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Causal Sets

A causal set is defined as a locally finite partially ordered set.
Take a pair (C, <) where C is a set with a partial order relation < which satisfies:

® Vabe(C, a<b<a= a= b Acyclicity

Future lightcone

. 4
_—

Past lightcone

e Vabcel, axb<c=a<c
Transitivity

Poset associated with( —, +.+.+....) (—.,—.+ .+ )hasnoassociated poset
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Causal Sets

A causal set is defined as a locally finite partially ordered set.
Take a pair (C, <) where C is a set with a partial order relation < which satisfies:

® Vabe(C, a<b<a= a= b Acyclicity

Future lightcone

?
—

Past lightcone

e Vabcel, axb<c=a<c
Transitivity

Poset associated with( —, +.+.+....) (—.,—.+ .+ )hasnoassociated poset

e Vacel,||ac]|< oo, where the set [a,c] :={b€ (| a< b <c}isa causal
interval and | X] is the cardinality of a set X. Locally finiteness
MOTTO:
"Order + Number ~ Lorentzian Geometry”
Hawking, King, and McCarthy 1976, Malament 1977
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Representation

C — {alv ar, as, d4, 35}

as
ds4
a1 < az,a; = as, a1 < as,a < as, a3
ar < ag,az < as, a5
a3 < as, a4 < as, a1
01111 01100
0 0011 0 00T1O0
C=100001 L=]0 0001
0 0001 0 00O001
0 00O0O 0 00O0TO

A labelling is an injective map: C — N, analogue of a choice of coordinate system in the

continuum.
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Discrete/Continuum Correspondance

A causal set (C, <) is well-approximated by a continuum geometry (M, g) of dimension d
if there exists a faithful embedding of C in M, that is a map f : C — M such that,

(i) g<p < f(q) € J7(f(p)), where J~(x) denotes the causal past of x € M,

(/i) the points f(C) are distributed in M according to a uniform distribution in M in
agreement with the volume measure on M

(iii) the discreteness length | = p~9 is small compared to any curvature length scale.
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Discrete/Continuum Correspondance

We must ensure covariance, since the goal is to be able to recover the approximate

covariant spacetime geometry:
A regular lattice picks a preferred frame.

Figure: The lattice on the left looks “regular” in a fixed frame but transforms into the “stretched” lattice
on the right under a boost. The highlighted Alexandrov interval has n = 7 lattice points in the lattice in

the left but is empty after a boost. From S.Surya arxiv.1903.11544
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Sprinkling: generating causal sets from continuum

Select points in (M, g) uniformly at random — (n) = pV via a Poisson distribution and impose a
partial ordering via the induced spacetime causality relation.

(pV)re v

P(ICNV|=n)= -

; (1)

Figure: CS with 1000 elements approximated by a Figure: CS with 1000 elements approximated by dS,
portion of 1 + 1 Minkowski

This process is Lorentz invariant! only uses the invariant volume measure.
Dowker, Henson and Sorkin, gr-qc/0311055, Bombelli, Henson and Sorkin, gr-qc/0605006
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Uniqueness of the continuum approximation

The Hauptvermutung - Fundamental Conjecture

C can be faithfully embedded at density p into two distinct spacetimes, (M, g) and
(M, g’) iff they are approximately isometric.

By an approximate isometry , (M, g) ~ (M’, g’) at density p = differ only at scales
smaller than p
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Free QFT on Causal sets

® Non-Local discrete structure = No tangent space = No equation of motion.

® Start with the retarded propagators Afy: hops and stops model at each element of
the trajectory. Johnston. Particle propagators on discrete spacetime, arXiv:0806.3083

1 m?

