Lattice supersymmetric field theories — Part 3

David Schaich (University of Liverpool)

Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography

International Centre for Theoretical Sciences, Bangalore, 25 August 2022

david.schaich@liverpool.ac.uk

www.davidschaich.net

Any questions about last time?

Overcoming challenges opens many opportunities for lattice studies of supersymmetric QFTs

- \checkmark Motivation, background, formulation
 - ✓ Supersymmetry breaking in discrete space-time
 - \checkmark Supersymmetry preservation in discrete space-time

Applications with significant recent progress Maximal $\mathcal{N} = 4$ super-Yang-Mills — wrap up

Lower dimensions d < 4Minimal $\mathcal{N} = 1$ super-Yang–Mills

Remaining challenges: Super-QCD; Sign problems

David Schaich (Liverpool)

Any questions about last time?

Overcoming challenges opens many opportunities for lattice studies of supersymmetric QFTs

 \checkmark Motivation, background, formulation

Applications with significant recent progress — wrap up

Remaining challenges

Conceptual focus with interaction encouraged "It's better to uncover a little than to cover a lot" (V. Weisskopf)

Twisted lattice $\mathcal{N} = 4$ SYM — recap

so that the full improved action becomes

Computationally challenging, e.g. \geq 100 gathers per fermion matrix–vector op.

Public parallel code github.com/daschaich/susy [arXiv:1410.6971] actively developed for improved performance and new applications

David Schaich (Liverpool)

Lattice susy 3/3

Static potential V(r) for 4d $\mathcal{N} = 4$ SYM

Static probes \longrightarrow $r \times T$ Wilson loops $W(r, T) \propto e^{-V(r) T}$

Coulomb gauge trick reduces A_4^* lattice complications

David Schaich (Liverpool)

Static potential V(r) for 4d \mathcal{N} = 4 SYM

Static probes \longrightarrow $r \times T$ Wilson loops $W(r, T) \propto e^{-V(r) T}$

David Schaich (Liverpool)

Static potential is Coulombic at all λ

String tension σ from fits to confining form $V(r) = A - C/r + \sigma r$

David Schaich (Liverpool)

Lattice susy 3/3

Perturbative improvement for the static potential

Results above are improved to reduce short-distance discretization artifacts

Danger of distorting Coulomb coefficient C from fits to V(r) = A - C/r

David	Schaich	(Liverpoo

Tree-level improvement

Classic trick to reduce discretization artifacts in static potential Associate $V(r_{\nu})$ data with ' r_l ' from Fourier transform of gluon propagator

Recall
$$\frac{1}{4\pi^2 r^2} = \int_{-\pi}^{\pi} \frac{d^4 k}{(2\pi)^4} \frac{e^{ir_{\nu}k_{\nu}}}{k^2}$$
 where $\frac{1}{k^2} = G(k_{\nu})$ in continuum
 A_4^* lattice $\longrightarrow \frac{1}{r_l^2} \equiv 4\pi^2 \int_{-\pi}^{\pi} \frac{d^4 \hat{k}}{(2\pi)^4} \frac{\cos\left(r_{\nu}\hat{k}_{\nu}\right)}{4\sum_{\mu=1}^4 \sin^2\left(\hat{k} \cdot \hat{e}_{\mu} / 2\right)}$

Tree-level lattice propagator from arXiv:1102.1725

 \hat{e}_{μ} are A_4^* lattice basis vectors;

momenta
$$\hat{k} = \frac{2\pi}{L} \sum_{\mu=1}^{4} n_{\mu} \hat{g}_{\mu}$$
 depend on dual basis vectors

David Schaich (Liverpool)

Tree-level-improved static potential

$$\frac{1}{r_{l}^{2}} \equiv 4\pi^{2} \int_{-\pi}^{\pi} \frac{d^{4}\hat{k}}{(2\pi)^{4}} \frac{\cos\left(r_{\nu}\hat{k}_{\nu}\right)}{4\sum_{\mu=1}^{4}\sin^{2}\left(\hat{k}\cdot\hat{e}_{\mu}/2\right)} \longrightarrow \text{significantly reduced discretization artifacts}$$

