{rl}
\longrightarrow S_{\text {eff }} \sim & \operatorname{Tr}
\end{array}\right]\left[\mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a}-\frac{\alpha_{1} \alpha_{3}}{2 \alpha_{2}^{2}} \eta d\right)-\frac{1}{4} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}\right]\right] \text { } \begin{aligned}
& \\
&+\gamma^{\prime} \mathcal{Q}\left\{\operatorname{Tr}\left[\eta \mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]-\frac{1}{N} \operatorname{Tr}[\eta] \operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]\right\}
\end{aligned}
$$

Moduli space

$$
\left.\left.\left.\begin{array}{rl}
S_{\text {eff }} \sim & \operatorname{Tr}
\end{array}\right] \mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a}-\frac{\alpha_{1} \alpha_{3}}{2 \alpha_{2}^{2}} \eta d\right)-\frac{1}{4} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}\right]\right] \text { } \quad+\gamma^{\prime} \mathcal{Q}\left\{\operatorname{Tr}\left[\eta \mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]-\frac{1}{N} \operatorname{Tr}[\eta] \operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]\right\}
$$

γ^{\prime} terms \longrightarrow scalar mass and cubics, lifting moduli space
Lattice action is 'topological' (\mathcal{Q}-invariant) observable, $\mathcal{Q O}=0$
\longrightarrow can be analyzed semi-classically

Moduli space

Lattice action is 'topological' (\mathcal{Q}-invariant) observable, $\mathcal{Q O}=0$

\longrightarrow can be analyzed semi-classically

Field rescalings $\longrightarrow S_{\text {lat }}=g^{-2} \mathcal{Q} \Lambda+S_{\text {closed }}$

$$
\begin{aligned}
\frac{\partial}{\partial g^{-2}}\langle\mathcal{O}\rangle & =\frac{\partial}{\partial g^{-2}} \frac{\int \mathcal{O} e^{-g^{-2} Q} \Lambda-S_{\text {closed }}}{\int e^{-g^{-2} Q \Lambda-S_{\text {closed }}}} \\
& =-\langle\mathcal{O Q} \Lambda\rangle+\langle\mathcal{O}\rangle\langle\mathcal{Q} \Lambda\rangle=-\langle\mathcal{Q}(\mathcal{O} \Lambda)\rangle=0
\end{aligned}
$$

$\Longrightarrow Z_{\text {lat }}=\int e^{-S_{\text {lat }}}$ independent of coupling, so perturbatively compute to one loop for $g^{2} \rightarrow 0$

A bit of lattice perturbation theory

Propagators and vertices affected by space-time discretization
Example (Feynman gauge):

$$
\left\langle\overline{\mathcal{A}}\left(k_{\mu}\right) \mathcal{A}\left(-k_{\mu}\right)\right\rangle=\frac{1}{k^{2}}=\frac{1}{\sum_{\mu} k_{\mu}^{2}} \longrightarrow \frac{a^{2}}{\sum_{\mu} 4 \sin ^{2}\left(a k_{\mu} / 2\right)}
$$

Aside: Up to one loop, all divergences occur for $\left|a k_{\mu}\right| \ll 1$ where lattice and continuum results coincide
\Longrightarrow Lattice $\beta=0$ to one loop (but not topological)

A bit of lattice perturbation theory

Propagators and vertices affected by space-time discretization
Example (Feynman gauge):

$$
\left\langle\overline{\mathcal{A}}\left(k_{\mu}\right) \mathcal{A}\left(-k_{\mu}\right)\right\rangle=\frac{1}{k^{2}}=\frac{1}{\sum_{\mu} k_{\mu}^{2}} \longrightarrow \frac{a^{2}}{\sum_{\mu} 4 \sin ^{2}\left(a k_{\mu} / 2\right)}
$$

