Lattice supersymmetric field theories — Part 2

David Schaich (University of Liverpool)

Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography

International Centre for Theoretical Sciences, Bangalore, 24 August 2021

david.schaich@liverpool.ac.uk

www.davidschaich.net

Any questions about last time?

Overcoming challenges opens many opportunities for lattice studies of supersymmetric QFTs

Motivation, background, formulation

 \checkmark Supersymmetry breaking in discrete space-time Supersymmetry preservation — wrap up

Applications with significant recent progress Maximal $\mathcal{N} = 4$ super-Yang–Mills Lower dimensions d < 4Minimal $\mathcal{N} = 1$ super-Yang–Mills

Remaining challenges: Super-QCD; Sign problems

Any questions about last time?

Overcoming challenges opens many opportunities for lattice studies of supersymmetric QFTs

Motivation, background, formulation — wrap up

Applications with significant recent progress

Remaining challenges

Conceptual focus with interaction encouraged "It's better to uncover a little than to cover a lot" (V. Weisskopf)

Lattice $\mathcal{N} = 4$ SYM — recap

Lattice action
$$S_{\text{lat}} = \frac{N}{4\lambda_{\text{lat}}} \text{Tr} \left[\mathcal{Q} \left(\chi_{ab} \mathcal{F}_{ab} + \eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a} - \frac{1}{2} \eta d \right) - \frac{1}{4} \epsilon_{abcde} \chi_{ab} \overline{\mathcal{D}}_{c} \chi_{de} \right]$$

Gauge invariance \longleftrightarrow trace over closed loops Fixes orientations of lattice variables and finite-difference operators

Site variables $G(n) \eta(n) G^{\dagger}(n)$

Link variables $G(n) \psi_a(n) G^{\dagger}(n + \hat{\mu}_a)$ $G(n) U_a(n) G^{\dagger}(n + \hat{\mu}_a)$ $G(n + \hat{\mu}_a) \overline{U}_a(n) G^{\dagger}(n)$ **Plaquette variables**

 $G(n + \widehat{\mu}_a + \widehat{\mu}_b) \ \chi_{ab}(n) \ G^{\dagger}(n)$

Lattice $\mathcal{N} = 4$ SYM — recap

Site variables $G(n) \eta(n) G^{\dagger}(n)$

Link variables

 $G(n) \psi_a(n) G^{\dagger}(n + \hat{\mu}_a)$ $G(n) \mathcal{U}_a(n) G^{\dagger}(n + \widehat{\mu}_a)$ $G(n + \widehat{\mu}_a) \overline{\mathcal{U}}_a(n) G^{\dagger}(n)$ **Plaquette variables**

 $G(n + \hat{\mu}_a + \hat{\mu}_b) \chi_{ab}(n) G^{\dagger}(n)$

 $\operatorname{Tr}\left[\eta \overline{\mathcal{U}}_{a}\psi_{a}\right]$

 $\operatorname{Tr}\left[\chi_{ab}\mathcal{U}_{a}\psi_{b}\right]$

Lattice $\mathcal{N} = 4$ SYM — geometric structure

Return to dimensional reduction, treating all five U_a symmetrically

Start with hypercubic lattice in 5d momentum space

Symmetric constraint $\sum_{a} \partial_{a} = 0$ projects to 4d momentum space

Result is A_4 lattice \longrightarrow dual A_4^* lattice in position space

A_4^* lattice of five links spanning four dimensions

Return to dimensional reduction, treating all five U_a symmetrically

 $A_4^*~\sim~$ 4d analog of 2d triangular lattice

Basis vectors linearly dependent and non-orthogonal

Large S_5 point group symmetry

S₅ point group symmetry

 S_5 irreps precisely match onto irreps of twisted SO(4)_{tw}

$$\psi_a \longrightarrow \psi_\mu, \ \overline{\eta} \qquad \text{is} \qquad \mathbf{5} \longrightarrow \mathbf{4} \oplus \mathbf{1}$$