Causally related points in 1+1 dimensions
(p=1200,m= 10) (Kg),

(2),
@)

(K, and G

R)XY

Proper time for v -v, and X
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Free QFT on Causal sets

® Non-Local discrete structure = No tangent space = No equation of motion.
® Start with the retarded propagators Afy. Associate a field operator ¢(x) to each
x € C and impose the Peierls bracket,
[¢(X)7 ¢(y)] = ’Axy = l(Axy - Ayx)‘ (3)

This is the Pauli-Jordan function Note: [¢(x), ¢(y)] = 0 if xby.
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® Start with the retarded propagators Afy. Associate a field operator ¢(x) to each
x € C and impose the Peierls bracket,
[¢(X)7 ¢(Y)] = ’Axy = l(Axy - Ayx)‘ (3)

This is the Pauli-Jordan function Note: [¢(x), ¢(y)] = 0 if xby.
® /A is skew-symmetric and Hermitian = even rank (2s) and real positive and
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where A >0, (\)=1,...,s;k=1,...,|C| — 2s, with bars denoting complex
conjugation. FINITELY MANY MODES!
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Free QFT on Causal sets

® Non-Local discrete structure = No tangent space = No equation of motion.
® Start with the retarded propagators Afy. Associate a field operator ¢(x) to each
x € C and impose the Peierls bracket,

[0(x), 6()] = iBsy = i(AF, — AR)- (3)

This is the Pauli-Jordan function Note: [¢(x), ¢(y)] = 0 if xby.
® /A is skew-symmetric and Hermitian = even rank (2s) and real positive and
negative pairs of non-zero eigenvalues

iBg i =AY in v = Y. i, wk =, (4)
where A >0, (\)=1,...,s;k=1,...,|C| — 2s, with bars denoting complex
conjugation. FINITELY MANY MODES!

® The Pauli-Jordan function can be written as
iDg = > AN - STV (5)
A>0 A>0
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SJ-vacuum

® The eigenvectors of /A can be used to define a Gaussian vacuum state |0) by
requiring that,

W(x,y) = (0[¢(x)(y)|0) = Pos(in) = >~ AV gV (6)

A>0
This is the Sorkin-Johnston (SJ) vacuum.
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SJ-vacuum

® The eigenvectors of /A can be used to define a Gaussian vacuum state |0) by
requiring that,
W(x.y) = (016()é(1)[0) = Pos(in) = 3~ a5 (6)
A>0
This is the Sorkin-Johnston (SJ) vacuum.
T

® Fock representation: for each A > 0, introduce ladder operators (ay,ay) and impose
the commutation relations. Fields can be expanded as

P(x) = Z\F(v ay+ v)a T), (7)

A>0

As in the continuum, ¢(x) is a ‘solution’ if it is not in the kernel of /A
— wk. =0 Vk where iAwk =0
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SJ-vacuum

® The eigenvectors of /A can be used to define a Gaussian vacuum state |0) by
requiring that,

W(x,y) = 0l6(x)e(y)|0) = Pos(in) = 3 A (6)
A>0
This is the Sorkin-Johnston (SJ) vacuum.
® Fock representation: for each A\ > 0, introduce ladder operators (a,\,ai) and impose
the commutation relations. Fields can be expanded as

P(x) = Z\F(v ay+ v)a T) (7)

A>0
As in the continuum, ¢(x) is a ‘solution’ if it is not in the kernel of /A
— wk. =0 Vk where iAwk =0
NOTE: SJ vacuum is UNIQUE on curved backgrounds as welll afshordi et al., A Ground State for the
Causal Diamond in 2 Dimensions, arXiv:1205.1296, A. Mathur, S. Surya, Sorkin-Johnston vacuum for a massive scalar field in the 2D causal diamond

hep-th/1906.07952 , S. Surya, Nomaan X, Y. K. Yazdi, Studies on the SJ Vacuum in de Sitter Spacetime, gr-qc/ 1812.10228 13/35



Massless Scalar Field on 141 Causal Diamond

Spectrum of Pos(iA)
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Violation of causality as the spectrum is truncated )\ ;.

i for spacelike-separated points

Truncated iA
0301 . Full iA

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
[Txyl
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Initial Value Problem

An antichain is not a Cauchy surface. It fails
to encode the causal relation represented by
the dashed line.
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Initial Value Problem

What is the number of physical modes that
propagate?