One-loop partition function:

$$
Z_{\text {lat }}=\frac{\operatorname{det}\left[\overline{\mathcal{D}}_{a} \mathcal{D}_{a}\right] \operatorname{det}^{4}\left[\overline{\mathcal{D}}_{a} \mathcal{D}_{a}\right]}{\operatorname{det}^{5}\left[\overline{\mathcal{D}}_{a} \mathcal{D}_{a}\right]}=1
$$

Cancellation between ghosts \& fermions vs. bosons
\Longrightarrow quantum moduli space protected to all orders in lattice perturbation theory

Continuum limit (II)

$$
\left.\left.\left.\left.\begin{array}{rl}
S_{\text {eff }} \sim & \operatorname{Tr}
\end{array}\right] \mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a}-\frac{\alpha_{1} \alpha_{3}}{2 \alpha_{2}^{2}} \eta d\right)-\frac{1}{4} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}\right]\right] \text { } \quad+\gamma \mathcal{Q}\left\{\operatorname{Tr}\left[\eta \mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]-\frac{1}{N} \operatorname{Tr}[\eta] \operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]\right\}\right\}
$$

Protected moduli space perturbatively forces $\gamma=0$

Assuming non-perturbative effects (e.g., instantons) also preserve moduli space, only one log. tuning to recover full continuum symmetries $\mathrm{SO}(4)_{\mathrm{tw}}, \mathcal{Q}_{\mathrm{a}}, \mathcal{Q}_{\mathrm{ab}}$

Real-space RG for lattice $\mathcal{N}=4 \mathrm{SYM}$

Above also assumed RG blocking transformation that preserves \mathcal{Q} and S_{5} symmetries \longleftrightarrow geometric structure

Simple transformation constructed in arXiv:1408.7067

$$
\begin{aligned}
\mathcal{U}_{a}^{\prime}\left(n^{\prime}\right) & =\xi \mathcal{U}_{a}(n) \mathcal{U}_{a}\left(n+\widehat{\mu}_{a}\right) \\
\psi_{a}^{\prime}\left(n^{\prime}\right) & =\xi\left[\psi_{a}(n) \mathcal{U}_{a}\left(n+\widehat{\mu}_{a}\right)+\mathcal{U}_{a}(n) \psi_{a}\left(n+\widehat{\mu}_{a}\right)\right] \\
\chi_{a b}^{\prime}\left(n^{\prime}\right) & =\xi^{2}\left[\text { six permutations of } \chi_{a b} \overline{\mathcal{U}}_{a} \overline{\mathcal{U}}_{b}\right]
\end{aligned}
$$

$$
\eta^{\prime}\left(n^{\prime}\right)=\eta(n)
$$

Doubles lattice spacing $a \longrightarrow a^{\prime}=2 a$, with tunable rescaling factor ξ

$$
G(n) \psi_{a}^{\prime}\left(n^{\prime}\right) G^{\dagger}\left(n+2 \widehat{\mu}_{a}\right) \quad G\left(n+2 \widehat{\mu}_{a}+2 \widehat{\mu}_{b}\right) \chi_{a b}^{\prime}\left(n^{\prime}\right) G^{\dagger}(n)
$$

Checkpoint

\checkmark Motivation, background, formulation
\checkmark Supersymmetry breaking in discrete space-time

\checkmark Supersymmetry preservation in discrete space-time
Applications with significant recent progress
Maximal $\mathcal{N}=4$ super-Yang-Mills
Lower dimensions $d<4$
Minimal $\mathcal{N}=1$ super-Yang-Mills
Remaining challenges: Super-QCD; Sign problems

Questions?

