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Fundamental nature of spacetime

Zeno Paradox :

Kanada - Vaisheshika school, 6th to 2nd BC
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Thermodynamics
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Causal Sets

A causal set is defined as a locally finite partially ordered set.
Take a pair (C,≺) where C is a set with a partial order relation ≺ which satisfies:

• ∀ a, b ∈ C, a ≺ b ≺ a ⇒ a = b Acyclicity

• ∀ a, b, c ∈ C, a ≺ b ≺ c ⇒ a ≺ c
Transitivity

• ∀ a, c ∈ C, | [a, c] | < ∞, where the set [a, c] := {b ∈ C| a ≺ b ≺ c} is a causal
interval and |X | is the cardinality of a set X. Locally finiteness

MOTTO:
”Order + Number ∼ Lorentzian Geometry”

Hawking, King, and McCarthy 1976, Malament 1977
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Representation

C = {a1, a2, a3, a4, a5}

a1 ≺ a2, a1 ≺ a3, a1 ≺ a4, a1 ≺ a5,
a2 ≺ a4, a2 ≺ a5,
a3 ≺ a5, a4 ≺ a5,

a3

a5
a4

a2
a1

C =


0 1 1 1 1
0 0 0 1 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0

 L =


0 1 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 0


A labelling is an injective map: C → N, analogue of a choice of coordinate system in the
continuum.
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Discrete/Continuum Correspondance

A causal set (C,≺) is well-approximated by a continuum geometry (M, g) of dimension d
if there exists a faithful embedding of C in M, that is a map f : C → M such that,

(i) q ≺ p ⇐⇒ f (q) ∈ J−(f (p)), where J−(x) denotes the causal past of x ∈ M,

(ii) the points f (C) are distributed in M according to a uniform distribution in M in
agreement with the volume measure on M

(iii) the discreteness length l = ρ−d is small compared to any curvature length scale.
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Discrete/Continuum Correspondance

We must ensure covariance, since the goal is to be able to recover the approximate
covariant spacetime geometry:
A regular lattice picks a preferred frame.

Figure: The lattice on the left looks “regular” in a fixed frame but transforms into the “stretched” lattice
on the right under a boost. The highlighted Alexandrov interval has n = 7 lattice points in the lattice in
the left but is empty after a boost. From S.Surya arxiv.1903.11544
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Sprinkling: generating causal sets from continuum

Select points in (M, g) uniformly at random → ⟨n⟩ = ρV via a Poisson distribution and impose a
partial ordering via the induced spacetime causality relation.

P(|C ∩ V | = n) =
(ρV )ne−ρV

n!
, (1)

Figure: CS with 1000 elements approximated by a
portion of 1 + 1 Minkowski

Figure: CS with 1000 elements approximated by dS2

This process is Lorentz invariant! only uses the invariant volume measure.
Dowker, Henson and Sorkin, gr-qc/0311055, Bombelli, Henson and Sorkin, gr-qc/0605006
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Uniqueness of the continuum approximation

The Hauptvermutung - Fundamental Conjecture

C can be faithfully embedded at density ρ into two distinct spacetimes, (M, g) and
(M′, g ′) iff they are approximately isometric.

By an approximate isometry , (M, g) ∼ (M′, g ′) at density ρ =⇒ differ only at scales
smaller than ρ
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Free QFT on Causal sets

• Non-Local discrete structure =⇒ No tangent space =⇒ No equation of motion.

• Start with the retarded propagators ∆R
xy : hops and stops model at each element of

the trajectory. Johnston. Particle propagators on discrete spacetime, arXiv:0806.3083

∆R
(2D) :=

1

2
C (I+

1

2

m2

ρ
C )−1 (2)
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Free QFT on Causal sets

• Non-Local discrete structure =⇒ No tangent space =⇒ No equation of motion.
• Start with the retarded propagators ∆R

xy . Associate a field operator ϕ(x) to each
x ∈ C and impose the Peierls bracket,

[ϕ(x), ϕ(y)] = i∆xy = i(∆R
xy −∆R

yx). (3)

This is the Pauli-Jordan function Note: [ϕ(x), ϕ(y)] = 0 if x♮y .

• i∆ is skew-symmetric and Hermitian =⇒ even rank (2s) and real positive and
negative pairs of non-zero eigenvalues

i∆xyv
(λ)
y = λv

(λ)
x i∆xy v̄

(λ)
y = −λv̄

(λ)
x . i∆xyw

k
y = 0, (4)

where λ > 0, (λ) = 1, . . . , s; k = 1, . . . , |C| − 2s, with bars denoting complex
conjugation. FINITELY MANY MODES!

