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• asymptotic  freedom 

Asymptotic Freedom

• Short distance: Weakly 
coupled, calculable...

• Long distance, 
strongly coupled. 
(Lattice works,  
analytical methods 
gloomy)

• Can we find a regime of asymptotically free  gauge 
theories where  the  NP dynamics become calculable?



Adiabatic continuity and analyticity for YM?  Is it possible?
• We first want a (semi-classically) calculable regime of field theory, say of  

Yang-Mills or QCD. Of course, everyone want this. But is this possible 
at all? 

• It  is NOT known if such a framework exits on R4. In fact, theory 
becomes strongly coupled at longer distances. 

• Supersymmetry does not help!!

• Consider these theories on four manifold R3 x S1, and study their 
dynamics as a function of radius. At small-radius, the theory is weakly 
coupled ( thanks to asymptotic freedom) at the scale of the radius. But the 
theory is non-analytic as a function of radius, there is a phase transition. 

high� T low � T

Rd�1 ⇥ S1�Rd�1 Rd

QGP The phase we live in.



 Phase transition

high� T low � T

We want continuity

Rd�1 ⇥ S1�Rd�1 Rd

Rd�1 ⇥ S1L

The idea of adiabatic continuity

Thermal:  Rapid crossover/phase transition  at strong scale



Adiabatic continuity in non-susy theories is a spin-off  of a 
brilliant idea by Eguchi and Kawai (82), called large-N reduction 
or volume independence.   

What does EK say? It says something far more stronger than 
continuity, it implies volume independence, observable being 
independent of compactification radius at large-N. 

But it is tricky to achieve EK. 

Adiabatic continuity and analyticity



Large N volume independence or
“Eguchi-Kawai reduction” or “large-N reduction” 

Theorem: SU(N) gauge theory on toroidal compactifications of  
to four-manifold  

No volume dependence in leading large N behavior of topologically trivial
single-trace observables (or their connected correlators)   

provided 

there are no phase transitions as the volume of the space is shrunk.
More technically, no spontaneous breaking of center symmetry or 
translation invariance

Proof: Comparison of large N loop equaions (Eguchi-Kawai 82)  in lattice gauge theory 
or \ N=∞ classical dynamics (Yaffe 82)

The only problem was that no-one was able to find any example of gauge 
theory in which “provided” holds. (and perhaps violating causality, an 
example already existed at the time EK was written. This is understood only 25 
years later.)

R4

R4�d � (S1)d



• Because of the attractiveness of the idea, much 
effort has been devoted. It was one of the hot 
subjects in mid-80’s. 

• However, there was always a phase transition 
when the space shrunk to small volume.

• Technically, an effective potential calculation in 
terms of Wilson lines (used to determine the 
phase of the small volume theory)  gave a 
negative sign for all gauge theories. And we 
needed a positive sign!  People gave up.

Stumbling block
deformation equivalence

ordinary Yang−Mills deformed Yang−Mills

orbifold
equivalence

combined
deformation−orbifold

∞

c

∞

0

L

0

L

equivalence

80’s:  EK, QEK, TEK.
Eguchi, Kawai,  EK,  Briilliantt, but fails     
                   
Gonzalez-Arroyo, Okawa,   TEK, Failed, and 
REVIVED.  (Many deep connections to non-
commutative QFT, and recent works on TQFT coupling 
to QFT.)

Bhanot, Heller, Neuberger,  QEK, Fails  

Gross, Kitazawa, (YM Beta function from matrix model 
assuming working reduction. Clever.)

Yaffe, 

Migdal, Kazakov, 
Parisi et.al.
Das, Wadia, Kogut,  
 + 500 papers.... , but no single working example!

Order parameter

Potential

Instability (bad)

Stability (good)

Marginal 

Instability
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• However, there was always a phase transition 
when the space shrunk to small volume.

