Lattice supersymmetric field theories - Part 3

David Schaich (University of Liverpool)

Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography
International Centre for Theoretical Sciences, Bangalore, 25 August 2022

Any questions about last time?

Overcoming challenges opens many opportunities for lattice studies of supersymmetric QFTs

\checkmark Motivation, background, formulation
\checkmark Supersymmetry breaking in discrete space-time
\checkmark Supersymmetry preservation in discrete space-time

Applications with significant recent progress
Maximal $\mathcal{N}=4$ super-Yang-Mills - wrap up
Lower dimensions $d<4$
Minimal $\mathcal{N}=1$ super-Yang-Mills
Remaining challenges: Super-QCD;
Sign problems

Any questions about last time?

Overcoming challenges opens many opportunities

for lattice studies of supersymmetric QFTs

\checkmark Motivation, background, formulation
Applications with significant recent progress - wrap up

Remaining challenges

Conceptual focus with interaction encouraged "It's better to uncover a little than to cover a lot" (V. Weisskopf)

Twisted lattice $\mathcal{N}=4$ SYM — recap

so that the full improved action becomes

$$
\begin{align*}
S_{\text {imp }}= & S_{\text {exact }}^{\prime}+S_{\text {closed }}+S_{\text {soft }}^{\prime} \tag{18}\\
S_{\text {exact }}^{\prime}= & \frac{N}{4 \lambda_{\text {lat }}} \sum_{n} \operatorname{Tr}\left[-\overline{\mathcal{F}}_{a b}(n) \mathcal{F}_{a b}(n)-\chi_{a b}(n) \mathcal{D}_{[a}^{(+)} \psi_{b]}(n)-\eta(n) \overline{\mathcal{D}}_{a}^{(-)} \psi_{a}(n)\right. \\
& \left.+\frac{1}{2}\left(\overline{\mathcal{D}}_{a}^{(-)} \mathcal{U}_{a}(n)+G \sum_{a \neq b}\left(\operatorname{det} \mathcal{P}_{a b}(n)-1\right) \mathbb{I}_{N}\right)^{2}\right]-S_{\text {det }} \\
S_{\text {det }}= & \frac{N}{4 \lambda_{\text {lat }}} G \sum_{n} \operatorname{Tr}[\eta(n)] \sum_{a \neq b}\left[\operatorname{det} \mathcal{P}_{a b}(n)\right] \operatorname{Tr}\left[\mathcal{U}_{b}^{-1}(n) \psi_{b}(n)+\mathcal{U}_{a}^{-1}\left(n+\widehat{\mu}_{b}\right) \psi_{a}\left(n+\widehat{\mu}_{b}\right)\right] \\
S_{\text {closed }}= & -\frac{N}{16 \lambda_{\text {lat }}} \sum_{n} \operatorname{Tr}\left[\epsilon_{a b c d e} \chi_{\text {de }}\left(n+\widehat{\mu}_{a}+\widehat{\mu}_{b}+\widehat{\mu}_{c}\right) \overline{\mathcal{D}}_{c}^{(-)} \chi_{a b}(n)\right], \\
S_{\text {soft }}^{\prime}= & \frac{N}{4 \lambda_{\text {lat }}} \mu^{2} \sum_{n} \sum_{a}\left(\frac{1}{N} \operatorname{Tr}\left[\mathcal{U}_{a}(n) \overline{\mathcal{U}}_{a}(n)\right]-1\right)^{2}
\end{align*}
$$

Computationally challenging, e.g. $\gtrsim 100$ gathers per fermion matrix-vector op.
Public parallel code github.com/daschaich/susy [arXiv:1410.6971] actively developed for improved performance and new applications

Static potential $V(r)$ for $4 \mathrm{~d} \mathcal{N}=4 \mathrm{SYM}$
Static probes $\longrightarrow r \times T$ Wilson loops $\quad W(r, T) \propto e^{-V(r) T}$
Coulomb gauge trick reduces A_{4}^{*} lattice complications