 $\chi_{ab} \longrightarrow \chi_{\mu\nu}, \ \overline{\psi}_\mu \qquad \text{is} \qquad \mathbf{10} \longrightarrow \mathbf{6} \oplus \mathbf{4}$

More explicitly,
$$\psi_{\mu} = P_{\mu a} \psi_{a}$$
 $\chi_{\mu\nu} = P_{\mu a} P_{\nu b} \chi_{ab}$ $\overline{\eta} = P_{5a} \psi_{a}$ $\overline{\psi}_{\mu} = P_{\mu a} P_{5b} \chi_{ab}$

$$P = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0\\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} & 0 & 0\\ \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{12}} & -\frac{3}{\sqrt{12}} & 0\\ \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{12}} & \frac{1}{\sqrt{20}} & \frac{1}{\sqrt{20}} & -\frac{4}{\sqrt{20}}\\ \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{pmatrix}$$

Projection matrix, $P^{-1} = P^{T}$

$${\it P}_{\mu a}=(\widehat{e}_a)_{\mu}\;\; {
m are \; basis \; vectors} \;\; \ \ \, {
m of \;}\; {\it A}_4^*\;\; {
m lattice}$$

Restoration of Q_a and Q_{ab} supersymmetries

 S_5 irreps precisely match onto irreps of twisted SO(4)_{tw}

$$\psi_{a} \longrightarrow \psi_{\mu}, \ \overline{\eta} \qquad \text{is} \qquad \mathbf{5} \longrightarrow \mathbf{4} \oplus \mathbf{1}$$

 $\chi_{ab} \longrightarrow \chi_{\mu\nu}, \ \overline{\psi}_{\mu} \qquad \text{is} \qquad \mathbf{10} \longrightarrow \mathbf{6} \oplus \mathbf{4}$

$$\begin{array}{lllllllllllllllll} \text{More explicitly,} & \psi_{\mu} = \textit{P}_{\mu a} \psi_{a} & \chi_{\mu\nu} = \textit{P}_{\mu a} \textit{P}_{\nu b} \chi_{ab} \\ & \overline{\eta} = \textit{P}_{5a} \psi_{a} & \overline{\psi}_{\mu} = \textit{P}_{\mu a} \textit{P}_{5b} \chi_{ab} \end{array}$$

 $S_5 \longrightarrow SO(4)_{tw}$ in continuum limit restores Q_a and Q_{ab}

[arXiv:1306.3891]

Continuum limit (I)

Assuming RG blocking transformation that preserves Q and S_5 compare lattice action and most general long-range S_{eff} allowed by symmetries

$$\begin{split} S_{\text{lat}} &\sim \text{Tr} \left[\mathcal{Q} \left(\chi_{ab} \mathcal{F}_{ab} + \eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a} - \frac{1}{2} \eta d \right) - \frac{1}{4} \epsilon_{abcde} \, \chi_{ab} \overline{\mathcal{D}}_{c} \, \chi_{de} \right] \\ S_{\text{eff}} &\sim \text{Tr} \left[\mathcal{Q} \left(\alpha_{1} \chi_{ab} \mathcal{F}_{ab} + \alpha_{2} \eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a} - \frac{\alpha_{3}}{2} \eta d \right) - \frac{\alpha_{4}}{4} \epsilon_{abcde} \chi_{ab} \overline{\mathcal{D}}_{c} \chi_{de} \right] \\ &+ \gamma \mathcal{Q} \left\{ \text{Tr} \left[\eta \mathcal{U}_{a} \overline{\mathcal{U}}_{a} \right] - \frac{1}{N} \text{Tr} [\eta] \, \text{Tr} \left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a} \right] \right\} \end{split}$$

Eliminate three α_i by rescaling fields and 't Hooft coupling

[arXiv:1408.7067]

