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Any questions about last time?

Overcoming challenges opens many opportunities
for lattice studies of supersymmetric QFTs

X Motivation, background, formulation
X Supersymmetry breaking in discrete space-time
X Supersymmetry preservation in discrete space-time

Applications with significant recent progress
Maximal N = 4 super-Yang–Mills — wrap up
Lower dimensions d < 4
Minimal N = 1 super-Yang–Mills

Remaining challenges: Super-QCD; Sign problems

(Derek Leinweber)
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Any questions about last time?

Overcoming challenges opens many opportunities
for lattice studies of supersymmetric QFTs

X Motivation, background, formulation

Applications with significant recent progress — wrap up

Remaining challenges

Conceptual focus with interaction encouraged
“It’s better to uncover a little than to cover a lot” (V. Weisskopf)

(Derek Leinweber)
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Twisted lattice N = 4 SYM — recap

Computationally challenging, e.g. &100 gathers per fermion matrix–vector op.

Public parallel code github.com/daschaich/susy [arXiv:1410.6971]
actively developed for improved performance and new applications
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Static potential V (r) for 4d N = 4 SYM

Static probes −→ r × T Wilson loops W (r ,T ) ∝ e−V (r) T

Coulomb gauge trick reduces A∗4 lattice complications
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Static probes −→ r × T Wilson loops W (r ,T ) ∝ e−V (r) T
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Static potential is Coulombic at all λ

String tension σ from fits to confining form V (r) = A− C/r + σr

Slightly negative values
flatten V (rI) for rI . L/2

σ → 0 as accessible
range of rI increases

on larger volumes
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Perturbative improvement for the static potential

Results above are improved to reduce short-distance discretization artifacts

 

Danger of distorting Coulomb coefficient C from fits to V (r) = A− C/r
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Tree-level improvement

Classic trick to reduce discretization artifacts in static potential
Associate V (rν) data with ‘rI ’ from Fourier transform of gluon propagator

Recall
1

4π2r 2 =

∫ π

−π

d4k
(2π)4

eirνkν

k2 where
1
k2 = G(kν) in continuum

A∗4 lattice −→ 1
r 2
I
≡ 4π2

∫ π

−π

d4k̂
(2π)4

cos
(

rν k̂ν
)

4
∑4

µ=1 sin2
(

k̂ · êµ / 2
)

Tree-level lattice propagator from arXiv:1102.1725

êµ are A∗4 lattice basis vectors;
momenta k̂ = 2π

L

∑4
µ=1 nµĝµ depend on dual basis vectors
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Tree-level-improved static potential

1
r 2
I
≡ 4π2

∫ π

−π

d4k̂
(2π)4

cos
(

rν k̂ν
)

4
∑4

µ=1 sin2
(

k̂ · êµ / 2
)

−→ significantly reduced discretization artifacts
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Coupling dependence of Coulomb coefficient

Continuum perturbation theory −→ C(λ) = λ/(4π) +O(λ2)

Holography −→ C(λ) ∝
√
λ for N →∞ and λ→∞ with λ� N

For λlat ≤ 2, consistent with
leading-order perturbation theory
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Checkpoint
X Motivation, background, formulation
X Supersymmetry breaking in discrete space-time
X Supersymmetry preservation in discrete space-time

Applications with significant recent progress
X Maximal N = 4 super-Yang–Mills
Lower dimensions d < 4
Minimal N = 1 super-Yang–Mills

Remaining challenges: Super-QCD; Sign problems

Questions?
“It’s better to uncover a little than to cover a lot”

(Derek Leinweber)
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Lots of opportunities in lower dimensions d < 4

Significant simplifications

] degrees of freedom ∝ Ld

Fewer interactions −→ less computational work

Dimensionful ’t Hooft coupling [λ] = 4− d , super-renormalizable in some cases

Three dimensions — research talk next week

Two dimensions — some highlights here

One dimension — few highlights here −→ lectures by Georg Bergner next week
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2d maximal SYM thermodynamics arXiv:1709.07025

Naive dimensional reduction
−→ skewed rL × rβ torus with four scalar Q

Thermal boundary conditions
−→ dim’less temperature t = 1/rβ = T/

√
λ

Low temperatures t at large N

l
Black branes in dual supergravity
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Phase diagram expectations

First-order transitions predicted from bosonic QM at high t (rβ � 1)
from holography at low t (rβ � 1)

For decreasing rL at large N

homogeneous black string (D1)
−→ localized black hole (D0)

l
“spatial deconfinement”

signalled by Wilson line PL
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Spatial deconfinement transition signals — high-t example