Zero modes and Minimal elements in a Causal Diamond

10 @  # Minelem
@ # Zero Eigen

©
L

Average Count
o]

An antichain is not a Cauchy surface. It fails 2000 4000 N6°'°° 8000 10000
to encode the causal relation represented by o ] .
the dashed line Specifying the field on the minimal elements

alone is insufficient for solving the initial

I
value problem! 16/



Causal Ordering

Define the causal ordering operator C whose action on a product of two fields is,

= {00 1L

® For a spacelike pair of points xfiy: C[o(x)o(y)] = o(x)d(y) = é(y)od(x).
® In a labelled causal set: ordering a product of operators by decreasing label from left
to right = causal ordering, e.g. ¢(4)p(4)p(2)p(1)

Causal ordering is the causal set analogue of the time ordering of the continuum.
Define the Feynman propagator as

Ay = (Clo(x)o(y))). (9)
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Key Features

Finitely many modes ~ non-local collection of harmonic oscillators

Manifestly causal formulation

The SJ-vacuum is UNIQUE on any curved background!
The SJ vacuum is NON-Hadamard

The path integral formulation — In-In formalism. Decoherence functional
Sorkin. Scalar field theory on a causal set in histories form, arXiv:1107.0698

The free theory is gaussian — can define any n-point function by Wick's theorem.
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The Heisenberg field in the continuum

In the continuum, the Heisenberg field ¢! (t,x) is related to the interaction picture field
o(t,x) via,
¢H(t7 X) = UT(t7 to)QZS(t, X) U(t7 tO)' (10)

where,
U(t, ty) = T[e"ftg H(t)dt] (t > to) (11)

is the time-evolution operator and where H is the interacting Hamiltonian in the
interaction picture.
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The Heisenberg field in the continuum

In the continuum, the Heisenberg field ¢! (t,x) is related to the interaction picture field
o(t,x) via,
¢H(t7 X) = UT(t7 tO)(Zs(ta X) U(t7 tO)' (10)

where,
U(t, ty) = T[e"ftg H(t)dt] (t > to) (11)

is the time-evolution operator and where H is the interacting Hamiltonian in the
interaction picture.
Recipe:
® Replace the time integral by a sum over causal set points
® Replace the time-ordering T with the causal ordering C. Under the action of C, all
field commutators vanish and we can express the exponential of a sum as a product
of exponentials.
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Evolution Operators in Causal Set

Define the following family of evolution operators,

Vi==C

' ) 1
e"H(Z)] , Uxy=C e ™M@ | for x > y, Ux= { i
Z]_:[X y yyxx C [HZ<X e*l%(z)]

and note that they satisfy the following relations,
VIV, =UlUc, =1, VIO(x)V, = UlO(x)Uy for any local operator O(x).  (12)

V, is a covariant operator, relying only on the partial order < (physical operator).
U,y and Uy are label-dependent operators, relying on the total order < of the labelling
(gauge-dependent operators)

EA, Dowker, Nasiri, Zalel, Phys.Rev.D 109 (2024) 10, 106014
Dable-Heath, Fewster, Rejzner, Woods,Phys.Rev.D 101 (2020) 065013
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Example : 1 = £¢°

Consider 1 interaction point such as z < x (totally ordered),
(8ff) = (5% g.e 5%
_ _ E 3 1 _"5 2 31 31\ _ 8 AR ;2
— (0} = Bt + 5 (~5) W02l = § AL (6D
given (¢x) =0, [¢x, ¢z] = iDy . = iAF,

The perturbative series terminates at O(g) since [¢;, ¢,] = 0, giving an exact answer!
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Example : 1 = £¢°

Consider 1 interaction point such as z < x (totally ordered),
(8ff) = (5% g.e 5%
. N
— (0} = Bt + 5 (~5) W02l = § AL (6D
given (6x) = 0, [6x, 6] = il = IAR,
The perturbative series terminates at O(g) since [¢;, ¢,] = 0, giving an exact answer!

Can we derive a diagrammatic expansion of gsz(x) and expectation values for an arbitrary
interaction region?
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The diagrammatic expansion for the Heisenberg field

® Associate a vertex with each of the points x,z; ..., z,.
X is the external vertex and z; are the internal vertices.

® The number of half-legs meeting at each vertex is equal to the number of fields at
the associated point.