• The Pauli-Jordan function can be written as

i∆xy =
∑
λ>0

λv
(λ)
x v̄

(λ)
y −

∑
λ>0

λv
(λ)
x v̄

(λ)
y (5)
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SJ-vacuum

• The eigenvectors of i∆ can be used to define a Gaussian vacuum state |0⟩ by
requiring that,

W (x , y) ≡ ⟨0|ϕ(x)ϕ(y)|0⟩ = Pos(i∆) =
∑
λ>0

λv
(λ)
x v̄

(λ)
y (6)

This is the Sorkin-Johnston (SJ) vacuum.

• Fock representation: for each λ > 0, introduce ladder operators (aλ,a
†
λ) and impose

the commutation relations. Fields can be expanded as

ϕ(x) =
∑
λ>0

√
λ

(
vλx aλ + v̄λx a

†
λ

)
, (7)

As in the continuum, ϕ(x) is a ‘solution’ if it is not in the kernel of i∆
→ wk · ϕ = 0 ∀k where i∆wk = 0

NOTE: SJ vacuum is UNIQUE on curved backgrounds as well! Afshordi et al., A Ground State for the

Causal Diamond in 2 Dimensions, arXiv:1205.1296, A. Mathur, S. Surya, Sorkin-Johnston vacuum for a massive scalar field in the 2D causal diamond

hep-th/1906.07952 , S. Surya, Nomaan X, Y. K. Yazdi, Studies on the SJ Vacuum in de Sitter Spacetime, gr-qc/ 1812.10228
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Massless Scalar Field on 1+1 Causal Diamond
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Violation of causality as the spectrum is truncated λcutoff
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Initial Value Problem

An antichain is not a Cauchy surface. It fails
to encode the causal relation represented by

the dashed line.

What is the number of physical modes that
propagate?

Specifying the field on the minimal elements
alone is insufficient for solving the initial

value problem!
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Causal Ordering

Define the causal ordering operator C whose action on a product of two fields is,

C [ϕ(x)ϕ(y)] =

{
ϕ(x)ϕ(y) if x ≻ y

ϕ(y)ϕ(x) if x ≺ y ,
(8)

• For a spacelike pair of points x♮y : C [ϕ(x)ϕ(y)] = ϕ(x)ϕ(y) = ϕ(y)ϕ(x).

• In a labelled causal set: ordering a product of operators by decreasing label from left
to right = causal ordering, e.g. ϕ(4)ϕ(4)ϕ(2)ϕ(1)

Causal ordering is the causal set analogue of the time ordering of the continuum.
Define the Feynman propagator as

∆F
xy = ⟨C [ϕ(x)ϕ(y)]⟩. (9)
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Key Features

• Finitely many modes ∼ non-local collection of harmonic oscillators

• Manifestly causal formulation

• The SJ-vacuum is UNIQUE on any curved background!

• The SJ vacuum is NON-Hadamard

• The path integral formulation → In-In formalism. Decoherence functional
Sorkin. Scalar field theory on a causal set in histories form, arXiv:1107.0698

• The free theory is gaussian → can define any n-point function by Wick’s theorem.
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The Heisenberg field in the continuum

In the continuum, the Heisenberg field ϕH(t, x) is related to the interaction picture field
ϕ(t, x) via,

ϕH(t, x) = U†(t, t0)ϕ(t, x)U(t, t0). (10)

where,

U(t, t0) = T

[
e
−i

∫ t
t0
H(t)dt

]
(t ≥ t0) (11)

is the time-evolution operator and where H is the interacting Hamiltonian in the
interaction picture.

Recipe:

• Replace the time integral by a sum over causal set points

• Replace the time-ordering T with the causal ordering C . Under the action of C , all
field commutators vanish and we can express the exponential of a sum as a product
of exponentials.
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Evolution Operators in Causal Set

Define the following family of evolution operators,

Vx = C

[∏
z≺x

e−iH(z)

]
, Ux ,y = C

 ∏
y≤z<x

e−iH(z)

 for x > y , Ux =

{
1 if x = 1,

C
[∏

z<x e
−iH(z)

]
if x > 1.

and note that they satisfy the following relations,

V †
xVx = U†

xUx = 1, V †
xO(x)Vx = U†

xO(x)Ux for any local operator O(x). (12)

Vx is a covariant operator, relying only on the partial order ≺ (physical operator).
Ux ,y and Ux are label-dependent operators, relying on the total order < of the labelling
(gauge-dependent operators)
EA, Dowker, Nasiri, Zalel, Phys.Rev.D 109 (2024) 10, 106014
Dable-Heath, Fewster, Rejzner, Woods,Phys.Rev.D 101 (2020) 065013
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Example : H = g
3!ϕ

3

Consider 1 interaction point such as z ≺ x (totally ordered),

⟨ϕH
x ⟩ = ⟨e

ig
3!
ϕ3
zϕxe

− ig
3!
ϕ3
z ⟩

= ⟨ϕx⟩ −
ig

3!
⟨[ϕx , ϕ

3
z ]⟩+

1

2

(
− ig

3!