Peaks in Wilson line susceptibility match change in its magnitude |PL|,
grow with size of SU(N) gauge group, comparing N = 6, 9, 12

Agreement for 16×4 vs. 24×6 lattices (aspect ratio α = rL/rβ = 4)
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Lattice results for 2d N = (8,8) SYM phase diagram

Good agreement with bosonic QM at high temperatures

Harder to control low-temperature uncertainties (larger N > 16 should help)

Overall consistent with holography

Comparing multiple lattice sizes
and 6 ≤ N ≤ 16

Controlled extrapolations
are work in progress
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A different twist in two dimensions

The “A twist” doesn’t complexify links [Sugino, Matsuura, Hanada, Ohta, . . . ]

−→ SU(N) gauge invariance but Q2
A = gauge transformation

Suffers from exponentially many degenerate vacua
Matsuura & Sugino [arXiv:1402.0952] resolve this problem in two dimensions

but not in higher dimensions

In two dimensions, can formulate A-twist N = (2,2) SYM
on arbitrary polygon decompositions of Riemann surfaces

Matsuura–Misumi–Ohta, arXiv:1408.6998
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Super-Yang–Mills quantum mechanics

4d SU(N) SYM −→ quantum mechanics of N×N matrices [G. Bergner lectures]

Predict corrections to SUGRA result through large-N continuum extrapolations
Monte Carlo String/M-Theory Collaboration, arXiv:1606.04951
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Supersymmetric mass deformation
Berenstein–Maldacena–Nastase, hep-th/0202021

Generalize SYM QM while preserving maximal supersymmetry
−→ more interesting features including phase transition at critical T/mu

Jha–Joseph–DS, 2201.03097 & to appear
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Phase diagram of critical T/µ
vs. dimensionless coupling g

For small g . 10−3, agree with
NNLO perturbation theory

Approach leading-order holography
as g increases
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Checkpoint
X Motivation, background, formulation
X Supersymmetry breaking in discrete space-time
X Supersymmetry preservation in discrete space-time

Applications with significant recent progress
X Maximal N = 4 super-Yang–Mills
X Lower dimensions d < 4
Minimal N = 1 super-Yang–Mills

Remaining challenges: Super-QCD; Sign problems

Questions?
“It’s better to uncover a little than to cover a lot”

(Derek Leinweber)
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N = 1 SYM is special case with no scalars

SU(N) gauge theory with single massless Majorana fermion in adjoint rep.

Straightforward lattice fermion formulations explicitly break chiral symmetry
−→ large additive gluino mass renormalization

Chiral (‘overlap’ or ‘domain-wall’) lattice fermions numerically expensive
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N = 1 SYM is special case with no scalars

SU(N) gauge theory with single massless Majorana fermion in adjoint rep.

1) Fine-tune gluino mass −→ supersymmetry in chiral continuum limit

2) Overlap or domain-wall fermions
−→ automatic (accidental) supersymmetry in continuum limit
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Selected recent progress fine-tuning gluino mass

Scalar, pseudoscalar and fermionic partner
approach degenerate supermultiplet for massless gluino

Smaller lattice spacing ‘a’ (larger β) −→ improved supermultiplet formation
Desy–Münster–Regensburg–Jena, arXiv:1902.11127 & arXiv:2001.09682
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Selected recent progress fine-tuning gluino mass

Measure of supersymmetry breaking from Ward identities
vanishes in chiral continuum limit, a2 → 0

Desy–Münster–Regensburg–Jena, arXiv:2003.04110

Extrapolation consistent
with O(a2) discretization artifacts

expected for this lattice action
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Selected recent progress fine-tuning gluino mass

Alternate ‘twisted-mass’ action provides extra ‘twist angle’ parameter
−→ tune this to improve approach to continuum limit

Steinhauser–Sternbeck–Wellegehausen–Wipf, arXiv:2010.00946
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Lattice chiral symmetry

Chiral symmetry means {D, γ5} = γ5D + Dγ5 = 0 for massless fermion operator

Only a ‘remnant’ can be realized on the lattice [Ginsparg–Wilson, 1982]

Dγ5 + γ5D = aDγ5D −→
(
I− a

2
D
)
γ5D + Dγ5

(
I− a

2
D
)

= 0

Difficult to construct fermion operators that obey the Ginsparg–Wilson relation
‘Overlap’ operator aDov = I + γ5sign [γ5DW (κ)]

requires computing sign [H] =
H√
H ·H

for large matrix

‘Domain-wall’ operator introduces extra direction. . .
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Domain-wall fermions