Continuum limit (I)

$$\begin{split} S_{\text{lat}} &\sim \text{Tr} \left[\mathcal{Q} \left(\chi_{ab} \mathcal{F}_{ab} + \eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a} - \frac{1}{2} \eta d \right) - \frac{1}{4} \epsilon_{abcde} \; \chi_{ab} \overline{\mathcal{D}}_{c} \; \chi_{de} \right] \\ S_{\text{eff}} &\sim \text{Tr} \left[\mathcal{Q} \left(\alpha_{1} \chi_{ab} \mathcal{F}_{ab} + \alpha_{2} \eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a} - \frac{\alpha_{3}}{2} \eta d \right) - \frac{\alpha_{4}}{4} \epsilon_{abcde} \chi_{ab} \overline{\mathcal{D}}_{c} \chi_{de} \right] \\ &+ \gamma \mathcal{Q} \left\{ \text{Tr} \left[\eta \mathcal{U}_{a} \overline{\mathcal{U}}_{a} \right] - \frac{1}{N} \text{Tr} [\eta] \text{Tr} \left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a} \right] \right\} \end{split}$$

Eliminate three α_i by rescaling fields and 't Hooft coupling

$$\longrightarrow S_{\text{eff}} \sim \text{Tr} \left[\mathcal{Q} \left(\chi_{ab} \mathcal{F}_{ab} + \eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a} - \frac{\alpha_{1} \alpha_{3}}{2 \alpha_{2}^{2}} \eta d \right) - \frac{1}{4} \epsilon_{abcde} \chi_{ab} \overline{\mathcal{D}}_{c} \chi_{de} \right] \\ + \gamma' \mathcal{Q} \left\{ \text{Tr} \left[\eta \mathcal{U}_{a} \overline{\mathcal{U}}_{a} \right] - \frac{1}{N} \text{Tr} \left[\eta \right] \text{Tr} \left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a} \right] \right\}$$

Moduli space

$$S_{\text{eff}} \sim \text{Tr} \left[\mathcal{Q} \left(\chi_{ab} \mathcal{F}_{ab} + \eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a} - \frac{\alpha_{1} \alpha_{3}}{2 \alpha_{2}^{2}} \eta d \right) - \frac{1}{4} \epsilon_{abcde} \chi_{ab} \overline{\mathcal{D}}_{c} \chi_{de} \right] \\ + \gamma' \mathcal{Q} \left\{ \text{Tr} \left[\eta \mathcal{U}_{a} \overline{\mathcal{U}}_{a} \right] - \frac{1}{N} \text{Tr} \left[\eta \right] \text{Tr} \left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a} \right] \right\}$$

 γ' terms \longrightarrow scalar mass and cubics, lifting moduli space [arXiv:1408.7067]

Moduli space

Field rescalings \longrightarrow $S_{\text{lat}} = g^{-2} \mathcal{Q} \Lambda + S_{\text{closed}}$

$$\begin{split} \frac{\partial}{\partial g^{-2}} \left\langle \mathcal{O} \right\rangle &= \frac{\partial}{\partial g^{-2}} \frac{\int \mathcal{O} \ e^{-g^{-2}\mathcal{Q}\Lambda - S_{\text{closed}}}}{\int e^{-g^{-2}\mathcal{Q}\Lambda - S_{\text{closed}}}} \\ &= - \left\langle \mathcal{O}\mathcal{Q}\Lambda \right\rangle + \left\langle \mathcal{O} \right\rangle \left\langle \mathcal{Q}\Lambda \right\rangle = - \left\langle \mathcal{Q}(\mathcal{O}\Lambda) \right\rangle = \mathbf{0} \end{split}$$

 $\implies Z_{\text{lat}} = \int e^{-S_{\text{lat}}}$ independent of coupling, so perturbatively compute to one loop for $g^2
ightarrow 0$

David Schaich (Liverpool)

Lattice susy 2/3

A bit of lattice perturbation theory

Propagators and vertices affected by space-time discretization

Example (Feynman gauge):