• Technically, an effective potential calculation in 
terms of Wilson lines (used to determine the 
phase of the small volume theory)  gave a 
negative sign for all gauge theories. And we 
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• ZN  center symmetry, order parameter = Wilson line Ω

•  L> Lc:  unbroken center symmetry 
               
               
             confined phase
• L < Lc:  broken center symmetry

               
              deconfined plasma phase          failure of EK reduction

�tr �n⇥ = 0

Example 1 : Yang �Mills on R3 ⇥ S1

⇥tr �n⇤ �= 0

circumference L

g(x + L) = hg(x), hN = 1

tr�(x, x + L)� h tr�(x, x + L)

Aperiodic gauge rotations, h ∈ ZN ‘t Hooft

More technically,



V [⌦] = � 2

⇡2�4

bN/2cX

n=1

1

n4
|tr (⌦n)|2

Gross, Pisarski, Yaffe, 1981

Gauge holonomy potential 

Minimum at center-broken configuration. The value at min is the 
Stefan-Boltzmann law for gluons. 

At high-temperature YM theory, this is inevitable and there is no  
room for negotiation. This is also true in any QCD-like theory, 
and there is no hope here.  

F = �⇡2

45
T 4(N2 � 1)

In Tutorial, Aleksey will provide a very intuitive and elementary 
derivation of this  formula by using methods from stat. mech.  



Evading the stumbling block(s)
In 2006, I realized that the analog of the effective potential calculation 
in  supersymmetric gauge theory always gave zero. 

But that requires using periodic boundary conditions for fermions. I 
was perfectly happy with it, and  interpret it as non-thermal 
compactification, and realize that what you are calculating is not 
thermal partition function, but 

What I did not know then: It was considered as a  big “sin” to use 
periodic b.c.   at least in a large-portion of non-supersymmetric QCD 
community. 

At the heart of the super-symmetric cancelation was  following 
identity:  

eZ(L) = tr[e�LH(�1)F ]



Evading the stumbling block(s)
In 2006, I realized that the analog of the effective potential calculation 
in a supersymmetric gauge theory  gave zero. At the heart of the 
cancelation was  following identity:  

�1 + 1 = 0 More precisely, 

�1⇥ (stu�) + 1⇥ (same stu�) = 0

Immediately, we deduce:

�1 + Nf > 0 for Nf > 1
Our simple calculation was the first positive sign in such a calculation. 
All earlier calculations were done for a specific (thermal) boundary condition. 

The crucial point: +1 appears due to the 
boundary conditions, and not supersymmetry!



Gauge holonomy potential QCD(adj) Nf-flavor

V [⌦] = (Nf � 1)
2

⇡2�4

bN/2cX

n=1

1

n4
|tr (⌦n)|2

This sign flip probably  gave birth to  one of the most promising windows to 
non-perturbative QCD. This is what I thought in 2007, and I will describe later in this talk. 
I believe it endures the test of time. And in the longer run, we will appreciate this sign 
flip even more.   

Kovtun, MU, Yaffe, 2007. Showed that QCD(adj) satisfies volume-independence, 
Eguchi-Kawai dream naturally.  



Dimensional Reduction ? No!

broken center

a) Attractive b)repulsive c)No force
quantum moduli spaceunbroken center

 4π/

a)Center−broken 
large N

0

finite or large N      finite N
 b1)Center−symmetric b2)Center−symmetric

L

2π/L

L

2π/L

L

2π/L

4π/ 4π/ 4π/

0 0(LN)    
(LN)    

 2π/

• small L, asymptotic freedom,  heavy, weakly coupled KK modes

•usual case: broken center symmetry
    〈tr Ω〉≠ 0 ⇔ eigenvalues clump

     mKK = 1/L, 2/L, ..., 
   perturbative control when LΛ << 1
   integrate out ⇒ 3d effective theory,  L-dependent

•center-symmetric case:
 〈tr Ω〉=  0 ⇔  eigenvalues repel

      mKK = 1/NL, 2/NL, ..., 
    perturbative control when NLΛ << 1
   
 topological defects (instantons),  
 mass gap,  confinement, later……



What is volume (in)dependence?

• Consider a point charge in R3. Its potential is 1/r.

• Now, compactify one of the dimensions to a circle with 
size L. Space is R2 x S1.

with  super-simple electrostatic analogy

X

X3

 
r [U (Energy)]

a) Equi−potential surfaces of center−broken D2−branes

b) Equi−potential surfaces of center−symmetric D2−branes

r [U (Energy)]

S1

S1

3

LL

by method 
of images  r < L → 1/ r 

 r >> L → ln r.   