Ls ∼ O(10) copies of 4d gauge fields — expensive! [Used by 0810.5746, 0902.4267]

Localized fermions have renormalized mass m = mf + mres
with residual mass mres � mf from overlap around Ls/2

Ls →∞ allows exact chiral symmetry at non-zero lattice spacing
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Recent progress with overlap N = 1 super-Yang–Mills

N-order polynomial approximation to compute matrix sign function

Piemonte–Bergner–López, arXiv:2005.02236

Bare gluino condensate from 124 lattices

N →∞ gives chiral limit

Only multiplicative renormalization
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Checkpoint
X Motivation, background, formulation
X Supersymmetry breaking in discrete space-time
X Supersymmetry preservation in discrete space-time

X Applications with significant recent progress
X Maximal N = 4 super-Yang–Mills
X Lower dimensions d < 4
X Minimal N = 1 super-Yang–Mills

Remaining challenges: Super-QCD; Sign problems

Questions?
“It’s better to uncover a little than to cover a lot”

(Derek Leinweber)
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Future frontier: Supersymmetric QCD

Add ‘quarks’ and squarks −→ investigate electric–magnetic dualities,
dynamical supersymmetry breaking and more

Fine-tuning back with a vengeance
O(10) parameters, even using overlap or domain-wall fermions [arXiv:0903.2443]
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Pursuing superQCD with full fine-tuning

First step: Lattice perturbation theory as guide for future fine-tuning
Wellegehausen–Wipf, arXiv:1811.01784; Costa–Panagopoulos, arXiv:1812.06770

Alternately include only fundamental + adjoint fermions, leave scalars for future
Bergner–Piemonte, arXiv:2008.02855
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Simplify superQCD: Twisted theories in 2d or 3d

Quiver construction preserves susy sub-algebra [arXiv:0805.4491, arXiv:0807.2683]

2-slice lattice SYM
with U(N)× U(F ) gauge group

Adj. fields on each slice

Bi-fundamental in between

Decouple U(F ) slice

−→ U(N) SQCD in d − 1 dims.
with F fund. hypermultiplets
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Dynamical susy breaking in 2d lattice superQCD

U(N) superQCD with F fundamental hypermultiplets
Observe spontaneous susy breaking only for N > F , as expected

Catterall–Veernala, arXiv:1505.00467
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Future frontier: Sign problems
Recall typical algorithms sample field configurations Φ with probability

1
Z

e−S[Φ]

−→ “sign problem” if action S[Φ] can be negative or complex

Example: Spontaneous susy breaking needs vanishing Witten index

Witten index is just Z =

∫
DΦ e−S[Φ] −→ severe sign problem to have Z = 0

Motivates alternative approaches to be discussed:

Complex Langevin — A. Kumar [Sat]

Tensor networks — D. Kadoh lectures; R. Jha [Fri]; R. Sakai [Mon]

Quantum simulation — S. Chandrasekharan [Sat]; I. Raychowdhury [Tue];
Y. Meurice [Tue]; E. Zohar [Thu]
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Future frontier: Sign problems

Recall typical algorithms sample field configurations Φ with probability
1
Z

e−S[Φ]

−→ “sign problem” if action S[Φ] can be negative or complex

Example: N = 4 SYM has complex pfaffian pfD = |pfD|eiα

〈O〉 =
1
Z

∫
[dU ][dU ] O e−SB [U ,U ] pfD[U ,U ]

We phase quench pfD −→ |pfD|, need to reweight 〈O〉 =

〈
Oeiα

〉
pq

〈eiα〉pq

=⇒
〈
eiα〉

pq =
Z
Zpq

quantifies severity of sign problem
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N = 4 SYM sign problem

Fix λlat = g2
latN = 0.5

Pfaffian nearly real positive
for all accessible volumes

Fix 44 volume
Fluctuations increase with coupling

Signal-to-noise
becomes obstruction for λlat & 4
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Wrap up

Overcoming challenges opens many opportunities
for lattice studies of supersymmetric QFTs

X Motivation, background, formulation
X Supersymmetry breaking in discrete space-time
X Supersymmetry preservation in discrete space-time

X Applications with significant recent progress
X Maximal N = 4 super-Yang–Mills
X Lower dimensions d < 4
X Minimal N = 1 super-Yang–Mills

X Remaining challenges: Super-QCD; Sign problems

(Derek Leinweber)
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Further resources

Updated version of arXiv:2208.03580 at icts.res.in/program/numstrings2022/talks

arXiv:0903.4881 by Catterall, Kaplan and Ünsal remains most detailed review

Expect connections with lectures by:
Anna Hasenfratz — Introduction to Lattice Field Theory
Georg Bergner — Matrix Models, Gauge-Gravity Duality, and Simulations. . .
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Supplement: Scaling dimensions from lattice N = 4 SYM

Arguably simplest non-trivial 4d QFT −→ dualities, amplitudes, . . .

