
Answers

Q1

1. Suppose that mutation increases the additive genetic variance by Vm = 0.001 Ve per generation. 
i) What heritability would be maintained at equilibrium, in a population of Ne = 1000 diploid

individuals, assuming no selection?
ii) Is it plausible that heritability is maintained by a balance between mutation and random

drift?
iii) If instead, heritability is maintained by a balance between selection and mutation, roughly

what selection coefficient must act on the underlying alleles?
iv) Suppose that we select on a population that is initially completely inbred; we select the 

top
35% of individuals, so that with a normal distribution, the selection differential is 0.5 phenotypic 

standard deviations. How much does the population mean change after 50 generations (i.e., what 
is the response to selection?)

i) Genetic variance, and hence heritability, decreases by a factor 1 - 1
2Ne

  per generation, and is 

replenished by Vm = 0.001 Ve. Therefore, at equilibrium Vg = 2 Ne Vm = 2000×0.001 Ve = 2 Ve. There-

fore, h2 = Vg Vg + Ve) = 2/3 (assuming variation is entirely additive).

ii) Under this neutral model, Vg should be proportional to Ne. Yet, heritabilities do not show this 

strong relation with population size; in particular, large populations do not show extremely high 

heritability. Much the same argument applies to sequence variation. This argument is known as 

Lewontin’s paradox.

iii) Detailed models for the interaction between selection and mutation can get complicated. 
However, a very rough argument is that if mutation builds up variance over a timescale of ~1/0.001 

= 1000 generations, then selection must remove it over the same timescale, implying s ∼ 0.001. To 

be a bit more precise: deleterious alleles decrease in frequency by Δp ∼ -spq, and so if they are 

rare (p << 1), genetic variance (∼pq) decreases by a factor (1 - s) per generation. Hence, at equilib-
rium Vg ∼Vm /s, implying that s∼0.001 if h2 ∼1/2.

iv) With a selection differential S=0.5 Vp  , Δz = h2 S = Vg Vp S = 0.5 Vg Vp per generation. 

Initially Vg = 0, but it increases by Vm per generation, reaching 50 × 0.001 Ve = 0.05 Ve after 50 

generations. Thus, Vp ∼ Ve, and so summing over the generations, ∑t=1
50 Δz = ∑t=1

50 0.5 t Vm Ve  = 

(50×51 /2) 0.5×0.001 Ve  = 0.625 Ve  . Because genetic variance accumulates linearly with time, 

the response increases quadratically with time. Eventually, though, selection and finite popula-
tion size would limit the genetic variance.

Q2

2. In Weber and Diggins' (1990) experiment, the 20% of mated females with the highest ethanol 
resistance were selected to found the next generation.



i) Assuming that the trait is normally distributed, what is the mean of the selected females, in 

standard deviations ?
ii) If the initial heritability of ethanol resistance was 50%, what would be the predicted 

change in mean resistance after 65 generations, in a very large population?
iii) By how much would this be reduced in a smaller population, with effective size Ne = 50 

individuals ?
iv) If a mutation arose, which increased ethanol resistance by 0.05 standard deviations, what 

would its ultimate probability of fixation be? What is its expected contribution to the response? 

What determines the relative contribution of large vs small effect mutations?

Note: Weber and Diggins (1990) give detailed explanations of their experimental design, and its 

effect on genetic variation. Here, you should can make simpler arguments, but give your 
assumptions.

i) A normal distribution has 20% of its mass above 0.84 standard deviations; this mass has a mean 

1.4 s.d. You can find this by solving the integral, using tables of the normal distribution, or just by 

drawing the graph on squared paper and measuring the area.  Yet another method: draw a large # 

of random numbers from a normal distribution and take the mean of the top 20%.

 ii) The change in mean is Δ z = h2 S. Presumably, females mated at random, and so selection is 

effectively only on females, not males, halving the selection differential. (Actually, for X linked 

genes, there are two copies in females and one in males, so the selection differential is divided by 

2/3). Assuming that genetic variances stay constant, we predict 65×0.5*1.4/2 = 23 s.d.

iii) In a population with Ne=50, genetic variance decreases by (1 - 1/(2 Ne)) per generation, to 

1 - 1
2Ne


65
~52% of its original value. The total response after 65 generations is 0.5× 1.4

2
 

×∑t=0
64 1 - 1

2Ne

t
~13.8s.d. (Actually, one should allow for the decreasing variance which influences 

the selection differential - but this is a small effect).

iv) Suppose that this new allele increases the trait by 0.05 s.d. in the heterozygote. A random
female had a 20% chance of being above the threshold of 0.84 s.d.; we need to find the probability
that an individual with an extra 0.05 s.d. gets selected - which is just the area under a normal
distribution, above 0.84-0.05 s.d. This is 0.214, and so the selection coefficient is s = 

0.214
0.2

 - 1 = 0.07. 

We need to halve this, since only females are selected, so s~0.035.  The probability of fixation is ∼ 2 
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s = 0.07. Thus, it is expected to contribute 2*0.05*0.07=0.007 s.d. to the selection response. Clearly, 
a very large number of such mutations are required to have a significant influence. The contribu-
tion of small-effect alleles depends on the distribution of mutational effects, ψ[α], and specifically, 
on the contribution to the genetic variance generated by mutation, Vm = ∑2 μα2 ψ[α]. The shape of 
this distribution is an unresolved empirical question.
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