Static potential $V(r)$ for $4 \mathrm{~d} \mathcal{N}=4 \mathrm{SYM}$

Static probes $\longrightarrow \quad r \times T$ Wilson loops $\quad W(r, T) \propto e^{-V(r) T}$

Static potential is Coulombic at all λ

String tension σ from fits to confining form $V(r)=A-C / r+\sigma r$

Slightly negative values flatten $V\left(r_{l}\right)$ for $r_{l} \lesssim L / 2$
$\sigma \rightarrow 0$ as accessible range of r_{l} increases on larger volumes

Perturbative improvement for the static potential

Results above are improved to reduce short-distance discretization artifacts

Danger of distorting Coulomb coefficient C from fits to $V(r)=A-C / r$

Tree-level improvement

Classic trick to reduce discretization artifacts in static potential

Associate $V\left(r_{\nu}\right)$ data with ' r_{1} ' from Fourier transform of gluon propagator
Recall $\frac{1}{4 \pi^{2} r^{2}}=\int_{-\pi}^{\pi} \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{i r_{\nu} k_{\nu}}}{k^{2}}$ where $\frac{1}{k^{2}}=G\left(k_{\nu}\right)$ in continuum

$$
A_{4}^{*} \text { lattice } \longrightarrow \frac{1}{r_{I}^{2}} \equiv 4 \pi^{2} \int_{-\pi}^{\pi} \frac{d^{4} \widehat{k}}{(2 \pi)^{4}} \frac{\cos \left(r_{\nu} \widehat{k}_{\nu}\right)}{4 \sum_{\mu=1}^{4} \sin ^{2}\left(\widehat{k} \cdot \hat{e}_{\mu} / 2\right)}
$$

Tree-level lattice propagator from arXiv:1102.1725
\widehat{e}_{μ} are A_{4}^{*} lattice basis vectors;

$$
\text { momenta } \widehat{k}=\frac{2 \pi}{L} \sum_{\mu=1}^{4} n_{\mu} \widehat{g}_{\mu} \text { depend on dual basis vectors }
$$

Tree-level-improved static potential

$$
\begin{aligned}
\frac{1}{r_{l}^{2}} \equiv 4 \pi^{2} \int_{-\pi}^{\pi} \frac{d^{4} \widehat{k}}{(2 \pi)^{4}} \frac{\cos \left(r_{\nu} \widehat{k}_{\nu}\right)}{4 \sum_{\mu=1}^{4} \sin ^{2}\left(\widehat{k} \cdot \widehat{e}_{\mu} / 2\right)} \\
\longrightarrow \text { significantly reduced discretization artifacts }
\end{aligned}
$$

Coupling dependence of Coulomb coefficient

Continuum perturbation theory $\longrightarrow \boldsymbol{C}(\lambda)=\lambda /(4 \pi)+\mathcal{O}\left(\lambda^{2}\right)$
Holography $\longrightarrow C(\lambda) \propto \sqrt{\lambda}$ for $N \rightarrow \infty$ and $\lambda \rightarrow \infty$ with $\lambda \ll N$

For $\lambda_{\text {lat }} \leq 2$, consistent with leading-order perturbation theory

Checkpoint

\checkmark Motivation, background, formulation
\checkmark Supersymmetry breaking in discrete space-time

\checkmark Supersymmetry preservation in discrete space-time
Applications with significant recent progress
\checkmark Maximal $\mathcal{N}=4$ super-Yang-Mills
Lower dimensions $d<4$
Minimal $\mathcal{N}=1$ super-Yang-Mills
Remaining challenges: Super-QCD; Sign problems

Questions?