SU(N) gauge theory with N = 4 fermions ΨI and 6 scalars ΦIJ,
all massless and in adjoint rep.

Maximal 16 supersymmetries QI
α and Q

I
α̇ I = 1, · · · ,4

transform under global SU(4) ∼ SO(6) R symmetry

Conformal −→ β function is zero for all values of λ = g2N
Exact, perturbative, holographic & bootstrap results

for spectrum of scaling dimensions ∆(λ)
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Anomalous dim. from fermion operator eigenmodes arXiv:2102.06775

Conformality broken by finite volume and non-zero lattice spacing

Consider analogue of mass anomalous dimension,
γ∗(λ) = 0 for continuum N = 4 SYM

Antisymmetric fermion operator −→ paired eigenvalues ±λk

ΨT DΨ = χabD(+)
[a ψb] + ηD†(−)

a ψa +
1
2
εabcdeχabD†(−)

c χde

Anomalous dimension related to mode number of D†D

ν(Ω2) =

∫ Ω2

0
ρ(ω2) dω2 ∝

(
Ω2)2/(1+γ∗)

ρ(ω2) =
1
V

∑
k

〈
δ(ω2 − λ2

k )
〉

David Schaich (Liverpool) Lattice susy 3/3 ICTS Bangalore, 25 August 2022 34 / 41

http://arxiv.org/abs/2102.06775


Chebyshev expansion for mode number

Stochastically estimate Chebyshev expansion ρr (x) ≈
P∑

n=0

2− δn0

π
√

1− x2
cnTn(x)

[Fodor et al., arXiv:1605.08091]
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Chebyshev approximation
analytic result ←− Example mode number

for U(2) 84 free theory, P = 1000

5000 ≤ P ≤ 10000 for N = 2, 3, 4
volumes up to 164

Checked vs. direct eigensolver
and stochastic projection
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Mode number scale dependence

Anomalous dimension from D†D mode number ν(Ω2) ∝
(
Ω2)2/(1+γ∗)
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λlat = 0.25
λlat = 0.5
λlat = 1.0
λlat = 1.5
λlat = 2.0
λlat = 2.5

free theory

U(2) 164 lattices with 0.25 ≤ λlat ≤ 2.5
Free theory also shows lattice effects

Power law varies with scale Ω2

−→ scale-dependent effective γeff(Ω2)

Extract by fitting in windows
[
Ω2,Ω2 + `

]
with fixed ` ∈ [0.03,1]
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Convergence to continuum γ∗ = 0

Broken conformality −→ scale-dependent effective anomalous dim. γeff(Ω2)
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U(2) 164 lattices with 0.25 ≤ λlat ≤ 2.5
Free theory also shows lattice effects

Recover true γ∗ = 0 in IR, Ω2 � 1

Stronger couplings −→ larger artifacts
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Konishi operator scaling dimension ∆K

OK (x) =
∑

I Tr [ΦI(x)ΦI(x)] is simplest conformal primary operator

Scaling dimension ∆K (λ) = 2 + γK (λ) investigated through
perturbation theory (& S duality), holography, conformal bootstrap

CK (r) ≡ OK (x + r)OK (x) ∝ r−2∆K

20′ ‘SUGRA’ op. has ∆S = 2

Work in progress to compare:
Direct power-law decay
Finite-size scaling
Monte Carlo RG
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Konishi operator scaling dimension ∆K

Lattice scalars ϕ(n) from polar decomposition Ua(n) = eϕa(n)Ua(n)

Olat
K (n) =

∑
a

Tr [ϕa(n)ϕa(n)]− vev Olat
S (n) ∼ Tr [ϕa(n)ϕb(n)]

CK (r) ≡ OK (x + r)OK (x) ∝ r−2∆K

20′ ‘SUGRA’ op. has ∆S = 2

Work in progress to compare:
Direct power-law decay
Finite-size scaling
Monte Carlo RG
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Scaling dimensions from MCRG stability matrix