® Connect the half-legs in all possible ways to form directed edges with the following
properties:
(7) every internal vertex is connected to the external vertex by at least one directed
path

(ii) every directed edge is of the form z; — x or z; — z; with i > j — the factors of
A and Az,.’zj.
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Example : 1 = £¢°

x—1 % x—1 X X
=1 =id, da +(=0 3 24 A% | O(z1,20) + -
z1=1 z1,20=1 22 22
Z AX 21 Z AX ,Z1 21 Z ( )¢(Z2)2_IA2722¢(Z2))e(z]-’ 22)+ )
z1,20=1

where in the second line we used the relation,

DzzO(z1,...,20) = Agzj@(zl, ey Zn)
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Example : 1 = £¢°

x—1 % x—1 X X
=1 =id, Lz + (0 2 | AR+ [O@z)+ -
z1=1 z1,20=1 22 22
ZAXZl Z AXZl 21,22 d)( )¢(Z2)2_iAZ,zg¢(z2))e(z]-?22)+'"a
z1,20=1

where in the second line we used the relation,
DzzO(z1,...,20) = Afizj@(zl, ey Zn)

The field expansion terminates at a finite order in the interaction coupling. This
order increases with the order of the interaction Hamiltonian and with the number of
points to the past of x which are contained in the interaction region.
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Properties of the field algebras

® (ausality. Heisenberg fields at spacelike separated points commute,
[67(x), 0" (y)] = 0 for all x,y € C with xty. (13)
® Polynomial property. The Heisenberg field ¢"(x) can be written as,

oM(x) = ¢(x) + Qu(d(y); y < x), (14)

where @ is a finite order polynomial in the interaction picture fields in the past of x.
Inverting this relationship,

B(x) = o (x) + Pu(8 (y); y < x), (15)

where P, is a finite order polynomial in the Heisenberg fields in the past of x.

® Observable algebras. Given a causet C and a subcauset R C C, we write 27 and 2%
denote the algebras generated by {¢"(x)}xer and {¢(x)}xer, respectively. Then
917"{ = A if and only if R is a stem in C.
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Expectation value of a field (¢(x))

® We can apply Wick's theorem to the expansion of expanded ¢! (x) to obtain
(0" (x)).

® Diagrammatically, this corresponds to taking each diagram in the expansion of d)"’(x)
and joining its half-legs to create undirected edges in all possible ways. Each
undirected edge is a Feynman propagator, and each diagram is weighted by an
additional Wick factor.

¢ Assuming (¢(x)) = 0, only the diagrams in which all half-legs are contracted
contribute to the expectation value (¢/(x)).
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Unlabelled Diagrams

e Consider some labelled diagram G, with n internal vertices which appears in the
expansion of (¢!(x)) and permute the labels of its internal vertices to produce
another diagram G),.

® For each isomorphism-class [G,] choose some representative G,,, and for each
diagram GJ, € [G,] apply the necessary coordinate transformation
(z1...2n) = (21...2) to bring G}, into the labelling of G,,.
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Unlabelled Diagrams

e Consider some labelled diagram G, with n internal vertices which appears in the
expansion of (¢!(x)) and permute the labels of its internal vertices to produce
another diagram G),.

® For each isomorphism-class [G,] choose some representative G,,, and for each
diagram GJ, € [G,] apply the necessary coordinate transformation
(z1...2n) = (21...2) to bring G}, into the labelling of G,,.

e Collecting the identical diagrams and taking into account the action of each
coordinate transformation on ©, we obtain,

x1—1

RIS e Taur(G,)] 2O (17)

n= O [Gn] z1--zp=1

where [G,,] denotes an unlablled diagram, G, denotes a labelled diagram
representative of [G,], Aut(G,) is the group of automorphisms of G, which keep the
x vertex fixed, m = z;, ..., z, is a permutation of z, ..., z,.

® % . O(m) =1, the expansion simplifies to a sum over unlabelled diagrams [G,].
27/35



Example: H =

3
59

Our example can be rewritten in terms of [G1] and [G3] as

(@"(x) =} +

X

X

X

(18)
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Key Features

® The field expansion terminates at a finite order in the interaction coupling.

e MANIFESTLY CAUSAL: Each internal vertex is connected to at least one external
vertex by at least one directed path.

29/35



Key Features

® The field expansion terminates at a finite order in the interaction coupling.

e MANIFESTLY CAUSAL: Each internal vertex is connected to at least one external
vertex by at least one directed path.

® What is the continuum approximation of Interacting QFT on CS? does it recover the
QFT on the continuum?