"It's better to uncover a little than to cover a lot"

Lots of opportunities in lower dimensions $d<4$

Significant simplifications

$\#$ degrees of freedom $\propto L^{d}$
Fewer interactions \longrightarrow less computational work

Dimensionful 't Hooft coupling $[\lambda]=4-d$, super-renormalizable in some cases

Three dimensions - research talk next week

Two dimensions - some highlights here

One dimension - few highlights here \longrightarrow lectures by Georg Bergner next week

2d maximal SYM thermodynamics

Naive dimensional reduction
\longrightarrow skewed $r_{L} \times r_{\beta}$ torus with four scalar \mathcal{Q}
Thermal boundary conditions
\longrightarrow dim'less temperature $t=1 / r_{\beta}=T / \sqrt{\lambda}$

Low temperatures t at large N

Black branes in dual supergravity

Phase diagram expectations

First-order transitions predicted from bosonic QM at high $t\left(r_{\beta} \ll 1\right)$ from holography at low $t\left(r_{\beta} \gg 1\right)$

For decreasing r_{L} at large N
homogeneous black string (D1)
\longrightarrow localized black hole (D0)

"spatial deconfinement"
signalled by Wilson line P_{L}

Spatial deconfinement transition signals - high- t example

Peaks in Wilson line susceptibility match change in its magnitude |PL|, grow with size of $\operatorname{SU}(N)$ gauge group, comparing $N=6,9,12$

Agreement for 16×4 vs. 24×6 lattices (aspect ratio $\alpha=r_{L} / r_{\beta}=4$)

Lattice results for $2 \mathrm{~d} \mathcal{N}=(8,8) \mathrm{SYM}$ phase diagram

Good agreement with bosonic QM at high temperatures
Harder to control low-temperature uncertainties (larger $N>16$ should help)

Overall consistent with holography

Comparing multiple lattice sizes and $6 \leq N \leq 16$

Controlled extrapolations are work in progress

A different twist in two dimensions

The "A twist" doesn't complexify links
[Sugino, Matsuura, Hanada, Ohta, ...]
$\longrightarrow \mathrm{SU}(N)$ gauge invariance but $\mathcal{Q}_{A}^{2}=$ gauge transformation

Suffers from exponentially many degenerate vacua

Matsuura \& Sugino [arXiv:1402.0952] resolve this problem in two dimensions but not in higher dimensions

In two dimensions, can formulate A-twist $\mathcal{N}=(2,2)$ SYM
on arbitrary polygon decompositions of Riemann surfaces Matsuura-Misumi-Ohta, arXiv:1408.6998

Super-Yang-Mills quantum mechanics

4d SU(N) SYM \longrightarrow quantum mechanics of $N \times N$ matrices
 [G. Bergner lectures]

Predict corrections to SUGRA result through large- N continuum extrapolations Monte Carlo String/M-Theory Collaboration, arXiv:1606.04951

Supersymmetric mass deformation

Berenstein-Maldacena-Nastase, hep-th/0202021
Generalize SYM QM while preserving maximal supersymmetry
\longrightarrow more interesting features including phase transition at critical $T / m u$ Jha-Joseph-DS, 2201.03097 \& to appear

Phase diagram of critical T / μ
vs. dimensionless coupling g
For small $g \lesssim 10^{-3}$, agree with NNLO perturbation theory

Approach leading-order holography as g increases

Checkpoint

\checkmark Motivation, background, formulation
\checkmark Supersymmetry breaking in discrete space-time
\checkmark Supersymmetry preservation in discrete space-time
Applications with significant recent progress
\checkmark Maximal $\mathcal{N}=4$ super-Yang-Mills
\checkmark Lower dimensions $d<4$
Minimal $\mathcal{N}=1$ super-Yang-Mills
Remaining challenges: Super-QCD; Sign problems

Questions?

"It's better to uncover a little than to cover a lot"

$\mathcal{N}=1 \mathrm{SYM}$ is special case with no scalars

$\mathrm{SU}(N)$ gauge theory with single massless Majorana fermion in adjoint rep.

Straightforward lattice fermion formulations explicitly break chiral symmetry \longrightarrow large additive gluino mass renormalization

Chiral ('overlap' or 'domain-wall') lattice fermions numerically expensive

$\mathcal{N}=1 \mathrm{SYM}$ is special case with no scalars

$\mathrm{SU}(N)$ gauge theory with single massless Majorana fermion in adjoint rep.