)2

⟨[[ϕx , ϕ
3
z ], ϕ

3
z ]⟩ =

g

2
∆R

x ,z⟨ϕ2
z⟩

given ⟨ϕx⟩ = 0, [ϕx , ϕz ] = i∆x ,z = i∆R
x ,z

The perturbative series terminates at O(g) since [ϕz , ϕz ] = 0, giving an exact answer!

Can we derive a diagrammatic expansion of ϕH(x) and expectation values for an arbitrary
interaction region?
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The diagrammatic expansion for the Heisenberg field

• Associate a vertex with each of the points x , z1 . . . , zn.
x is the external vertex and zi are the internal vertices.

• The number of half-legs meeting at each vertex is equal to the number of fields at
the associated point.

• Connect the half-legs in all possible ways to form directed edges with the following
properties:
(i) every internal vertex is connected to the external vertex by at least one directed
path
(ii) every directed edge is of the form zi → x or zi → zj with i > j → the factors of
∆x ,zi and ∆zi ,zj .
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Example : H = g
3!ϕ

3

ϕH(x) = x − i
x−1∑
z1=1

x
z1 + (−i)2

x−1∑
z1,z2=1


x
z1
z2

+

x
z1
z2

Θ(z1, z2) + · · ·

= ϕ(x)+
g

2

x−1∑
z1

∆R
x ,z1ϕ(z1)

2+
g2

2

x−1∑
z1,z2=1

∆R
x ,z1∆

R
z1,z2

(
ϕ(z1)ϕ(z2)

2−i∆R
z1,z2ϕ(z2)

)
Θ(z1, z2)+· · · ,

where in the second line we used the relation,

∆zizjΘ(z1, . . . , zn) = ∆R
zizj

Θ(z1, . . . , zn)

The field expansion terminates at a finite order in the interaction coupling. This
order increases with the order of the interaction Hamiltonian and with the number of
points to the past of x which are contained in the interaction region.
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Properties of the field algebras

• Causality. Heisenberg fields at spacelike separated points commute,

[ϕH(x), ϕH(y)] = 0 for all x , y ∈ C with x♮y . (13)

• Polynomial property. The Heisenberg field ϕH(x) can be written as,

ϕH(x) = ϕ(x) + Qx(ϕ(y); y ≺ x), (14)

where Qx is a finite order polynomial in the interaction picture fields in the past of x .
Inverting this relationship,

ϕ(x) = ϕH(x) + Px(ϕ
H(y); y ≺ x), (15)

where Px is a finite order polynomial in the Heisenberg fields in the past of x .

• Observable algebras. Given a causet C and a subcauset R ⊆ C, we write AH
R and AR

denote the algebras generated by {ϕH(x)}x∈R and {ϕ(x)}x∈R, respectively. Then
AH
R = AR if and only if R is a stem in C.
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Expectation value of a field ⟨ϕH(x)⟩

• We can apply Wick’s theorem to the expansion of expanded ϕH(x) to obtain
⟨ϕH(x)⟩.

• Diagrammatically, this corresponds to taking each diagram in the expansion of ϕH(x)
and joining its half-legs to create undirected edges in all possible ways. Each
undirected edge is a Feynman propagator, and each diagram is weighted by an
additional Wick factor.

• Assuming ⟨ϕ(x)⟩ = 0, only the diagrams in which all half-legs are contracted
contribute to the expectation value ⟨ϕH(x)⟩.
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Example: H = g
3!ϕ

3

⟨ϕH(x)⟩ = −i
x−1∑
z1=1

x

z1

+(−i)3
x−1∑

z1,z2,z3=1



x

z1

z2

z3

+

x

z1

z2

z3

+

x

z1

z2 z3

+

x

z1

z2

z3

+

x

z1

z2

z3

+

x

z1

z2

z3

+

x

z1

z2

z3

+

x

z1

z2

z3


Θ(z1, z2, z3)

+ · · ·
(16)
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Unlabelled Diagrams

• Consider some labelled diagram Gn with n internal vertices which appears in the
expansion of ⟨ϕH(x)⟩ and permute the labels of its internal vertices to produce
another diagram G ′

n.
• For each isomorphism-class [Gn] choose some representative Gn, and for each
diagram G ′

n ∈ [Gn] apply the necessary coordinate transformation
(z1 . . . zn) → (z1 . . . zn) to bring G ′

n into the labelling of Gn.