David Schaich (Liverpool)

Lattice susy 3/3

ICTS Bangalore, 25 August 2022 7/41

Coupling dependence of Coulomb coefficient

Continuum perturbation theory $\longrightarrow C(\lambda) = \lambda/(4\pi) + O(\lambda^2)$

Holography $\longrightarrow C(\lambda) \propto \sqrt{\lambda}$ for $N \to \infty$ and $\lambda \to \infty$ with $\lambda \ll N$

Checkpoint

- \checkmark Motivation, background, formulation
 - ✓ Supersymmetry breaking in discrete space-time
 - ✓ Supersymmetry preservation in discrete space-time

Applications with significant recent progress

✓ Maximal N = 4 super-Yang–Mills Lower dimensions d < 4Minimal N = 1 super-Yang–Mills

Remaining challenges: Super-QCD; Sign problems

Questions?

"It's better to uncover a little than to cover a lot"

Lots of opportunities in lower dimensions d < 4

Significant simplifications

 \sharp degrees of freedom $\,\propto L^d$

Fewer interactions \longrightarrow less computational work

Dimensionful 't Hooft coupling $[\lambda] = 4 - d$, super-renormalizable in some cases

Three dimensions — research talk next week

Two dimensions — some highlights here

One dimension — few highlights here \longrightarrow lectures by Georg Bergner next week

2d maximal SYM thermodynamics

Naive dimensional reduction \longrightarrow skewed $r_L \times r_\beta$ torus with four scalar \mathcal{Q}

Thermal boundary conditions \longrightarrow dim'less temperature $t = 1/r_{\beta} = T/\sqrt{\lambda}$

Phase diagram expectations

First-order transitions predicted from bosonic QM at high t ($r_{\beta} \ll 1$) from holography at low t ($r_{\beta} \gg 1$)

Spatial deconfinement transition signals — high-t example

Peaks in Wilson line susceptibility match change in its magnitude |PL|, grow with size of SU(*N*) gauge group, comparing *N* = 6, 9, 12

Agreement for 16×4 vs. 24×6 lattices (aspect ratio $\alpha = r_L/r_\beta = 4$)

Lattice results for 2d $\mathcal{N} = (8, 8)$ SYM phase diagram

Good agreement with bosonic QM at high temperatures

Harder to control low-temperature uncertainties (larger N > 16 should help)

Overall consistent with holography

Comparing multiple lattice sizes and $6 \le N \le 16$

Controlled extrapolations are work in progress

A different twist in two dimensions

The "A twist" doesn't complexify links [Sugino, Matsuura, Hanada, Ohta, ...] \longrightarrow SU(N) gauge invariance but Q_A^2 = gauge transformation

Suffers from exponentially many degenerate vacua Matsuura & Sugino [arXiv:1402.0952] resolve this problem in two dimensions but not in higher dimensions

In two dimensions, can formulate A-twist $\mathcal{N} = (2, 2)$ SYM

on arbitrary polygon decompositions of Riemann surfaces

Matsuura-Misumi-Ohta, arXiv:1408.6998

Super-Yang–Mills quantum mechanics

4d SU(N) SYM \rightarrow quantum mechanics of $N \times N$ matrices [G. Bergner lectures]

Predict corrections to SUGRA result through large-N continuum extrapolations Monte Carlo String/M-Theory Collaboration, arXiv:1606.04951

Supersymmetric mass deformation

Berenstein-Maldacena-Nastase, hep-th/0202021

Generalize SYM QM while preserving maximal supersymmetry \longrightarrow more interesting features including phase transition at critical *T/mu* Jha–Joseph–DS, 2201.03097 & to appear

Phase diagram of critical T/μ vs. dimensionless coupling gFor small $g \lesssim 10^{-3}$, agree with NNLO perturbation theory

Approach leading-order holography

as g increases

David Schaich (Liverpool)

Lattice susy 3/3

Checkpoint

- \checkmark Motivation, background, formulation
 - ✓ Supersymmetry breaking in discrete space-time
 - ✓ Supersymmetry preservation in discrete space-time

Applications with significant recent progress

- \checkmark Maximal $\mathcal{N}=4$ super-Yang–Mills
- \checkmark Lower dimensions d < 4

Minimal $\mathcal{N} = 1$ super-Yang–Mills

Remaining challenges: Super-QCD; Sign problems

Questions?