Causal set: Continuum:
X Geontp [ L
8es 3., Wa iAR % / dv, / du, Jo(mmz) AL .(0)
L L
1
= 8Bcs ? (1 - JO(zﬁmL)> A<"::ont(0)
How Diag(W) and AL, .(0) are related?
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Propagator in the coincidence limit

Diag(W) is finite for finite p — Covariant regularization scheme. Work in progress with
S. Surya, K. Rejzner

Diagonal Elements of W

. ® Selected
< Al

0.6 4

T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
X

Afshordi et al, A Ground State for the Causal Diamond in 2 Dimensions, arXiv:1207.7101,

Mathur, Surya, Sorkin-Johnston vacuum for a massive scalar field in the 2D causal diamond, arXiv:1906.07952

30/35



Propagator in the coincidence limit

WCOnt(O) :/Oo de dp1 —i
Lo 42T —p3 4 p2 4+ m?
_ 27 do A J 1
- /0 42 /o ot m?

— i[_n /\gont + m2
4rr m?
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y—“”_—‘.
-
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-
e
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-
/;.
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2000 4000 6000 8000 10000
N
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Propagator in the coincidence limit

Best-fit of 2D Wy, = alog(bp/m? + 1)

— Fit (2=0.0717, b=2.78e+04)
13 —— Fit (a=0.073, b=2.96e+04)
] 0739, b=3.12e+04)
Fit (a=0.0745, b=3.34e+04)
#  Data (N=3000)
#  Data (N=4000)
12 #  Data (N=5000)
Data (N=6000)
S11
10
0.9
0.00 0.02 0.04 0.06 0.08 0.10 012 014
m?/p

N2y = bp = Ay < 12 for b =10
(?????)
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Propagator in the coincidence limit

Best-fit of 2D Wy, = alog(bp/m? + 1)

w— Fit (a: 2.78e+04)
13 = Fit (a=0.073, b=2.96e+04) Best-fit of 4D W,, = —am?log(C/m) + dC? + b/C?
] —— Fit (a=0.0739, b=3.12e+04)
Fit (a=0.0745, b=3.34e+04) 400 | == Fit (a=-0.255,b=4.64e-06,C=12.2,d=25.2)
#  Data (N=3000)
# Data (N=4000)
12 ¢ Data (N=5000) 350
Data (N=6000)
300
¥11
=
20 Data (N=6000)
= 200
1.0
150
100
0.9
50
0.00 0.02 0.04 0.06 0.08 0.10 012 0.14 0000 e0000000000000000
m?p >e
0.0 0.2 0.4 0.6 0.8 1.0

Agont = bp — A;O];It << Ig for b = 104 Ve
(22777)
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Outlook: The discrete cosmological collider

e Can we compute cosmological correlators on a causal set background? Yes!

® A new tool for cosmological collider physics, can produce predictions to compare
against cosmological data to test for spacetime discreteness. E.g. Non- linearities
during the inflationary era: M. Musso, A new diagrammatic representation for correlation
functions in the in-in formalism, arXiv:hep-th /0611258
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Outlook: The discrete cosmological collider

e Can we compute cosmological correlators on a causal set background? Yes!

® A new tool for cosmological collider physics, can produce predictions to compare
against cosmological data to test for spacetime discreteness. E.g. Non- linearities
during the inflationary era: M. Musso, A new diagrammatic representation for correlation
functions in the in-in formalism, arXiv:hep-th /0611258

® Can offer a novel regularization of the continuum, since there are no UV divergences
on a causal set.
Open Problems aka new year’s resolutions:

® Wetterich equation - renormalization group flow E. D'Angelo, Nicolo Drago, N.
Pinamonti, K. Rejzner, An algebraic QFT approach to the Wetterich equation on
Lorentzian manifolds, arXiv:2202.07580

® |nitial Value Problem - No Cauchy Hypersurface, What are the spacetime configurations
for which is enough to specify the field values on the minimal elements?

® Particle Production - Non locality of SJ vacuum vs Sandwich Spacetime set up and
Bogoliubov transformations ...
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Summary

e Causal Set Theory is an approach to quantum gravity in which spacetime is
fundamentally discrete.

® It's a tool for new discoveries of non- local and Lorentz-invariant physics.

® New developments are enabling us to make concrete predictions, including for
cosmological collider physics.

THANKS FOR LISTENING!

34/35






	Background
	Free quantum Field theory on Causal sets
	A diagrammatic expansion for in-in correlators