Lattice system: H =
∑

i ci Oi (infinite sum)

Couplings flow under RG blocking −→ H(n) = RbH(n−1) =
∑

i c(n)
i O

(n)
i

Conformal fixed point −→ H∗ = RbH∗ with couplings c∗i

Linear expansion around fixed point −→ stability matrix T ∗ik

c(n)
i − c∗i =

∑
k

∂c(n)
i

∂c(n−1)
k

∣∣∣∣∣
H∗

(
c(n−1)

k − c∗k
)
≡
∑

k

T ∗ik
(

c(n−1)
k − c∗k

)
Correlators of Oi , Ok −→ elements of stability matrix [Swendsen, 1979]

Eigenvalues of T ∗ik −→ scaling dimensions of corresponding operators
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Smearing for Konishi analyses
Smear to enlarge (MCRG or variational) operator basis
APE-like smearing: — −→ (1− α) — + α

8

∑
u,

staples built from unitary parts of links but no final unitarization

Average plaquette stable upon smearing (right),
minimum plaquette steadily increases (left)
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Preliminary ∆K results from Monte Carlo RG

Both Konishi and SUGRA in T ∗ik

Impose protected ∆S = 2
−→ ∆K consistent with pert. theory

Systematic uncertainties from
different amounts of smearing

Complication from twisting SO(4)R ⊂ SO(6)R

Olat
K mixes with SO(4)R-singlet part of SO(6)R-nonsinglet OS

−→ disentangle via variational analyses
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Backup: Dimensional reduction to 2d N = (8,8) SYM

Naive for now: 4d N = 4 SYM code with Nx = Ny = 1

A∗4 −→ A∗2 (triangular) lattice

Torus skewed depending on α = L/Nt

Modular transformation into fundamental domain
−→ some skewed tori actually rectangular

Also need to stabilize compactified links
to ensure broken center symmetries
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Backup: Stabilizing compactified links

Add potential ∝ Tr
[

(ϕ− IN)† (ϕ− IN)
]

to break center symmetry in reduced dir(s)

(∼Kaluza–Klein rather than Eguchi–Kawai reduction)
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Backup: Check holographic black hole energies

Lattice results consistent with leading expectation for sufficiently low t . 0.4

Similar behavior −→ difficult to distinguish phases
∝ t3.2 for small-rL D0 phase ∝ t3 for large-rL D1 phase
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Backup: 2d Wilson line eigenvalues for low t

Large-N eigenvalue phase distribution also signals spatial deconfinement

Left: α = 1/2 distributions more localized as N increases −→ D0 black hole

Right: α = 2 distributions more uniform as N increases −→ D1 black string
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Backup: 3d thermodynamics and continuum extrapolation

Dimensional reduction to 3d N = 8 SYM with two scalar Q [arXiv:2010.00026]

Approach leading holographic expectation ∝ t10/3 for low t . 0.3

Carry out continuum extrapolations for fixed aspect ratio α = 1 and N = 8

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.2 0.25 0.3 0.35 0.4 0.45 0.5

3d Q = 16 SYM, U(8)

−sBos

N2λ3

t

2.598 t3

83

123

163

0.831 t10/3

0

0.05

0.1

0.15

0.2

0 1/16
2

1/12
2

1/82
0.02

−sBos

N2λ3

1/L2

t = 0.42

t = 0.39

t = 0.36

t = 0.33

t = 0.31

t = 0.29

David Schaich (Liverpool) Lattice susy 3/3 ICTS Bangalore, 25 August 2022 41 / 41

https://arxiv.org/abs/2010.00026


Backup: 3d N = 8 SYM Wilson line eigenvalues

Large-N eigenvalue phase distribution also signals spatial deconfinement
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Left: High-temperature U(8) 83 distributions more compact as t increases

Right: Low-temperature U(N) 123 distributions more uniform as N increases
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Backup: More on dynamical susy breaking

Spontaneous susy breaking means 〈0 |H|0〉 > 0 or equivalently 〈QO〉 6= 0

Twisted superQCD auxiliary field e.o.m. ←→ Fayet–Iliopoulos D-term potential

d = DaUa +
F∑

i=1

φiφi − rIN ←→ Tr
[(∑

i
φiφi − rIN

)2
]
∈ H

Have F×N scalar vevs to zero out N×N matrix
−→ N > F suggests susy breaking, 〈0 |H|0〉 > 0 ←→ 〈Qη〉 = 〈d〉 6= 0
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