"It's better to uncover a little than to cover a lot"

$\mathcal{N}=1$ SYM is special case with no scalars

SU(N) gauge theory with single massless Majorana fermion in adjoint rep.

Chiral ('overlap' or 'domain-wall') lattice fermions numerically expensive

David Schaich (Liverpool)

Lattice susy 3/3

$\mathcal{N}=1$ SYM is special case with no scalars

SU(N) gauge theory with single massless Majorana fermion in adjoint rep.

1) Fine-tune gluino mass \longrightarrow supersymmetry in chiral continuum limit

2) Overlap or domain-wall fermions

 \longrightarrow automatic (accidental) supersymmetry in continuum limit

David Schaich (Liverpool)

Lattice susy 3/3

Selected recent progress fine-tuning gluino mass

Scalar, pseudoscalar and fermionic partner approach degenerate supermultiplet for massless gluino

Smaller lattice spacing 'a' (larger β) \longrightarrow improved supermultiplet formation Desy-Münster-Regensburg-Jena, arXiv:1902.11127 & arXiv:2001.09682

Selected recent progress fine-tuning gluino mass

Measure of supersymmetry breaking from Ward identities

vanishes in chiral continuum limit, $a^2
ightarrow 0$

Desy-Münster-Regensburg-Jena, arXiv:2003.04110

David Schaich (Liverpool)

Selected recent progress fine-tuning gluino mass

Alternate 'twisted-mass' action provides extra 'twist angle' parameter —> tune this to improve approach to continuum limit Steinhauser–Sternbeck–Wellegehausen–Wipf, arXiv:2010.00946

20/41

Lattice chiral symmetry

Chiral symmetry means $\{D, \gamma_5\} = \gamma_5 D + D\gamma_5 = 0$ for massless fermion operator

Only a 'remnant' can be realized on the lattice

[Ginsparg–Wilson, 1982]

$$D\gamma_5 + \gamma_5 D = aD\gamma_5 D \longrightarrow \left(\mathbb{I} - \frac{a}{2}D\right)\gamma_5 D + D\gamma_5\left(\mathbb{I} - \frac{a}{2}D\right) = 0$$

Difficult to construct fermion operators that obey the Ginsparg–Wilson relation 'Overlap' operator $aD_{ov} = \mathbb{I} + \gamma_5 \text{sign} [\gamma_5 D_W(\kappa)]$ requires computing sign $[H] = \frac{H}{\sqrt{H \cdot H}}$ for large matrix

'Domain-wall' operator introduces extra direction...

Domain-wall fermions

 $L_s \sim \mathcal{O}(10)$ copies of 4d gauge fields — expensive! [Used by 0810.5746, 0902.4267] Localized fermions have renormalized mass $m = m_f + m_{res}$ with residual mass $m_{res} \ll m_f$ from overlap around $L_s/2$

 $\textit{L}_{s} \rightarrow \infty \;$ allows exact chiral symmetry at non-zero lattice spacing

Recent progress with overlap $\mathcal{N} = 1$ super-Yang–Mills

N-order polynomial approximation to compute matrix sign function

Piemonte-Bergner-López, arXiv:2005.02236

Bare gluino condensate from 12⁴ lattices

 $N
ightarrow \infty$ gives chiral limit

Only multiplicative renormalization

Checkpoint

- \checkmark Motivation, background, formulation
 - ✓ Supersymmetry breaking in discrete space-time
 - ✓ Supersymmetry preservation in discrete space-time
- ✓ Applications with significant recent progress
 - \checkmark Maximal $\mathcal{N}=4$ super-Yang–Mills
 - \checkmark Lower dimensions d < 4
 - \checkmark Minimal $\mathcal{N}=1$ super-Yang–Mills

Remaining challenges: Super-QCD; Sign problems

Questions?