"It's better to uncover a little than to cover a lot"

Moving towards practical lattice calculation

Analytic results for twisted $\mathcal{N}=4$ SYM on A_{4}^{*} lattice
$\mathrm{U}(N)$ gauge invariance $+\mathcal{Q}+S_{5}$ lattice symmetries
\longrightarrow Moduli space preserved to all orders
\longrightarrow One-loop lattice β function vanishes
\longrightarrow Only one log. tuning to recover continuum \mathcal{Q}_{a} and $\mathcal{Q}_{a b}$

Not yet practical for numerical calculations
Must regulate zero modes and flat directions, in both $\mathrm{SU}(\mathrm{N})$ and $\mathrm{U}(1)$ sectors

Problem with $\mathrm{SU}(N)$ flat directions

Recall $\mathcal{U}_{a} \rightarrow \mathbb{I}_{N}+\mathcal{A}_{a}$ needed to recover continuum covariant derivative
Links can wander far away when doing Markov-chain importance sampling via rational hybrid Monte Carlo (RHMC) algorithm

Complexified Polyakov loop
('Maldacena loop', ML)
$\mathrm{ML}=\frac{1}{L^{3}} \sum_{x, y, z} \operatorname{Tr}\left[\prod_{t=0}^{N_{t}-1} \mathcal{U}_{t}(x, y, z, t)\right]$
Should have $|\mathrm{ML}| \approx 1$ for all $\lambda_{\text {lat }}$ $(\mathcal{Q} \overline{\mathrm{ML}}=0)$

Regulating $\operatorname{SU}(N)$ flat directions

Add $\mathrm{SU}(N)$ scalar potential to lattice action - multiple options, similar behavior

$$
\begin{array}{cc}
S_{\text {lat }}=\frac{N}{4 \lambda_{\text {lat }}} \operatorname{Tr}\left[\mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a}-\frac{1}{2} \eta d\right)-\frac{1}{4} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}\right]+\frac{N}{4 \lambda_{\text {lat }}} \mu^{2} V \\
V=\sum_{a}\left(\frac{1}{N} \operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]-1\right)^{2} \quad V=\sum_{a} \frac{1}{N} \operatorname{Tr}\left[\left(\mathcal{U}_{a} \overline{\mathcal{U}}_{a}-\mathbb{I}_{N}\right)^{2}\right]
\end{array}
$$

Gauge-invariant but explicitly breaks \mathcal{Q}

Continuum limit requires $\mu^{2} \rightarrow 0$ to restore \mathcal{Q} and recover physical moduli space

Soft \mathcal{Q} breaking

$\operatorname{SU}(N)$ scalar potential $\propto \mu^{2} \sum_{a}\left(\operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]-N\right)^{2}$ breaks \mathcal{Q} softly
$\longrightarrow \mathcal{Q}$-violating operators vanish $\propto \mu^{2} \rightarrow 0$

Check via Ward identity violations $\left\langle\operatorname{Tr} \mathcal{Q}\left[\eta \mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]\right\rangle \neq 0$

$$
\mathcal{Q} \eta \mathcal{U}_{a} \overline{\mathcal{U}}_{a}=\left(\overline{\mathcal{D}}_{b} \mathcal{U}_{b}\right) \mathcal{U}_{a} \overline{\mathcal{U}}_{a}-\eta \psi_{a} \overline{\mathcal{U}}_{a}
$$

Problem with $\mathrm{U}(1)$ flat directions

$\mathrm{U}(N)=\mathrm{SU}(N) \otimes \mathrm{U}(1)$ includes compact $\mathrm{U}(1)$ lattice gauge theory

\longrightarrow confinement transition via monopole condensation
Count monopole worldlines from phases of $\operatorname{det} \mathcal{U}$ in plaquettes bounding cells [DeGrand-Toussaint, 1980]

Counting monopole worldlines

A_{4}^{*} lattice complicates monopole worldline counting

Represent A_{4}^{*} as hypercube plus backwards diagonal link
Merge cells into hypercubes to count - neighboring $M_{\mu}-\bar{M}_{\mu}$ pairs annihilate

\leadsto

$\mathrm{U}(1)$ confinement transition

Monopole condensation \longrightarrow confined lattice phase not present in continuum

Naively regulating $U(1)$ flat directions

Can add another soft \mathcal{Q}-breaking term depending on plaquette determinant

$$
S_{\text {soft }}=\frac{N}{4 \lambda_{\text {lat }}} \mu^{2} \sum_{a}\left(\frac{1}{N} \operatorname{Tr}\left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a}\right]-1\right)^{2}+\kappa \sum_{a<b}\left|\operatorname{det} \mathcal{P}_{a b}-1\right|^{2}
$$

