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“A good deal of mathematical work starts with the Euclidean functional
integral. There is no essential difficulty in rigorously defining a
Gaussian functional integral, in setting up perturbation theory, and in
developing the BRST and BV formulations (Costello).

A major difficulty, indeed many mathematicians would say the main
reason that QFT is still "not rigorous," is that standard perturbation
theory only provides an asymptotic (divergent)  expansion. There is a good 
reason for this, namely exact QFT results are not (often) analytic in a finite
neighborhood of zero coupling.

Motivation: Can we make sense out of  QFT?    
When is there a continuum definition of QFT?  

Quoting from M. Douglas comments,  in  Foundations of QFT, talk at String-Math 2011 

Dyson(50s), 
‘t Hooft (77),  

The situation is actually worse than described by Douglas. 
In fact, this is only first and artificially isolated item in a longer list of problems. 
For example,



1) Perturbation theory is an asymptotic (divergent)  expansion even after regularization and 
renormalization. Is there a meaning to perturbation theory? 

2) Invalidity of  the semi-classical dilute instanton gas  approximation in asympotically 
free theories.  Dilute instanton gas  assumes inter-instanton separation is much larger 
than the instanton size, but the latter is a moduli, hence no meaning to the assumption.

3) ``Infrared embarrassment",e.g., large-instanton contribution to vacuum energy is IR-
divergent, see Coleman’s lectures. 

4) Incompatibility of large-N results with instantons.(better be so!)

5) The renormalon ambiguity, (‘t Hooft,79),  deeper, to be explained. 

You may be surprised to hear that all of the above may very well be interconnected 
according to the resurgence theory. 

Yang-Mills/QCD/SYM  and  standard/old problems



• Resurgence theory and Trans-series 

• Complex Morse Theory (or Picard-Lefschetz 
theory) and complexification of path integral

• Adiabatic Continuity (Avatar of large-N Volume 
independence)

• Reliable Semi-classics (calculability in gauge 
theories on R3 x S1)  

In order to say something new on an old problem, we must have 
new physical perspective and mathematical tools. 
Few “recent” ideas  from physics and  mathematics:  



                              LECTURE-1 
  
Basics structure of perturbation theory   
Resurgence 
Lefschetz thimbles  

in Exponential Integrals 



• In almost all interesting cases, in QM and QFT,  this sum starts to look 
better and better, but eventually it almost always diverges,  En ∝ n! 

• Regardless of how small λ is, n! will always render the series divergent. 

• Perturbation theory yields divergent asymptotic series. 
 

• But it works!

The nature of  perturbation theory

E(�) = E0 + E1�+ E2�
2 + E3�

3 + · · ·

• Consider energy level in some generic problem, λ some small parameter:



Magnetic moment of an electron, the best  
theory/experiment agreement in physics.   
Based on perturbation theory in QED. 

Remarkable agreement 
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Universal behavior of perturbation theory

Order in perturbation expansion

Exact result 

Approximate value at a given order in perturbative expansion

Stokes (~1850s) brilliant realization:  
There is an optimal order at which the error is minimized! 
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Two major points:
Stokes (1850) truncates the series  when the error is minimal (least term  or optimal truncation) 
and accepts that there is an intrinsic vagueness.  
  
This vagueness  turns out to be  physically (extremely) interesting and deeper.  
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Watch carefully.  This is important and easy.

Error:  The deficit between exact result and the best perturbation theory can do.

Error ⇠ n⇤!�n⇤
use Stirling � approximation
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Intrinsic (irremovable) error in perturbation theory is non-perturbative! 

Exp[-1/λ] has essential singularity at zero,  not describable in terms of pert. expansion.
If you try to do Taylor expansion, you obtain   0+0+0+0 …… ad infinitum. 

This is  one reason why perturbative vs. non-perturbative phenomena in books are in 
different sections and not so much in relation to each other. 
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~1850, Stokes observed something even deeper.   There is another saddle 
in the problem which contributes  exactly as                             !    

  
This is actually interesting. The intrinsic vagueness of perturbation theory is related 
to the existence of another  saddle in the problem and its non-perturbative contribution!  

exp[�1/�]



More than a century after Stokes:

People started to understand what Stokes  did. 
Genuine (sporadic) improvements of his ideas by 
mathematical physicists and mathematicians.   

Robert Dingle: Universality of factorial divergence (50s-60s)
Jean Ecalle:  (Resurgent) Algebraic structure in late terms [non-linear ODEs solutions](80s)
Michael Berry: Hyperasymptotic improvements (90s to today)
Chris Howls: Hyperasymptotics (90s to today) 

Berry-Howls discovered, for simple ordinary integrals, something 
extremely remarkable (and something  sufficiently  explicit that physicist 
can appreciate.)



Not just a mathematical curiosity
Some of the most interesting phenomena in atomic and molecular physics, 
condensed matter physics,  particle physics are non-perturbative  Exp[-1/λ] effects.

Tunneling in quantum mechanics 

Band-structures in solid state physics 

Superconductivity 

Your body mass and the mass of everything you see around you! 
  