1) Fine-tune gluino mass \longrightarrow supersymmetry in chiral continuum limit
2) Overlap or domain-wall fermions
\longrightarrow automatic (accidental) supersymmetry in continuum limit

Selected recent progress fine-tuning gluino mass

Scalar, pseudoscalar and fermionic partner

 approach degenerate supermultiplet for massless gluinoSmaller lattice spacing 'a' (larger β) \longrightarrow improved supermultiplet formation Desy-Münster-Regensburg-Jena, arXiv:1902.11127 \& arXiv:2001.09682

Selected recent progress fine-tuning gluino mass

Measure of supersymmetry breaking from Ward identities
vanishes in chiral continuum limit, $a^{2} \rightarrow 0$
Desy-Münster-Regensburg-Jena, arXiv:2003.04110

Extrapolation consistent with $\mathcal{O}\left(a^{2}\right)$ discretization artifacts expected for this lattice action

Selected recent progress fine-tuning gluino mass

Alternate 'twisted-mass' action provides extra 'twist angle' parameter
\longrightarrow tune this to improve approach to continuum limit
Steinhauser-Sternbeck-Wellegehausen-Wipf, arXiv:2010.00946

Lattice chiral symmetry

Chiral symmetry means $\left\{D, \gamma_{5}\right\}=\gamma_{5} D+D \gamma_{5}=0$ for massless fermion operator

Only a 'remnant' can be realized on the lattice
[Ginsparg-Wilson, 1982]

$$
D \gamma_{5}+\gamma_{5} D=a D \gamma_{5} D \quad \longrightarrow \quad\left(\mathbb{I}-\frac{a}{2} D\right) \gamma_{5} D+D \gamma_{5}\left(\mathbb{I}-\frac{a}{2} D\right)=0
$$

Difficult to construct fermion operators that obey the Ginsparg-Wilson relation 'Overlap' operator $a D_{\mathrm{ov}}=\mathbb{I}+\gamma_{5} \operatorname{sign}\left[\gamma_{5} D_{W}(\kappa)\right]$
requires computing sign $[H]=\frac{H}{\sqrt{H \cdot H}}$ for large matrix
'Domain-wall' operator introduces extra direction...

Domain-wall fermions

$L_{s} \sim \mathcal{O}(10)$ copies of 4d gauge fields — expensive! [Used by 0810.5746, 0902.4267]
Localized fermions have renormalized mass $m=m_{f}+m_{\text {res }}$ with residual mass $m_{\mathrm{res}} \ll m_{f}$ from overlap around $L_{s} / 2$
$L_{s} \rightarrow \infty$ allows exact chiral symmetry at non-zero lattice spacing

Recent progress with overlap $\mathcal{N}=1$ super-Yang-Mills

N-order polynomial approximation to compute matrix sign function
Piemonte-Bergner-López, arXiv:2005.02236

Bare gluino condensate from 12^{4} lattices
$N \rightarrow \infty$ gives chiral limit

Only multiplicative renormalization

Checkpoint

\checkmark Motivation, background, formulation
\checkmark Supersymmetry breaking in discrete space-time
\checkmark Supersymmetry preservation in discrete space-time
\checkmark Applications with significant recent progress
\checkmark Maximal $\mathcal{N}=4$ super-Yang-Mills
\checkmark Lower dimensions $d<4$
\checkmark Minimal $\mathcal{N}=1$ super-Yang-Mills
Remaining challenges: Super-QCD; Sign problems

Questions?