[arXiv:1102.1725]

$$\langle \overline{\mathcal{A}}(k_{\mu})\mathcal{A}(-k_{\mu}) \rangle = \frac{1}{k^2} = \frac{1}{\sum_{\mu} k_{\mu}^2} \longrightarrow \frac{a^2}{\sum_{\mu} 4 \sin^2(ak_{\mu}/2)}$$

Aside: Up to one loop, all divergences occur for $|ak_{\mu}| \ll 1$ where lattice and continuum results coincide

 \implies Lattice $\beta = 0$ to one loop (but not topological)

A bit of lattice perturbation theory

Propagators and vertices affected by space-time discretization

Example (Feynman gauge):

$$\langle \overline{\mathcal{A}}(k_{\mu})\mathcal{A}(-k_{\mu}) \rangle = \frac{1}{k^2} = \frac{1}{\sum_{\mu} k_{\mu}^2} \longrightarrow \frac{a^2}{\sum_{\mu} 4\sin^2(ak_{\mu}/2)}$$

One-loop partition function:

$$Z_{\text{lat}} = \frac{\det \left[\overline{\mathcal{D}}_{a} \mathcal{D}_{a}\right] \det^{4} \left[\overline{\mathcal{D}}_{a} \mathcal{D}_{a}\right]}{\det^{5} \left[\overline{\mathcal{D}}_{a} \mathcal{D}_{a}\right]} = 1$$

Cancellation between ghosts & fermions vs. bosons

 \implies quantum moduli space protected to all orders in lattice perturbation theory

[arXiv:1102.1725]

Continuum limit (II)

$$\begin{split} \mathcal{S}_{\text{eff}} &\sim \text{Tr}\left[\mathcal{Q}\left(\chi_{ab}\mathcal{F}_{ab} + \eta \overline{\mathcal{D}}_{a}\mathcal{U}_{a} - \frac{\alpha_{1}\alpha_{3}}{2\alpha_{2}^{2}}\eta d\right) - \frac{1}{4}\epsilon_{abcde}\chi_{ab}\overline{\mathcal{D}}_{c}\chi_{de}\right] \\ &+ \gamma \mathcal{Q}\left\{\text{Tr}\left[\eta \mathcal{U}_{a}\overline{\mathcal{U}}_{a}\right] - \frac{1}{N}\text{Tr}\left[\eta\right]\text{Tr}\left[\mathcal{U}_{a}\overline{\mathcal{U}}_{a}\right]\right\} \end{split}$$

Protected moduli space perturbatively forces $\gamma = 0$

Assuming non-perturbative effects (e.g., instantons) also preserve moduli space, only one log. tuning to recover full continuum symmetries $SO(4)_{tw}, Q_a, Q_{ab}$

Real-space RG for lattice $\mathcal{N} = 4$ SYM

Above also assumed RG blocking transformation that preserves Q and S_5 symmetries \longleftrightarrow geometric structure

Simple transformation constructed in arXiv:1408.7067

$$\begin{aligned} \mathcal{U}'_{a}(n') &= \xi \,\mathcal{U}_{a}(n)\mathcal{U}_{a}(n+\widehat{\mu}_{a}) & \eta'(n') = \eta(n) \\ \psi'_{a}(n') &= \xi \left[\psi_{a}(n)\mathcal{U}_{a}(n+\widehat{\mu}_{a}) + \mathcal{U}_{a}(n)\psi_{a}(n+\widehat{\mu}_{a})\right] & d'(n') = d(n) \\ \chi'_{ab}(n') &= \xi^{2} \left[\text{six permutations of } \chi_{ab}\overline{\mathcal{U}}_{a}\overline{\mathcal{U}}_{b}\right] \end{aligned}$$

Doubles lattice spacing $a \rightarrow a' = 2a$, with tunable rescaling factor ξ

 $G(n) \psi'_a(n') G^{\dagger}(n+2\widehat{\mu}_a) \qquad \qquad G(n+2\widehat{\mu}_a+2\widehat{\mu}_b) \chi'_{ab}(n') G^{\dagger}(n)$

Checkpoint

- \checkmark Motivation, background, formulation
 - ✓ Supersymmetry breaking in discrete space-time
 - \checkmark Supersymmetry preservation in discrete space-time

Applications with significant recent progress Maximal $\mathcal{N} = 4$ super-Yang–Mills Lower dimensions d < 4Minimal $\mathcal{N} = 1$ super-Yang–Mills

Remaining challenges: Super-QCD; Sign problems

Questions?