=proton and neutron mass, according to  QCD 

D-branes in string theory 

. . . . . . . . . .
So, the “error” is important. (as discovered in many context, many times).  
A more systematic approach is called for.



Simple example: 2 saddles 
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Clearly, the divergence of perturbation theory is not a nuisance  or something 
to be ignored.  

The divergent asymptotic part is coded information about the  other 
saddle in the problem, at least for one dimensional integrals!  (Berry-Howls 90s).

Perturbative expansion around a saddle
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Perturbation theory around saddle-1: 

Large-order of perturbation theory around saddle-0: 



Michael Berry: ICTP, Trieste, 50th year celebration talk,2014 

From Intro of his talk: “Understanding divergence has been a thread running 
through mathematics for several centuries. The subject has been repeatedly reborn,  
more deeply each time, and it is happening again now.” 

“A divergent series is not meaningless, or a nuisance, but an essential and informative 
coded representation of the function.”

From the final part: “Now, and to my great surprise, there is another rebirth, appears 
in applications in QFT and string theory.  

The difficulty, the technical difficulty, is immense.  Because it is not just a question of 
double, quadrupole integrals,  it is integrals in field theory with infinitely many 
variables, and it could well be that things are a bit different there.”  

“Divergent series: From Thomas Bayes to resurgence via rainbow.”  
(You can see it on Youtube. Search: Michael Berry physics strongly recommended)
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Large-order of perturbation theory around perturbative vacuum for ground state N=0 in 
periodic potential: 

Im[IĪ]± ⇠ ±⇡e�(2SI)/g
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Contribution of instanton-antiinstanton critical point at infinity (a type of saddle 
that I will make precise)  to ground state energy. 

In QM path integral: infinitely many coupled exponential integrals 

The leading terms obtained in Bogomolny  and Zinn-Justin early 80s, 
but not sufficiently appreciated.  The overall structure was obtained 
in 2014, in Gerald Dunne and MU.  Why is this happening?





Simpler question: Can we make sense of the 
semi-classical expansion of  QFT?     
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pert. th.               n-instanton factor     pert. th. around 
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All series appearing above are asymptotic, i.e., divergent as  c(0,k) ~ k!. 

The combined object is called trans-series following resurgence terminology. 

Trans-series well-defined under analytic continuation.

All trans-series coefficients are correlated in a precise sense. 

Argyres, MÜ,
Dunne, MÜ, 2012 



Borel transform and resummation 

Borel transform of P (g2) by BP (t):

BP (t) :=
1X

q=0

aq
q!
tq.

A finite radius of convergence.

Let P (g2) denote a perturbative asymptotic series that satisfy

P (g2) =
1X

q=0

aqg
2q, Gevrey � 1 : |aq|  CRqq!

for some positive constants C and R, i.e., it diverges factorially.

Borel resummation: The Borel resummation of P (g2), when it exists

B(g2) = 1

g2

Z 1

0
BP (t)e�t/g2

dt .

If BP (t) has no singularities on R+, then, we say, B(g2) is the (unique) Borel
resummation of P (g2).
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Lateral Borel sums and  ambiguity

Directional (sectorial) Borel sum. S✓P (g2) ⌘ B✓(g2) =
1
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The non-equality of the left and right Borel sum means the series is non-Borel summable or 
ambiguous. The ambiguity has the same form of a 2-instanton factor (not 1) in QM. The 
measure of ambiguity (Stokes automorphism/jump in g-space interpretation): 
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Jean Ecalle, 80s



P (g2)

Borel�sum
$$

Borel�trans.
// BP (t)

Directional Laplace trans.
zz

S✓P (g2)

Borel triangle 

If theta is a non-singular direction, all is good. 

If theta is a singular direction, at this stage,  it naively looks like we traded one 
pathology (divergence)  with another (complex imaginary ambiguity).  

It looks like  we did not gain much, except that, we realize the ambiguity is related to 
another saddle in the problem.  

✓



Saddle points and Lefschetz thimbles-I 
Next, I will describe a geometric perspective on Borel resummation. 
First, we need to discuss saddle point method properly.  
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 Complex gradient flow equations  

Thimbles can be thought as forming  a complete  basis over a vector space, 
any integration can be expressed  as a linear combinations of them.
(This is called homology cycle decomposition.) 



Using complex gradient flow equation, prove that the imaginary part of the
action is invariant under the flow.
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This is the reason the 1d version of this story is sometimes called stationary
phase method. The real part obeys
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and exponent e�S is ever decreasing. And this is the reason that it is also called
steepest descent method. Guarantees the convergence of integration over the
cycle J�.

Saddle point method and Lefschetz thimbles-I
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Borel resummation



• Ja(✓) is piece-wise continuous. It is discontinuous at Stokes line.

• na(✓) is piece-wise constant. It is discontinuous at Stokes line. Number
of active saddles changes crossing the Stokes line.

• The Stokes line associated with ⇢0 saddle is at arg(w) = ✓ = ⇡/2, 3⇡/2.
The Stokes line associated with ⇢1,2 saddles is at arg(w) = ✓ = 0,⇡.