Ward identity violations more sensitive to κ than to μ^{2}

Here checking bosonic action

$$
\mathcal{Q} S_{\text {lat }}=0 \longrightarrow\left\langle s_{B}\right\rangle=9 N^{2} / 2
$$

Better regulating $\mathrm{U}(1)$ flat directions

Possible to impose \mathcal{Q}-invariant constraints on generic site operator $\mathcal{O}(n)$

$$
S_{\text {lat }} \propto \operatorname{Tr}\left[\mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\eta\left\{\overline{\mathcal{D}}_{a} \mathcal{U}_{a}+G \mathcal{O}\right\}-\frac{1}{2} \eta d\right)-\frac{1}{4} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}+\mu^{2} V\right]
$$

Modifies auxiliary field equations of motion \longrightarrow moduli space [arXiv:1505.03135]

$$
d(n)=\overline{\mathcal{D}}_{a} \mathcal{U}_{a}(n) \quad \longrightarrow \quad d(n)=\overline{\mathcal{D}}_{a} \mathcal{U}_{a}(n)+G \mathcal{O}
$$

Choose $\mathcal{O}=\sum_{a \neq b}\left[\operatorname{det} \mathcal{P}_{a b}-1\right] \mathbb{I}_{N}$ to lift $\mathrm{U}(1)$ zero mode \& flat directions
$\mathrm{U}(1)$ decouples in continuum \longrightarrow no need to tune parameter G

Better regulating $\mathrm{U}(1)$ flat directions

$$
S_{\text {lat }} \propto \operatorname{Tr}\left[\mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\eta\left\{\overline{\mathcal{D}}_{a} \mathcal{U}_{a}+G \sum_{a<b}\left[\operatorname{det} \mathcal{P}_{a b}-1\right] \mathbb{I}_{N}\right\}-\frac{1}{2} \eta d\right)-\frac{1}{4} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}+\mu^{2} V\right]
$$

Much better approach to continuum
Ward ident. violations $\propto(a / L)^{2}$
$\left\langle\frac{(Q Q 1}{\sqrt{D^{2}+k^{2}}}\right)_{0.01}^{0.02}$
Effective $\mathcal{O}(a)$ improvement
\quad since \mathcal{Q} forbids all dim. -5 ops

Larger N improves soft \mathcal{Q} breaking

$S_{\text {lat }} \propto \operatorname{Tr}\left[\mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\eta\left\{\overline{\mathcal{D}}_{a} \mathcal{U}_{a}+G \sum_{a<b}\left[\operatorname{det} \mathcal{P}_{a b}-1\right] \mathbb{I}_{N}\right\}-\frac{1}{2} \eta d\right)-\frac{1}{4} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}+\mu^{2} V\right]$

Larger N also helps
for both actions

Ward ident. violations $\propto 1 / N^{2}$

Can we do even better?

What if we include both $\mathrm{SU}(N)$ and $\mathrm{U}(1)$ deformations in $\mathcal{O}(n)$? [arXiv:1505.03135]

$$
S_{\text {lat }} \propto \operatorname{Tr}\left[\mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\eta\left\{\overline{\mathcal{D}}_{a} \mathcal{U}_{a}+G \mathcal{O}\right\}-\frac{1}{2} \eta d\right)-\frac{1}{4} \epsilon_{\text {abcde }} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}\right]
$$

Over-constrains system \longrightarrow Ward ident. violations without explicit \mathcal{Q} breaking

Ongoing experimentation

What if $\mathcal{O}=\sum_{a}\left[\operatorname{Re} \operatorname{det} \mathcal{U}_{a}-1\right] \mathbb{I}_{N}$?

$$
S_{\text {lat }} \propto \operatorname{Tr}\left[\mathcal{Q}\left(\chi_{a b} \mathcal{F}_{a b}+\eta\left\{\overline{\mathcal{D}}_{a} \mathcal{U}_{a}+G \mathcal{O}\right\}-\frac{1}{2} \eta d\right)-\frac{1}{4} \epsilon_{a b c d e} \chi_{a b} \overline{\mathcal{D}}_{c} \chi_{d e}+\mu^{2} V\right]
$$

$\mathrm{U}(1)$ gauge dependent!
$\mathrm{U}(1)$ decouples as $a \rightarrow 0$
\longrightarrow irrelevant for $a>0$?