• The characteristic length at which the potential (interaction between 
charges) changes from 3d behavior to 2d behavior is L. Intuitive!

R2 x S1



The potential of a point charge 
in d-dimension: Gauss’ law

• By compactify more dimensions  down to a space with size L, and using 
method of images,  we obtain

3d :
1
r

=
1�

x2
1 + x2

2 + x2
3

2d : log r = log
⇥

x2
1 + x2

2

1d : |r| = |x1|

Whereas volume independence 
demands



The potential of a point charge 
in d-dimension: Gauss’ law

• By compactify more dimensions  down to a space with size L, and using 
method of images,  we obtain

3d :
1
r

=
1�

x2
1 + x2

2 + x2
3

2d : log r = log
⇥

x2
1 + x2

2

1d : |r| = |x1|

Whereas volume independence 
demands

3d :
1
r

=
1�

x2
1 + x2

2 + x2
3

2d :
1
r

=
1�

x2
1 + x2

2

1d :
1
r

=
1�
x2

1

Sounds outrageous. 

Certainly wrong in electrodynamics, 
(or U(1) gauge theory), where our intuition 
is based on. 



Nf ≥ 1 massless adjoint rep. fermions
periodic boundary conditions ➡ stabilized center symmetry

 Kovtun, Unsal, Yaffe,07

QCD(adj) on R3 � S1

m2
n < 0

m2
n = 0

m2
n > 0

instability, “calculations between 1980-2007” 

Supersymmetric case, Nf = 1, marginal,

QCD(adj), Nf > 1, stability

�Z(L) = tr[e�LH(�1)F ] = Invariant
Susy-theory:          Supersymmetric Witten Index, useful.  
Non-susy theory:   Twisted partition function, probably as useful!

Z = ZB + ZF
�Z = ZB � ZF

V1�loop[⌦] =
2

⇡2L4

1X

n=1

1

n4
(�1 +Nf )

| {z }
m2

n

|tr⌦n|2

This sign flip probably  gave birth to  one of the most promising windows to 
non-perturbative QCD.  Still ongoing work. 



• Motivated by QCD(adj), it is reasonable to  proposed a double-trace 
deformation that prevents center-breaking. (Yaffe, MU, 2008).

• This is a large deformation of the action, not a small perturbation in the 
sense of large-N counting.   We are changing the action with something 
as large as action itself, and expecting Hilbert space to remain invariant! 

• This of course sounds absurd.  

• But there is something deeper here! 

• Indeed, deformation is O(N^2). But after it does its job of stabilization, 
its effect on the dynamics is N-suppressed.  How is this possible?  

SYM�
= SYM +

�

R3�S1
P [�(x)] P [�] = A

2
�2L4

�N/2⇥�

n=1

1
n4

|tr (�n)|2

Can we achieve center-stability in YM in small-L?



Loop equations for Lattice YM theory
Schwinger-Dyson equation 
for Wilson loops

Loop equations 

Makeenko-Migdal equation
for W(C)



Loop equations, effects of deformation 
Deformation changes action and 
loop equations.  

Each factorized piece is 
charged under center. Hence, 
by center stability, its vev is 
zero. 

Its effect on observables is 

• Like a good Samaritan, it does the good deed, and you do not even know it 
existed (as Gabriele Veneziano insightfully put it in 2009.)

Deformation operator  guarantees 
center stability, hence, ensures 
large-N factorization. 

1/N2



deformation equivalence

ordinary Yang−Mills deformed Yang−Mills

orbifold
equivalence

combined
deformation−orbifold

∞

c

∞

0

L

0

L

equivalence

Large-N:exact volume independence Finite-N: analiticity or continuity

We can now do reliable semi-classics here, and it 
is continuously cconnected to YM on R4.  

This is the reason why large-N deformed YM is not a model, but YM itself. 
One just removes the deconfined phase. 