• The two discontinuities are present to make the function I(w) well-defined
through the integral

R
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I(�) =
X

�

n�(✓)Int[J�(✓)] =
X

�

n�(✓)e
�S�

� S✓��(�)

Thimble decomposition Transseries expansion
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Passing remark: Gradient flow vs. instantons
You may also realize  that the complex gradient flow equation is  actually instanton equation 
in extended supersymmetric (N=2) quantum mechanics with superpotential W(z)= S(z). 

This is not an accident. Instanton solutions in 1D QM are related to Lefschetz thimbles in the 
ordinary integrals. But I will not describe this in detail. 
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Similarly, the real gradient flow equation is  instanton equation 
in minimal supersymmetric (N=1) quantum mechanics with superpotential W(x)= S(x).  

This also has a bearing in higher dimension. For example, the real gradient flow equation 
in 3d where action is Chern-Simons functional is the instanton equation in 4d.  

But these relations will not be discussed here. 



Stokes phenomena,  ambiguities and their cancellations. 
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To each saddle, there is a unique steepest descent path (Lefschetz thimble). Thimbles 
form natural basis for integration and analytic continuation. (P-saddle and  NP-saddle.)  

Original cycle = linear combination of these thimbles. 
But on the Stokes line, thimble decomposition is multi-fold ambiguous! 
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ImS(z)|Ji = ImS(zi),

Geometrization of the ambiguity:   
The direction of the tail of J0  flips. 

Giving an elegant geometric meaning to Borel analysis:

Left/right Borel sum = Integration over Lefschetz thimble! 

Borel ambiguity=Ambiguity in the choice of the cycle on a Stokes line
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Thimble decomposition Transseries expansion

• Ja(✓) is piece-wise continuous. It is discontinuous at Stokes line.

• na(✓) is piece-wise constant. It is discontinuous at Stokes line. Number
of active saddles changes crossing the Stokes line.

• The Stokes line associated with ⇢0 saddle is at arg(�) = 0. The Stokes
line associated with ⇢1 saddle is at arg(�) = ⇡.

• The two discontinuities are present to make the integral continuous cross-
ing Stokes line.
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Borel analysis and Stokes Phenomena: very explicitly. 
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Punchline: The discontinuity of Borel resummation of a series �m associated
by saddle ⇢m is determined by only the other series �n associated by other
saddles ⇢n in the problem and nothing else!!!

This is the essence of resurgence. The set of all series around all saddles are
closed under Stokes jumps. This can be encoded into a type of singularity
derivative called the alien derivative operation.

Disc0�0(�) = �2ie�1/(2�)�1(�) Remarkable relation



Borel-Ecalle summability and exact result from semi-classics
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Reality of the BE resummation for real coupling (approaching real line from below)
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This is the exact, real, unambiguous result, 
and simple realization of Borel-Ecalle summability. 



The reason for the late term/early term relation (and name resurgence) 
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The information in the series expansion around the NP-saddle surges up, in a disguised 
form, in the expansion around the P-saddle and vice versa  (Ecalle 80s)
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Now, we understand why it had to be so.   By Cauchy’s thm. And using: 

Perturbative expansion parameters for saddle z0 are: a(0)n =
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1) This story with simple exponential integrals is very nice, but one may think that it is 
an ordinary integral that we can do exactly after all….. 

2)    But even in QM,  we have infinitely many coupled exponential integrals, and in        
general infinitely many saddles. 

3) QFT is even more involved. But….. 

Universality 

There is a genuinely universal behavior in the story I am telling you. It does not 
quite matter if we are dealing with exponential integral, path integral in QM or 
path integral in QFT.  

The thing that changes is number of saddles. It may become infinite. But for 
closely knitted saddles that talk with each other,  the ordinary exponential 
integral provides a remarkably useful prototype.  



An example  which captures some essence of more general cases.

I borrowed the next 8 pages from a lecture of my collaborator  Gerald Dunne. 









Different curves refer to different values of the elliptic parameter m: m = 0 (blue circles), m =1/4 (red squares), m = 
0.49 (gold diamonds), and m = 0.51 (green triangles). As m approaches 1/2 from below the agreement breaks down 
rapidly, showing that the contribution of the saddle B by itself is not sufficient to capture the large order growth. 













Stokes phenomena at ✓ “ 0 ray: Now, the monodromy of the cycles crossing
the Stokes ray ✓ “ 0 are:

JC ›Ñ JC ` 2JA ´ 2JB

JA ›Ñ JA ´ 2JB

JB ›Ñ JB

or Ji Ñ Uijp✓ “ 0qJj with Uöp0q “
¨

˝
1 2 ´2
0 1 ´2
0 0 1

˛

‚

Lefschetz thimbles and Stokes phenomena at theta=0



Stokes phenomena at ✓ “ ⇡ ray: The monodromy of the cycles crossing the
Stokes ray ✓ “ 0 are:

JC ›Ñ JC

JA ›Ñ JA ´ 2JC

JB ›Ñ JB ´ 2JC ` 2JA

or Ji Ñ Uijp⇡qJj with Uöp⇡q “
¨

˝
1 0 0

´2 1 0
´2 2 1

˛

‚

Lefschetz thimbles and Stokes phenomena at theta=pi