"It's better to uncover a little than to cover a lot"

Moving towards practical lattice calculation

Analytic results for twisted $\mathcal{N} = 4$ SYM on A_4^* lattice

U(N) gauge invariance + Q + S_5 lattice symmetries

 \longrightarrow Moduli space preserved to all orders

 \longrightarrow One-loop lattice β function vanishes

 \longrightarrow Only one log. tuning to recover continuum \mathcal{Q}_a and \mathcal{Q}_{ab}

[arXiv:1102.1725, arXiv:1306.3891, arXiv:1408.7067]

Not yet practical for numerical calculations

Must regulate zero modes and flat directions, in both SU(N) and U(1) sectors

David Schaich (Liverpool)

Problem with SU(N) flat directions

Recall $\mathcal{U}_{a} \to \mathbb{I}_{N} + \mathcal{A}_{a}$ needed to recover continuum covariant derivative

Links can wander far away when doing Markov-chain importance sampling via rational hybrid Monte Carlo (RHMC) algorithm

Regulating SU(N) flat directions

Add SU(N) scalar potential to lattice action — multiple options, similar behavior

$$S_{\mathsf{lat}} = \frac{N}{4\lambda_{\mathsf{lat}}} \mathsf{Tr} \left[\mathcal{Q} \left(\chi_{ab} \mathcal{F}_{ab} + \eta \overline{\mathcal{D}}_{a} \mathcal{U}_{a} - \frac{1}{2} \eta d \right) - \frac{1}{4} \epsilon_{abcde} \, \chi_{ab} \overline{\mathcal{D}}_{c} \, \chi_{de} \right] + \frac{N}{4\lambda_{\mathsf{lat}}} \mu^{2} V$$

$$V = \sum_{a} \left(\frac{1}{N} \operatorname{Tr} \left[\mathcal{U}_{a} \overline{\mathcal{U}}_{a} \right] - 1 \right)^{2} \qquad \qquad V = \sum_{a} \frac{1}{N} \operatorname{Tr} \left[\left(\mathcal{U}_{a} \overline{\mathcal{U}}_{a} - \mathbb{I}_{N} \right)^{2} \right]$$

Gauge-invariant but explicitly breaks Q

Continuum limit requires $\mu^2 \rightarrow 0$ to restore Q and recover physical moduli space

Soft Q breaking

SU(*N*) scalar potential $\propto \mu^2 \sum_a \left(\text{Tr} \left[\mathcal{U}_a \overline{\mathcal{U}}_a \right] - N \right)^2$ breaks \mathcal{Q} softly $\longrightarrow \mathcal{Q}$ -violating operators vanish $\propto \mu^2 \rightarrow 0$

Problem with U(1) flat directions

 $U(N) = SU(N) \otimes U(1)$ includes compact U(1) lattice gauge theory \longrightarrow confinement transition via monopole condensation

Count monopole worldlines from phases of $\det \mathcal{U}$ in plaquettes bounding cells [DeGrand-Toussaint, 1980]

Counting monopole worldlines

A₄^{*} lattice complicates monopole worldline counting

Represent A_4^* as hypercube plus backwards diagonal link

Merge cells into hypercubes to count — neighboring $M_{\mu} - \overline{M}_{\mu}$ pairs annihilate

[arXiv:1405.0644]

U(1) confinement transition

Monopole condensation \longrightarrow confined lattice phase not present in continuum