"It's better to uncover a little than to cover a lot"

Future frontier: Supersymmetric QCD

Add 'quarks' and squarks \longrightarrow investigate electric-magnetic dualities, dynamical supersymmetry breaking and more

Scalar mass

Yukawas

Quark mass

Fine-tuning back with a vengeance
$\mathcal{O}(10)$ parameters, even using overlap or domain-wall fermions

Pursuing superQCD with full fine-tuning

First step: Lattice perturbation theory as guide for future fine-tuning
Wellegehausen-Wipf, arXiv:1811.01784; Costa-Panagopoulos, arXiv:1812.06770

Alternately include only fundamental + adjoint fermions, leave scalars for future Bergner-Piemonte, arXiv:2008.02855

Simplify superQCD: Twisted theories in 2d or 3d
Quiver construction preserves susy sub-algebra [arXiv:0805.4491, arXiv:0807.2683]

2-slice lattice SYM
with $U(N) \times U(F)$ gauge group
Adj. fields on each slice
Bi-fundamental in between

Decouple $U(F)$ slice
$\longrightarrow \mathrm{U}(N)$ SQCD in $d-1$ dims.
with F fund. hypermultiplets

Dynamical susy breaking in 2d lattice superQCD

$U(N)$ superQCD with F fundamental hypermultiplets

Observe spontaneous susy breaking only for $N>F$, as expected
Catterall-Veernala, arXiv:1505.00467

Future frontier: Sign problems
Recall typical algorithms sample field configurations Φ with probability $\frac{1}{\mathcal{Z}} e^{-S[\Phi]}$
\longrightarrow "sign problem" if action $S[\Phi]$ can be negative or complex

Example: Spontaneous susy breaking needs vanishing Witten index

Witten index is just $\mathcal{Z}=\int \mathcal{D} \Phi e^{-S[\Phi]} \longrightarrow$ severe sign problem to have $\mathcal{Z}=0$

Motivates alternative approaches to be discussed:
Complex Langevin - A. Kumar [Sat]
Tensor networks - D. Kadoh lectures; R. Jha [Fri]; R. Sakai [Mon]
Quantum simulation - S. Chandrasekharan [Sat]; I. Raychowdhury [Tue]; Y. Meurice [Tue]; E. Zohar [Thu]

Future frontier: Sign problems
Recall typical algorithms sample field configurations Φ with probability $\frac{1}{\mathcal{Z}} e^{-S[\Phi]}$ \longrightarrow "sign problem" if action $S[\Phi]$ can be negative or complex

Example: $\mathcal{N}=4 \mathrm{SYM}$ has complex pfaffian $\operatorname{pf} \mathcal{D}=|\mathrm{pf} \mathcal{D}| e^{i \alpha}$

$$
\langle\mathcal{O}\rangle=\frac{1}{\mathcal{Z}} \int[d \mathcal{U}][d \overline{\mathcal{U}}] \mathcal{O} e^{-s_{B}[\mathcal{U}, \overline{\mathcal{U}}]} \operatorname{pf} \mathcal{D}[\mathcal{U}, \overline{\mathcal{U}}]
$$

We phase quench pf $\mathcal{D} \longrightarrow \mid$ pf $\mathcal{D} \mid$, need to reweight $\langle\mathcal{O}\rangle=\frac{\left\langle\mathcal{O} e^{i \alpha}\right\rangle_{\mathrm{pq}}}{\left\langle e^{i \alpha}\right\rangle_{\mathrm{pq}}}$

$$
\Longrightarrow\left\langle e^{i \alpha}\right\rangle_{\mathrm{pq}}=\frac{\mathcal{Z}}{\mathcal{Z}_{\mathrm{pq}}} \text { quantifies severity of sign problem }
$$

$\mathcal{N}=4$ SYM sign problem

$$
\text { Fix } \lambda_{\text {lat }}=g_{\text {lat }}^{2} N=0.5
$$

Pfaffian nearly real positive
for all accessible volumes

Wrap up

Overcoming challenges opens many opportunities for lattice studies of supersymmetric QFTs

\checkmark Motivation, background, formulation
\checkmark Supersymmetry breaking in discrete space-time
\checkmark Supersymmetry preservation in discrete space-time

\checkmark Applications with significant recent progress
\checkmark Maximal $\mathcal{N}=4$ super-Yang-Mills
\checkmark Lower dimensions $d<4$
\checkmark Minimal $\mathcal{N}=1$ super-Yang-Mills
\checkmark Remaining challenges: Super-QCD; Sign problems