"It's better to uncover a little than to cover a lot"

Future frontier: Supersymmetric QCD

Add 'quarks' and squarks \longrightarrow investigate electric–magnetic dualities, dynamical supersymmetry breaking and more

Pursuing superQCD with full fine-tuning

First step: Lattice perturbation theory as guide for future fine-tuning Wellegehausen–Wipf, arXiv:1811.01784; Costa–Panagopoulos, arXiv:1812.06770

Alternately include only fundamental + adjoint fermions, leave scalars for future Bergner–Piemonte, arXiv:2008.02855

David Schaich (Liverpool)

Lattice susy 3/3

Simplify superQCD: Twisted theories in 2d or 3d

Quiver construction preserves susy sub-algebra

[arXiv:0805.4491, arXiv:0807.2683]

- 2-slice lattice SYM with $U(N) \times U(F)$ gauge group
- Adj. fields on each slice

Bi-fundamental in between

Decouple U(F) slice

 \rightarrow U(*N*) SQCD in *d* – 1 dims. with *F* fund. hypermultiplets

David Schaich (Liverpool)

Lattice susy 3/3

Dynamical susy breaking in 2d lattice superQCD

U(N) superQCD with F fundamental hypermultiplets

Observe spontaneous susy breaking only for N > F, as expected

Catterall–Veernala, arXiv:1505.00467

David Schaich (Liverpool)

Future frontier: Sign problems

Recall typical algorithms sample field configurations Φ with probability $\frac{1}{2}e^{-S[\Phi]}$

Example: Spontaneous susy breaking needs vanishing Witten index Witten index is just $\mathcal{Z} = \int \mathcal{D}\Phi \ e^{-S[\Phi]} \longrightarrow$ severe sign problem to have $\mathcal{Z} = 0$

Motivates alternative approaches to be discussed:

Complex Langevin — A. Kumar [Sat]

Tensor networks — D. Kadoh lectures; R. Jha [Fri]; R. Sakai [Mon]

Quantum simulation — S. Chandrasekharan [Sat]; I. Raychowdhury [Tue]; Y. Meurice [Tue]; E. Zohar [Thu]

Future frontier: Sign problems

Recall typical algorithms sample field configurations Φ with probability $\frac{1}{\mathcal{Z}}e^{-S[\Phi]}$ \longrightarrow "sign problem" if action $S[\Phi]$ can be negative or complex

Example: $\mathcal{N} = 4$ SYM has complex pfaffian pf $\mathcal{D} = |\text{pf } \mathcal{D}| e^{i\alpha}$

$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int [d\mathcal{U}] [d\overline{\mathcal{U}}] \mathcal{O} e^{-S_{B}[\mathcal{U},\overline{\mathcal{U}}]} \operatorname{pf} \mathcal{D}[\mathcal{U},\overline{\mathcal{U}}]$$

We phase quench pf $\mathcal{D} \longrightarrow |\text{pf }\mathcal{D}|$, need to reweight $\langle \mathcal{O} \rangle = \frac{\langle \mathcal{O} e^{i\alpha} \rangle_{\text{pq}}}{\langle e^{i\alpha} \rangle_{\text{pq}}}$

$$\Rightarrow \left\langle e^{i\alpha} \right\rangle_{pq} = \frac{\mathcal{Z}}{\mathcal{Z}_{pq}}$$
 quantifies severity of sign problem

 $\mathcal{N} = 4$ SYM sign problem

Wrap up

Overcoming challenges opens many opportunities for lattice studies of supersymmetric QFTs