David Schaich (Liverpoo	ľ
-----------------	----------	---

Naively regulating U(1) flat directions

Can add another soft *Q*-breaking term depending on plaquette determinant

$$S_{\text{soft}} = \frac{N}{4\lambda_{\text{lat}}} \mu^2 \sum_{a} \left(\frac{1}{N} \text{Tr} \left[\mathcal{U}_a \overline{\mathcal{U}}_a \right] - 1 \right)^2 + \kappa \sum_{a < b} |\text{det } \mathcal{P}_{ab} - 1|^2$$

Ward identity violations more sensitive to κ than to μ^2

Here checking bosonic action

$$\mathcal{Q}S_{\text{lat}} = 0 \longrightarrow \langle s_B
angle = 9N^2/2$$

Better regulating U(1) flat directions

Possible to impose Q-invariant constraints on generic site operator O(n)

$$S_{\text{lat}} \propto \text{Tr}\left[\mathcal{Q}\left(\chi_{ab}\mathcal{F}_{ab} + \eta \left\{\overline{\mathcal{D}}_{a}\mathcal{U}_{a} + G\mathcal{O}
ight\} - rac{1}{2}\eta d
ight) - rac{1}{4}\epsilon_{abcde} \; \chi_{ab}\overline{\mathcal{D}}_{c} \; \chi_{de} + \mu^{2} V
ight]$$

Modifies auxiliary field equations of motion \longrightarrow moduli space [arXiv:1505.03135] $d(n) = \overline{D}_a \mathcal{U}_a(n) \longrightarrow d(n) = \overline{D}_a \mathcal{U}_a(n) + G\mathcal{O}$

Choose $\mathcal{O} = \sum_{a \neq b} [\det \mathcal{P}_{ab} - 1] \mathbb{I}_N$ to lift U(1) zero mode & flat directions

U(1) decouples in continuum \longrightarrow no need to tune parameter G

David Schaich (Liverpool)

Lattice susy 2/3

Better regulating U(1) flat directions

$$S_{\text{lat}} \propto \text{Tr}\left[\mathcal{Q}\left(\chi_{ab}\mathcal{F}_{ab} + \eta\left\{\overline{\mathcal{D}}_{a}\mathcal{U}_{a} + G\sum_{a < b}\left[\det \mathcal{P}_{ab} - 1\right]\mathbb{I}_{N}\right\} - \frac{1}{2}\eta d\right) - \frac{1}{4}\epsilon_{abcde}\chi_{ab}\overline{\mathcal{D}}_{c}\chi_{de} + \mu^{2}V\right]$$

Larger N improves soft Q breaking

$$S_{\text{lat}} \propto \text{Tr}\left[\mathcal{Q}\left(\chi_{ab}\mathcal{F}_{ab} + \eta \left\{\overline{\mathcal{D}}_{a}\mathcal{U}_{a} + G\sum_{a < b} [\det \mathcal{P}_{ab} - 1]\mathbb{I}_{N}\right\} - \frac{1}{2}\eta d\right) - \frac{1}{4}\epsilon_{abcde} \chi_{ab}\overline{\mathcal{D}}_{c} \chi_{de} + \mu^{2}V\right]$$

Can we do even better?

What if we include both SU(*N*) and U(1) deformations in O(n)? [arXiv:1505.03135]

$$S_{\text{lat}} \propto \text{Tr}\left[\mathcal{Q}\left(\chi_{ab}\mathcal{F}_{ab} + \eta \left\{\overline{\mathcal{D}}_{a}\mathcal{U}_{a} + G\mathcal{O}
ight\} - rac{1}{2}\eta d
ight) - rac{1}{4}\epsilon_{abcde} \;\chi_{ab}\overline{\mathcal{D}}_{c}\;\chi_{de}
ight]$$

Over-constrains system \longrightarrow Ward ident. violations without explicit \mathcal{Q} breaking

Ongoing experimentation

What if $\mathcal{O} = \sum_{a} [\operatorname{Re} \det \mathcal{U}_{a} - 1] \mathbb{I}_{N}$?