Further resources

Lattice studies of supersymmetric gauge theories

David Schaich*
Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, United Kingdom
(Dated: 17 August 2022)
Updated version of arXiv:2208.03580 at icts.res.in/program/numstrings2022/talks
arXiv:0903.4881 by Catterall, Kaplan and Ünsal remains most detailed review
Expect connections with lectures by:
Anna Hasenfratz - Introduction to Lattice Field Theory
Georg Bergner - Matrix Models, Gauge-Gravity Duality, and Simulations...

Supplement: Scaling dimensions from lattice $\mathcal{N}=4$ SYM

Arguably simplest non-trivial 4d QFT \longrightarrow dualities, amplitudes, ...
$\operatorname{SU}(N)$ gauge theory with $\mathcal{N}=4$ fermions ψ^{I} and 6 scalars ϕ^{IJ}, all massless and in adjoint rep.

Maximal 16 supersymmetries Q_{α}^{I} and $\bar{Q}_{\dot{\alpha}}^{I} \quad I=1, \cdots, 4$ transform under global $\operatorname{SU}(4) \sim \mathrm{SO}(6) \mathrm{R}$ symmetry

Conformal $\longrightarrow \beta$ function is zero for all values of $\lambda=g^{2} N$
Exact, perturbative, holographic \& bootstrap results for spectrum of scaling dimensions $\Delta(\lambda)$

Anomalous dim. from fermion operator eigenmodes
Conformality broken by finite volume and non-zero lattice spacing

Consider analogue of mass anomalous dimension,

$$
\gamma_{*}(\lambda)=0 \text { for continuum } \mathcal{N}=4 \mathrm{SYM}
$$

Antisymmetric fermion operator \longrightarrow paired eigenvalues $\pm \lambda_{k}$

$$
\Psi^{\top} D \Psi=\chi_{a b} \mathcal{D}_{[a}^{(+)} \psi_{b]}+\eta \mathcal{D}_{a}^{\dagger(-)} \psi_{a}+\frac{1}{2} \epsilon_{a b c d e} \chi_{a b} \mathcal{D}_{c}^{\dagger(-)} \chi_{d e}
$$

Anomalous dimension related to mode number of $D^{\dagger} D$

$$
\nu\left(\Omega^{2}\right)=\int_{0}^{\Omega^{2}} \rho\left(\omega^{2}\right) d \omega^{2} \propto\left(\Omega^{2}\right)^{2 /\left(1+\gamma_{*}\right)} \quad \rho\left(\omega^{2}\right)=\frac{1}{V} \sum_{k}\left\langle\delta\left(\omega^{2}-\lambda_{k}^{2}\right)\right\rangle
$$

Chebyshev expansion for mode number

Stochastically estimate Chebyshev expansion $\quad \rho_{r}(x) \approx \sum_{n=0}^{P} \frac{2-\delta_{n 0}}{\pi \sqrt{1-x^{2}}} c_{n} T_{n}(x)$
[Fodor et al., arxiv:1605.08091]

\longleftarrow Example mode number
for $U(2) 8^{4}$ free theory, $P=1000$
$5000 \leq P \leq 10000$ for $N=2,3,4$
volumes up to 16^{4}

Checked vs. direct eigensolver and stochastic projection

Mode number scale dependence

Anomalous dimension from $D^{\dagger} D$ mode number $\quad \nu\left(\Omega^{2}\right) \propto\left(\Omega^{2}\right)^{2 /\left(1+\gamma_{\alpha}\right)}$

$U(2) 16^{4}$ lattices with $0.25 \leq \lambda_{\text {lat }} \leq 2.5$
Free theory also shows lattice effects

Power law varies with scale Ω^{2}
\longrightarrow scale-dependent effective $\gamma_{\text {eff }}\left(\Omega^{2}\right)$
Extract by fitting in windows $\left[\Omega^{2}, \Omega^{2}+\ell\right]$
with fixed $\ell \in[0.03,1]$