Interestingly, later on, I learned that Joe Polchinski has one paper on EK. 
And  there,  he  proposes  an  analytic  continuation  of  confined  phase.  The 
above construction  turns out to be  an explicit realization of that idea. 
(1991) High temperature limit of the confining phase 

• (w/ Yaffe 2008)

https://inspirehep.net/literature/30522
https://inspirehep.net/literature/30522


Dynamics of  Deformed  
Yang-Mills on 

R3 ⇥ S1



Abelianization and abelian duality

(a) (b) (c)

Three types of  holonomy 

center
broken

center-stable
weak coupling

SU(N) ! U(1)N�1 Similar  to Polyakov model in 3d  (1974) and 
Seiberg-Witten in 4d (1994), dynamics abelianize, 
but via a compact group valued field 

center-stable
strong coupling

L =
1
4
F 2

µ⇥ �⇥
1
2
(⇥µ�)2 Gapless to all orders in perturbation theory. 

How about NP-effects?  

1

Λ
µ

1/L

g
2
(µ)

G

H



In 2+1 d, photon  has just one polarization, one degree of freedom. It is 
dual to a scalar.  

Maxwell term

Duality 

B = ⇥0�
Ex = ⇥y�
Ey = �⇥x�

L =
1
4
F 2

µ⇥ �⇥
1
2
(⇥µ�)2

L = 1
2 (⇥�)2 � e�S0(ei� + e�i�)

The proliferation of monopoles generate monopole operators in Lagrangian. 

Monopole operators:  Contribution of instanton 
amplitude to the effective lagrangian.

Expanding the cos potential to quadratic order, 

Inverse  Debye length =  mass gap 

Lsmall fluc. =
1
2
(⇥�)2 + e�S0�2



B = ⇥0�
Ex = ⇥y�
Ey = �⇥x�

By using this relation, we can show that 
C

�

C
d� = Qe

a vortex in the sigma field correspond to an electrically charged 
particle in the original theory.  



Confinement of electric charges mean that the work required to 
separate two test charges grows linearly in separation as (tension) x L!

If one ignore monopoles, the interaction between a vortex  and anti-vortex is  log R.

Incorporating monopole operators, and using the above ansatz,  
interaction becomes                      , a huge energy coast.

Instead, if we have sigma zero everywhere except for a cut,  connecting  vortex to anti-
vortex, (recall that vorticity need to kept intact), the potential becomes 

V (R) � R2

⇥(�) = Qe� ⇥ ⌦E =
Qe

r
êr, V (R) � log R

Corresponding to linear confinement of electric charges.  

V (R) � TR



Topological configurations: Monopole-instantons
1-defects,  Monopole-instantons:  Associated with the N-nodes of the affine 
Dynkin diagram of SU(N) algebra.  The Nth type corresponds to the  affine root and 
is present only because the theory is locally 4d! [van Baal, Kraan, (97/98), Lee-Yi, 
Lee-Lu (97)]

Sk =
8⇡2

g2N
=

SI

N

Proliferation of monopole-instantons generates a non-perturbative mass gap for gauge 
fluctuations, similar to  3d Polyakov model (Polyakov, 74). It is first generalization thereof 
to local 4d theory!  

Action 1/N of the 4d instanton, keep this in mind!

Mk ⇠ e�Ske�↵k·b+i↵k�+i✓/N , k = 1, . . . , N



 Deformed YM, Euclidean vacuum

Bii,✓=0±

hF 2i0± / Mi + [MiM̄j ] + [MiM̄i]0± + . . .

Ambiguity in condensate sourced by neutral bion.

Relation to R4? Will comment on this later…

Dilute gas of monopole instantons and correlated bion events



The essence of mass gap in Polyakov-mechanism in 3d

Finite magnetic screening length=mass for  gauge fluctuations for  U(1) 
photon=Confinement of electric charge (I will not show this part 
explicitly since I would like to emphasize mass gap. But the two are 
intimately related.)

‘t Hooft-Polyakov monopole solutions (instantons in 3d) in Georgi-Glashow model.
Partition function of gauge theory = The grand canonical ensemble of classical monopole plasma.
The field of external charge in a classical plasma decay exponentially. Debye-Hückel 1923.
Proliferation of monopole-instantons generates mass gap for gauge fluctuations.

Polyakov 1977

1
r
�⇥ e�r/�

r

0 1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

1.4

e�r/�

r

1
r

Due to screening



Monopole Operator

Long-distance  3d dual theory 

Maxwell term

Sdual =
⌅

R3

⇧ 1
2L

� g

2⇤

⇥2
(⇤⌅)2 � ⇥

N⇤

i=1

cos(�i · ⌅)
⌃
.