[Catterall–Giedt–Toga, arXiv:2009.07334]

$$S_{\text{lat}} \propto \text{Tr}\left[\mathcal{Q}\left(\chi_{ab}\mathcal{F}_{ab} + \eta\left\{\overline{\mathcal{D}}_{a}\mathcal{U}_{a} + G\mathcal{O}
ight\} - \frac{1}{2}\eta d
ight) - \frac{1}{4}\epsilon_{abcde} \chi_{ab}\overline{\mathcal{D}}_{c} \chi_{de} + \mu^{2}V
ight]$$

U(1) gauge dependent! U(1) decouples as $a \rightarrow 0$ \longrightarrow irrelevant for a > 0?

Results look reasonable, reach strong $\lambda_{\text{lat}} = 30$

The cost of twisted lattice $\mathcal{N} = 4$ SYM

so that the full improved action becomes

$$S_{imp} = S'_{exact} + S_{closed} + S'_{soft}$$

$$S'_{exact} = \frac{N}{4\lambda_{lat}} \sum_{n} \operatorname{Tr} \left[-\overline{\mathcal{F}}_{ab}(n) \mathcal{F}_{ab}(n) - \chi_{ab}(n) \mathcal{D}^{(+)}_{[a} \psi_{b]}(n) - \eta(n) \overline{\mathcal{D}}^{(-)}_{a} \psi_{a}(n) \right. \\ \left. + \frac{1}{2} \left(\overline{\mathcal{D}}^{(-)}_{a} \mathcal{U}_{a}(n) + G \sum_{a \neq b} \left(\det \mathcal{P}_{ab}(n) - 1 \right) \mathbb{I}_{N} \right)^{2} \right] - S_{det} \\ S_{det} = \frac{N}{4\lambda_{lat}} G \sum_{n} \operatorname{Tr} [\eta(n)] \sum_{a \neq b} \left[\det \mathcal{P}_{ab}(n) \right] \operatorname{Tr} \left[\mathcal{U}^{(-)}_{b} \eta(n) \psi_{b}(n) + \mathcal{U}^{-1}_{a}(n + \widehat{\mu}_{b}) \psi_{a}(n + \widehat{\mu}_{b}) \right] \\ S_{closed} = -\frac{N}{16\lambda_{lat}} \sum_{n} \operatorname{Tr} \left[\epsilon_{abcde} \chi_{de}(n + \widehat{\mu}_{a} + \widehat{\mu}_{b} + \widehat{\mu}_{c}) \overline{\mathcal{D}}^{(-)}_{c} \chi_{ab}(n) \right], \\ S'_{soft} = \frac{N}{4\lambda_{lat}} \mu^{2} \sum_{n} \sum_{a} \left(\frac{1}{N} \operatorname{Tr} \left[\mathcal{U}_{a}(n) \overline{\mathcal{U}}_{a}(n) \right] - 1 \right)^{2}$$

$$(18)$$

Computationally challenging, e.g. \geq 100 gathers per fermion matrix–vector op.

Public parallel code github.com/daschaich/susy [arXiv:1410.6971] actively developed for improved performance and new applications

David Schaich (Liverpool)

Lattice susy 2/3

Computational cost scaling

Blue: RHMC cost scaling $\sim N^{3.5}$ since condition number increases [and $\sim V^{5/4}$] Red: Pfaffian cost scaling $\sim N^6$ as expected

David Schaich (Liverpool)

Next time

Overcoming challenges opens many opportunities for lattice studies of supersymmetric QFTs

- \checkmark Motivation, background, formulation
 - ✓ Supersymmetry breaking in discrete space-time
 - ✓ Supersymmetry preservation

Applications with significant recent progress Maximal $\mathcal{N} = 4$ super-Yang–Mills — wrap up Lower dimensions d < 4Minimal $\mathcal{N} = 1$ super-Yang–Mills

Remaining challenges: Super-QCD; Sign problems