Convergence to continuum $\gamma_{*}=0$

Broken conformality \longrightarrow scale-dependent effective anomalous dim. $\gamma_{\text {eff }}\left(\Omega^{2}\right)$

$U(2) 16^{4}$ lattices with $0.25 \leq \lambda_{\text {lat }} \leq 2.5$
Free theory also shows lattice effects

Recover true $\gamma_{*}=0$ in IR, $\Omega^{2} \ll 1$

Stronger couplings \longrightarrow larger artifacts

Konishi operator scaling dimension Δ_{K}

$\mathcal{O}_{K}(x)=\sum_{\mathrm{I}} \operatorname{Tr}\left[\Phi^{\mathrm{I}}(x) \Phi^{\mathrm{I}}(x)\right]$ is simplest conformal primary operator
Scaling dimension $\Delta_{K}(\lambda)=2+\gamma_{K}(\lambda)$ investigated through

perturbation theory (\& S duality), holography, conformal bootstrap

$C_{K}(r) \equiv \mathcal{O}_{K}(x+r) \mathcal{O}_{K}(x) \propto r^{-2 \Delta_{K}}$
20^{\prime} 'SUGRA' op. has $\Delta_{S}=2$

Work in progress to compare:
Direct power-law decay
Finite-size scaling
Monte Carlo RG

Konishi operator scaling dimension Δ_{K}

Lattice scalars $\varphi(n)$ from polar decomposition $\mathcal{U}_{a}(n)=e^{\varphi_{a}(n)} U_{a}(n)$

$$
\mathcal{O}_{K}^{\text {lat }}(n)=\sum_{a} \operatorname{Tr}\left[\varphi_{a}(n) \varphi_{a}(n)\right]-\operatorname{vev} \quad \mathcal{O}_{S}^{\text {lat }}(n) \sim \operatorname{Tr}\left[\varphi_{a}(n) \varphi_{b}(n)\right]
$$

$C_{K}(r) \equiv \mathcal{O}_{K}(x+r) \mathcal{O}_{K}(x) \propto r^{-2 \Delta_{K}}$
20^{\prime} 'SUGRA' op. has $\Delta_{S}=2$
Work in progress to compare:
Direct power-law decay
Finite-size scaling
Monte Carlo RG

Scaling dimensions from MCRG stability matrix

Lattice system: $H=\sum_{i} c_{i} \mathcal{O}_{i} \quad$ (infinite sum)
Couplings flow under RG blocking $\longrightarrow H^{(n)}=R_{b} H^{(n-1)}=\sum_{i} c_{i}^{(n)} \mathcal{O}_{i}^{(n)}$
Conformal fixed point $\longrightarrow H^{*}=R_{b} H^{*}$ with couplings c_{i}^{*}
Linear expansion around fixed point \longrightarrow stability matrix $T_{i k}^{*}$

$$
c_{i}^{(n)}-c_{i}^{*}=\left.\sum_{k} \frac{\partial c_{i}^{(n)}}{\partial c_{k}^{(n-1)}}\right|_{H^{*}}\left(c_{k}^{(n-1)}-c_{k}^{*}\right) \equiv \sum_{k} T_{i k}^{*}\left(c_{k}^{(n-1)}-c_{k}^{*}\right)
$$

Correlators of $\mathcal{O}_{i}, \mathcal{O}_{k} \longrightarrow$ elements of stability matrix
Eigenvalues of $T_{i k}^{*} \longrightarrow$ scaling dimensions of corresponding operators

Smearing for Konishi analyses

Smear to enlarge (MCRG or variational) operator basis
APE-like smearing: $\quad \longrightarrow \quad(1-\alpha)-\quad+\frac{\alpha}{8} \sum \sqcap$,
staples built from unitary parts of links but no final unitarization
Average plaquette stable upon smearing (right),
minimum plaquette steadily increases (left)