F (j)
µ⇥ =

g2

2⇥L
�µ⇥⇤ ⌅⇤⇤

j

�0
a� � {�1,�2, . . . ,�N�1,�N} .Monopole charges

usual N-1 monopoles

monopole due to
 compactness of Higgs scalar

Abelian duality

Lee, Yi, Kraan, vanBaal



Semi-classical Mass gap on R3 x S1 

m2
g = ⇤2(⇤LN)5/3 max

k
cos

✓ + 2⇡k

N

Mass gap monopole-instanton effect.

Expected non-trivial theta angle dependence (not present in Polyakov model).

For SU(2), mass gap vanishes at theta=pi. An exponentially smaller mass gap appears 
due to magnetic bion effects. The vacuum is 2-fold degenerate due to CP-breaking, 
as per magnetic bion induced potential. 

Analysis strictly reliable for  (⇤LN) . 1

Although I have not discussed, there is only one  fundamental string tension, just like 
pure Yang-Mills.  

This is a non-trivial issue, and in sharp contrast with Polyakov and Seiberg-Witten. In 
both of those cases, there are  N-1 fundamental strings, very unlike pure YM as 
pointed by Douglas-Shenker (1995).



Topological susceptibility in SU(4) dYM on small S1 x R3 vs  Pure YM on the confined 
phase approximately R4.   The deformation parameters for single winding  and double 
winding loop is  denoted by h. 

Green curve is roughly the sharp drop associated with the deconfinement phase transition. 

Bonati, Cardinali, 
D'Elia, Mazziotti, 2019

The simulation results strongly suggest us that we should carefully think about 
deformed YM. Clearly, it knows something deep about YM on R4!

Topological susceptibility



IR-Renormalon problem in Yang-Mills theory
There is a very famous and important problem in Yang-Mills theory, attributed to ’t Hooft, 
which is described in a  famous set of lectures “Can we make sense out of QCD? “  

         contribution, calculated in some way, gives an ±i exp[-2SI].
Lipatov(77): Borel-transform BP(t) has singularities at tn= 2n g2 SI.

BUT, BP(t) has other (more important) 
singularities closer  to the origin of the 
Borel-plane.  (not due to factorial growth of
number of diagrams, but due to phase space 
integration.) 

‘t Hooft called these IR-renormalon 
singularities with the hope that they would be 
associated with a saddle point like instantons. 
No such configuration is known!  

A real problem in QFT, means pert. 
theory, as is, ill-defined. How to cure 
starting from microscopic dynamics?

[IĪ]

‘t Hooft(79)   

t = 16

t = −16 0

renormalons:
/βn2π

UV

t = −16 0

renormalons:
/βn2π

singularities:  t =
Instanton−−anti−instanton   

16π , 32π , ...2 2

singularities:  t =
Instanton−−anti−instanton   

16π , 32π , ...2 2

IR renormalons:
t = 16π n /β (n=2,3,...)2

0

Neutral topological molecules:
π2

QCD on Rt

t QCD on R xS3 1

4

n/N      (n=2,3,...)

UV

Leading IR singularity 4SI
�0

= 12SI
11N



Standard view emanating from late 70s  
e.g. : from Parisi(78) 

Change the Question: What happens if we can make in deformed  
Yang-Mills theory  in the semi-classically calculable regime?



Bii,✓=0± = [MiMi]✓=0±

⇠ e
� 16⇡2

g2N ± ie
� 16⇡2

g2N

This corresponds to an IR singularity in the Borel plane at 2SI
N

Calculating complex (neutral) bion amplitude similar to QM example: 

t = 16

t = −16 0

renormalons:
/βn2π

UV

t = −16 0

renormalons:
/βn2π

singularities:  t =
Instanton−−anti−instanton   

16π , 32π , ...2 2

singularities:  t =
Instanton−−anti−instanton   

16π , 32π , ...2 2

IR renormalons:
t = 16π n /β (n=2,3,...)2

0

Neutral topological molecules:
π2

QCD on Rt

t QCD on R xS3 1

4

n/N      (n=2,3,...)

UV

Important thing is 1/N parts match.  Perhaps, as one moves from 
weak coupling to strong coupling, 2(S/N)  flows to (12/11)(S/N). No one knows……