- \checkmark Motivation, background, formulation
 - ✓ Supersymmetry breaking in discrete space-time
 - \checkmark Supersymmetry preservation in discrete space-time
- \checkmark Applications with significant recent progress
 - \checkmark Maximal $\mathcal{N}=$ 4 super-Yang–Mills
 - \checkmark Lower dimensions d < 4
 - \checkmark Minimal $\mathcal{N}=1$ super-Yang–Mills
- ✓ Remaining challenges: Super-QCD; Sign problems

Further resources

Lattice studies of supersymmetric gauge theories

David Schaich^{*}

Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, United Kingdom

(Dated: 17 August 2022)

Updated version of arXiv:2208.03580 at icts.res.in/program/numstrings2022/talks

arXiv:0903.4881 by Catterall, Kaplan and Ünsal remains most detailed review

Expect connections with lectures by:

Anna Hasenfratz — Introduction to Lattice Field Theory

Georg Bergner — Matrix Models, Gauge-Gravity Duality, and Simulations...

David Schaich (Liverpool)

Supplement: Scaling dimensions from lattice $\mathcal{N} = 4$ SYM

Arguably simplest non-trivial 4d QFT \longrightarrow dualities, amplitudes, ...

 $\begin{array}{l} SU(\textit{\textbf{N}}) \text{ gauge theory with } \mathcal{N}= \text{4 fermions } \Psi^{\rm I} \mbox{ and 6 scalars } \Phi^{\rm IJ}, \\ \mbox{ all massless and in adjoint rep.} \end{array}$

Maximal 16 supersymmetries Q^{I}_{α} and $\overline{Q}^{I}_{\dot{\alpha}}$ $I = 1, \cdots, 4$ transform under global SU(4) ~ SO(6) R symmetry

 $\begin{array}{rcl} \mbox{Conformal} & \longrightarrow & \beta \mbox{ function is zero for all values of } \lambda = g^2 N \\ & & \mbox{Exact, perturbative, holographic & bootstrap results} \\ & & \mbox{for spectrum of scaling dimensions } \Delta(\lambda) \end{array}$

Anomalous dim. from fermion operator eigenmodes arXiv:2102.06775

Conformality broken by finite volume and non-zero lattice spacing

Consider analogue of mass anomalous dimension,

 $\gamma_*(\lambda) = 0$ for continuum $\mathcal{N} = 4$ SYM

Antisymmetric fermion operator \longrightarrow paired eigenvalues $\pm \lambda_k$

$$\Psi^{\mathsf{T}} \mathcal{D} \Psi = \chi_{ab} \mathcal{D}_{[a}^{(+)} \psi_{b]} + \eta \mathcal{D}_{a}^{\dagger(-)} \psi_{a} + \frac{1}{2} \epsilon_{abcde} \chi_{ab} \mathcal{D}_{c}^{\dagger(-)} \chi_{de}$$

Anomalous dimension related to mode number of $D^{\dagger}D$

$$\nu(\Omega^2) = \int_0^{\Omega^2} \rho(\omega^2) \, d\omega^2 \propto \left(\Omega^2\right)^{2/(1+\gamma_*)} \qquad \qquad \rho(\omega^2) = \frac{1}{V} \sum_k \left\langle \delta(\omega^2 - \lambda_k^2) \right\rangle$$

Chebyshev expansion for mode number

Stochastically estimate Chebyshev expansion [Fodor et al., arXiv:1605.08091]

 Ω^2

1.5

2

$$\rho_r(x) \approx \sum_{n=0}^{P} \frac{2 - \delta_{n0}}{\pi \sqrt{1 - x^2}} c_n T_n(x)$$

Example mode number \leftarrow for U(2) 8^4 free theory. P = 1000

5000 < *P* < 10000 for *N* = 2, 3, 4 volumes up to 16⁴

Checked vs. direct eigensolver and stochastic projection

0.5

Chebyshev approximation analytic result

0.01

0.009

0.008

0.007 0.006

0.004

0.003 0.002

0.001

-0.001

 $5/(16N_c^2V)$ 0.005

25

Mode number scale dependence

U(2) 16^4 lattices with $0.25 \le \lambda_{lat} \le 2.5$ Free theory also shows lattice effects