• Collecting the identical diagrams and taking into account the action of each
coordinate transformation on Θ, we obtain,

⟨ϕH(x)⟩ =
∞∑
n=0

∑
[Gn]

(−i)n
x1−1∑

z1···zn=1

Gn

|Aut(Gn)|
∑
π

Θ(π), (17)

where [Gn] denotes an unlablled diagram, Gn denotes a labelled diagram
representative of [Gn], Aut(Gn) is the group of automorphisms of Gn which keep the
x vertex fixed, π = zi1 , . . . , zin is a permutation of z1, . . . , zn.

• ∑
π Θ(π) = 1, the expansion simplifies to a sum over unlabelled diagrams [Gn].

27 / 35



Unlabelled Diagrams

• Consider some labelled diagram Gn with n internal vertices which appears in the
expansion of ⟨ϕH(x)⟩ and permute the labels of its internal vertices to produce
another diagram G ′

n.
• For each isomorphism-class [Gn] choose some representative Gn, and for each
diagram G ′

n ∈ [Gn] apply the necessary coordinate transformation
(z1 . . . zn) → (z1 . . . zn) to bring G ′

n into the labelling of Gn.
• Collecting the identical diagrams and taking into account the action of each
coordinate transformation on Θ, we obtain,

⟨ϕH(x)⟩ =
∞∑
n=0

∑
[Gn]

(−i)n
x1−1∑

z1···zn=1

Gn

|Aut(Gn)|
∑
π

Θ(π), (17)

where [Gn] denotes an unlablled diagram, Gn denotes a labelled diagram
representative of [Gn], Aut(Gn) is the group of automorphisms of Gn which keep the
x vertex fixed, π = zi1 , . . . , zin is a permutation of z1, . . . , zn.

• ∑
π Θ(π) = 1, the expansion simplifies to a sum over unlabelled diagrams [Gn].
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Example: H = g
3!ϕ

3

Our example can be rewritten in terms of [G1] and [G3] as

⟨ϕH(x)⟩ =
x

+



x

+

x

+

x

+

x

+

x

+

x

+

x

+

x


+ · · · (18)
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Key Features

• The field expansion terminates at a finite order in the interaction coupling.

• MANIFESTLY CAUSAL: Each internal vertex is connected to at least one external
vertex by at least one directed path.

• What is the continuum approximation of Interacting QFT on CS? does it recover the
QFT on the continuum?

x

z

Causal set: Continuum:

gcs
∑

z Wzz i∆
R
xz

gcont ρ

2

∫ L

−L
dvz

∫ L

−L
duz J0(mτxz)∆

F
cont(0)

= gcs
1

m2

(
1− J0(2

√
2mL)

)
∆F

cont(0)

How Diag(W ) and ∆F
cont(0) are related?
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Propagator in the coincidence limit

Diag(W ) is finite for finite ρ → Covariant regularization scheme. Work in progress with
S. Surya, K. Rejzner

Afshordi et al, A Ground State for the Causal Diamond in 2 Dimensions, arXiv:1207.7101,

Mathur, Surya, Sorkin-Johnston vacuum for a massive scalar field in the 2D causal diamond, arXiv:1906.07952
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Propagator in the coincidence limit

W cont(0) =

∫ ∞

−∞

dp0
4π2

dp1
−i

−p20 + p21 +m2

=

∫ 2π

0

dθ

4π2

∫ Λ

0
dpp

1

p2 +m2

=
1

4π
Ln

(
Λ2
cont +m2

m2

)
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Propagator in the coincidence limit

Λ2
cont = bρ → Λ−1

cont ≪ l2p for b = 104

(?????)
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Outlook: The discrete cosmological collider

• Can we compute cosmological correlators on a causal set background? Yes!

• A new tool for cosmological collider physics, can produce predictions to compare
against cosmological data to test for spacetime discreteness. E.g. Non- linearities
during the inflationary era: M. Musso, A new diagrammatic representation for correlation

functions in the in-in formalism, arXiv:hep-th/0611258

• Can offer a novel regularization of the continuum, since there are no UV divergences
on a causal set.
Open Problems aka new year’s resolutions:

• Wetterich equation - renormalization group flow E. D’Angelo, Nicolò Drago, N.
Pinamonti, K. Rejzner, An algebraic QFT approach to the Wetterich equation on
Lorentzian manifolds, arXiv:2202.07580

• Initial Value Problem - No Cauchy Hypersurface, What are the spacetime configurations
for which is enough to specify the field values on the minimal elements?

• Particle Production - Non locality of SJ vacuum vs Sandwich Spacetime set up and
Bogoliubov transformations ...
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Summary

• Causal Set Theory is an approach to quantum gravity in which spacetime is
fundamentally discrete.

• It’s a tool for new discoveries of non- local and Lorentz-invariant physics.

• New developments are enabling us to make concrete predictions, including for
cosmological collider physics.

THANKS FOR LISTENING!

34 / 35



35 / 35


	Background
	Free quantum Field theory on Causal sets
	A diagrammatic expansion for in-in correlators