Results look reasonable, reach strong $\lambda_{\text {lat }}=30$

The cost of twisted lattice $\mathcal{N}=4 \mathrm{SYM}$

so that the full improved action becomes

$$
\begin{align*}
S_{\text {imp }}= & S_{\text {exact }}^{\prime}+S_{\text {closed }}+S_{\text {soft }}^{\prime} \tag{18}\\
S_{\text {exact }}^{\prime}= & \frac{N}{4 \lambda_{\text {lat }}} \sum_{n} \operatorname{Tr}\left[-\overline{\mathcal{F}}_{a b}(n) \mathcal{F}_{a b}(n)-\chi_{a b}(n) \mathcal{D}_{[a}^{(+)} \psi_{b]}(n)-\eta(n) \overline{\mathcal{D}}_{a}^{(-)} \psi_{a}(n)\right. \\
& \left.+\frac{1}{2}\left(\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n)+G \sum_{a \neq b}\left(\operatorname{det} \mathcal{P}_{a b}(n)-1\right) \mathbb{I}_{N}\right)^{2}\right]-S_{\text {det }} \\
S_{\text {det }}= & \frac{N}{4 \lambda_{\text {lat }}} G \sum_{n} \operatorname{Tr}[\eta(n)] \sum_{a \neq b}\left[\operatorname{det} \mathcal{P}_{a b}(n)\right] \operatorname{Tr}\left[\mathcal{U}_{b}^{-1}(n) \psi_{b}(n)+\mathcal{U}_{a}^{-1}\left(n+\widehat{\mu}_{b}\right) \psi_{a}\left(n+\widehat{\mu}_{b}\right)\right] \\
S_{\text {closed }}= & -\frac{N}{16 \lambda_{\text {lat }}} \sum_{n} \operatorname{Tr}\left[\epsilon_{a b c d e} \chi_{\text {de }}\left(n+\widehat{\mu}_{a}+\widehat{\mu}_{b}+\widehat{\mu}_{c}\right) \overline{\mathcal{D}}_{c}^{(-)} \chi_{a b}(n)\right], \\
S_{\text {soft }}^{\prime}= & \frac{N}{4 \lambda_{\text {lat }}} \mu^{2} \sum_{n} \sum_{a}\left(\frac{1}{N} \operatorname{Tr}\left[\mathcal{U}_{a}(n) \overline{\mathcal{U}}_{a}(n)\right]-1\right)^{2}
\end{align*}
$$

Computationally challenging, e.g. $\gtrsim 100$ gathers per fermion matrix-vector op.
Public parallel code github.com/daschaich/susy [arXiv:1410.6971] actively developed for improved performance and new applications

Computational cost scaling

Blue: RHMC cost scaling $\sim N^{3.5}$ since condition number increases [and $\sim V^{5 / 4}$] Red: Pfaffian cost scaling $\sim N^{6}$ as expected

Next time

Overcoming challenges opens many opportunities for lattice studies of supersymmetric QFTs

\checkmark Motivation, background, formulation
\checkmark Supersymmetry breaking in discrete space-time \checkmark Supersymmetry preservation

Applications with significant recent progress

Lower dimensions $d<4$
Minimal $\mathcal{N}=1$ super-Yang-Mills
Remaining challenges: Super-QCD;
Sign problems

$$
\text { Maximal } \mathcal{N}=4 \text { super-Yang-Mills }- \text { wrap up }
$$