Power law varies with scale Ω^2 \longrightarrow scale-dependent effective $\gamma_{eff}(\Omega^2)$

Extract by fitting in windows $\left[\Omega^2, \Omega^2 + \ell\right]$ with fixed $\ell \in [0.03, 1]$

Convergence to continuum $\gamma_* = 0$

Broken conformality \longrightarrow scale-dependent effective anomalous dim. $\gamma_{eff}(\Omega^2)$

U(2) 16^4 lattices with $0.25 \le \lambda_{lat} \le 2.5$ Free theory also shows lattice effects

Recover true $\gamma_* = 0$ in IR, $\Omega^2 \ll 1$

Stronger couplings \longrightarrow larger artifacts

Konishi operator scaling dimension Δ_K

 $\mathcal{O}_{\mathcal{K}}(x) = \sum_{I} \text{Tr} [\Phi^{I}(x) \Phi^{I}(x)]$ is simplest conformal primary operator

Scaling dimension $\Delta_{\kappa}(\lambda) = 2 + \gamma_{\kappa}(\lambda)$ investigated through perturbation theory (& S duality), holography, conformal bootstrap

$$\mathcal{C}_{\mathcal{K}}(r)\equiv\mathcal{O}_{\mathcal{K}}(x+r)\mathcal{O}_{\mathcal{K}}(x)\propto r^{-2\Delta_{\mathcal{K}}}$$

20' 'SUGRA' op. has $\Delta_S = 2$

Work in progress to compare: Direct power-law decay Finite-size scaling Monte Carlo RG

David Schaich (Liverpool)

Konishi operator scaling dimension Δ_K

Lattice scalars $\varphi(n)$ from polar decomposition $\mathcal{U}_a(n) = e^{\varphi_a(n)} U_a(n)$

$$\mathcal{O}^{\mathsf{lat}}_{\mathcal{K}}(\textit{n}) = \sum_{\textit{a}} \mathsf{Tr}\left[arphi_{\textit{a}}(\textit{n}) arphi_{\textit{a}}(\textit{n})
ight] - \mathsf{vev}$$

$$\mathcal{C}_{\mathcal{K}}(r)\equiv\mathcal{O}_{\mathcal{K}}(x+r)\mathcal{O}_{\mathcal{K}}(x)\propto r^{-2\Delta_{\mathcal{K}}}$$

20' 'SUGRA' op. has $\Delta_S = 2$

Work in progress to compare: Direct power-law decay Finite-size scaling Monte Carlo RG

 $\mathcal{O}_{S}^{\text{lat}}(n) \sim \text{Tr}\left[\varphi_{a}(n)\varphi_{b}(n)\right]$

Scaling dimensions from MCRG stability matrix

Lattice system: $H = \sum_{i} c_{i} O_{i}$ (infinite sum)

Couplings flow under RG blocking $\longrightarrow H^{(n)} = R_b H^{(n-1)} = \sum_i c_i^{(n)} \mathcal{O}_i^{(n)}$

Conformal fixed point $\longrightarrow H^* = R_b H^*$ with couplings c_i^*

Linear expansion around fixed point \longrightarrow stability matrix T^*_{ik}

$$m{c}_{i}^{(n)} - m{c}_{i}^{*} = \sum_{k} \left. rac{\partial m{c}_{i}^{(n)}}{\partial m{c}_{k}^{(n-1)}} \right|_{H^{*}} \left(m{c}_{k}^{(n-1)} - m{c}_{k}^{*}
ight) \equiv \sum_{k} m{\mathcal{T}}_{ik}^{*} \left(m{c}_{k}^{(n-1)} - m{c}_{k}^{*}
ight)$$

Correlators of $\mathcal{O}_i, \mathcal{O}_k \longrightarrow$ elements of stability matrix