Preliminary Δ_{K} results from Monte Carlo RG

Both Konishi and SUGRA in $T_{i k}^{*}$

Impose protected $\Delta_{s}=2$
$\longrightarrow \Delta_{K}$ consistent with pert. theory

Systematic uncertainties from different amounts of smearing

Complication from twisting $\mathrm{SO}(4)_{R} \subset \mathrm{SO}(6)_{R}$
$\mathcal{O}_{K}^{\text {lat }}$ mixes with $\mathrm{SO}(4)_{R}$-singlet part of $\mathrm{SO}(6)_{R}$-nonsinglet \mathcal{O}_{S}
\longrightarrow disentangle via variational analyses

Backup: Dimensional reduction to 2d $\mathcal{N}=(8,8)$ SYM

Naive for now: $4 \mathrm{~d} \mathcal{N}=4 \mathrm{SYM}$ code with $N_{x}=N_{y}=1$
$A_{4}^{*} \longrightarrow A_{2}^{*}$ (triangular) lattice

Torus skewed depending on $\alpha=L / N_{t}$
Modular transformation into fundamental domain
\longrightarrow some skewed tori actually rectangular

Also need to stabilize compactified links
to ensure broken center symmetries

Backup: Stabilizing compactified links

> Add potential $\propto \operatorname{Tr}\left[\left(\varphi-\mathbb{I}_{N}\right)^{\dagger}\left(\varphi-\mathbb{I}_{N}\right)\right]$ to break center symmetry in reduced dir(s) $(\sim$ Kaluza-Klein rather than Eguchi-Kawai reduction)

Backup: Check holographic black hole energies

Lattice results consistent with leading expectation for sufficiently low $t \lesssim 0.4$
Similar behavior \longrightarrow difficult to distinguish phases
$\propto t^{3.2}$ for small- r_{L} D0 phase
$\propto t^{3}$ for large $-r_{L}$ D1 phase

Backup: 2d Wilson line eigenvalues for low t

Large- N eigenvalue phase distribution also signals spatial deconfinement

Left: $\alpha=1 / 2$ distributions more localized as N increases \longrightarrow D0 black hole
Right: $\alpha=2$ distributions more uniform as N increases $\longrightarrow \mathrm{D} 1$ black string

Backup: 3d thermodynamics and continuum extrapolation

Dimensional reduction to $3 \mathrm{~d} \mathcal{N}=8 \mathrm{SYM}$ with two scalar \mathcal{Q}
Approach leading holographic expectation $\propto t^{10 / 3}$ for low $t \lesssim 0.3$
Carry out continuum extrapolations for fixed aspect ratio $\alpha=1$ and $N=8$

Backup: 3d $\mathcal{N}=8$ SYM Wilson line eigenvalues

Large- N eigenvalue phase distribution also signals spatial deconfinement

Left: High-temperature $\mathrm{U}(8) 8^{3}$ distributions more compact as t increases

Right: Low-temperature $\mathrm{U}(N) 12^{3}$ distributions more uniform as N increases

Backup: More on dynamical susy breaking

Spontaneous susy breaking means $\langle 0| H|0\rangle>0$ or equivalently $\langle\mathcal{Q O}\rangle \neq 0$

Twisted superQCD auxiliary field e.o.m. \longleftrightarrow Fayet-lliopoulos D-term potential

$$
d=\overline{\mathcal{D}}_{a} \mathcal{U}_{a}+\sum_{i=1}^{F} \phi_{i} \bar{\phi}_{i}-r \mathbb{I}_{N} \quad \longleftrightarrow \quad \operatorname{Tr}\left[\left(\sum_{i} \phi_{i} \bar{\phi}_{i}-r \mathbb{I}_{N}\right)^{2}\right] \in H
$$

Have $F \times N$ scalar vevs to zero out $N \times N$ matrix
$\longrightarrow N>F$ suggests susy breaking, $\langle 0| H|0\rangle>0 \longleftrightarrow\langle\mathcal{Q} \eta\rangle=\langle d\rangle \neq 0$