[Swendsen, 1979]

Eigenvalues of $T_{ik}^* \longrightarrow$ scaling dimensions of corresponding operators

Smearing for Konishi analyses

Smear to enlarge (MCRG or variational) operator basis

APE-like smearing: - \rightarrow $(1 - \alpha) -$ + $\frac{\alpha}{8} \sum \Box$,

staples built from unitary parts of links but no final unitarization

Average plaquette stable upon smearing (**right**),

minimum plaquette steadily increases (left)

Preliminary Δ_K results from Monte Carlo RG

Backup: Dimensional reduction to 2d $\mathcal{N} = (8, 8)$ SYM

Naive for now: 4d $\mathcal{N} = 4$ SYM code with $N_x = N_y = 1$

 $A_4^* \longrightarrow A_2^*$ (triangular) lattice

Torus **skewed** depending on $\alpha = L/N_t$

Modular transformation into fundamental domain \longrightarrow some skewed tori actually rectangular

Also need to stabilize compactified links to ensure broken center symmetries

Backup: Stabilizing compactified links

Add potential $\propto \text{Tr}\left[(\varphi - \mathbb{I}_N)^{\dagger}(\varphi - \mathbb{I}_N)\right]$ to break center symmetry in reduced dir(s) (~Kaluza–Klein rather than Eguchi–Kawai reduction)

Backup: Check holographic black hole energies

Lattice results consistent with leading expectation for sufficiently low $t \lesssim 0.4$

Similar behavior \longrightarrow difficult to distinguish phases $\propto t^{3.2}$ for small- r_l D0 phase

 $\propto t^3$ for large- r_L D1 phase

Backup: 2d Wilson line eigenvalues for low t

Large-*N* eigenvalue phase distribution also signals spatial deconfinement

Left: $\alpha = 1/2$ distributions more localized as *N* increases \longrightarrow D0 black hole

Right: $\alpha = 2$ distributions more uniform as *N* increases \longrightarrow D1 black string

David Schaich (Liverpool)

Backup: 3d thermodynamics and continuum extrapolation

Dimensional reduction to 3d $\mathcal{N} = 8$ SYM with two scalar \mathcal{O} [arXiv:2010.00026]

Approach leading holographic expectation $\propto t^{10/3}$ for low $t \leq 0.3$

Carry out continuum extrapolations for fixed aspect ratio $\alpha = 1$ and N = 8

Backup: 3d $\mathcal{N} = 8$ SYM Wilson line eigenvalues

Large-*N* eigenvalue phase distribution also signals spatial deconfinement

Left: High-temperature U(8) 8^3 distributions more compact as *t* increases **Right:** Low-temperature U(*N*) 12^3 distributions more uniform as *N* increases

David Schaich (Liverpool)

Backup: More on dynamical susy breaking

Spontaneous susy breaking means $\langle 0 | H | 0 \rangle > 0$ or equivalently $\langle \mathcal{QO} \rangle \neq 0$

Twisted superQCD auxiliary field e.o.m. \leftrightarrow Fayet–Iliopoulos D-term potential

$$\boldsymbol{d} = \overline{\mathcal{D}}_{\boldsymbol{a}} \mathcal{U}_{\boldsymbol{a}} + \sum_{i=1}^{F} \phi_{i} \overline{\phi}_{i} - \boldsymbol{r} \mathbb{I}_{\boldsymbol{N}} \qquad \longleftrightarrow \qquad \mathsf{Tr} \left[\left(\sum_{i} \phi_{i} \overline{\phi}_{i} - \boldsymbol{r} \mathbb{I}_{\boldsymbol{N}} \right)^{2} \right] \in \boldsymbol{H}$$

Have $F \times N$ scalar vevs to zero out $N \times N$ matrix $\longrightarrow N > F$ suggests susy breaking, $\langle 0 | H | 0 \rangle > 0 \iff \langle Q\eta \rangle = \langle d \rangle \neq 0$