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History
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Search in arXiv (Quantum Physics) Measurement+Induced+Transition
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850 citations

1. Chen and Fisher PRB 2018
2. Chen and Fisher PRB 2019
3. Koh, Sun, Motta and Minnich, Nature Physics 2019
4. … >  100 more

7



Protocol
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Chain of N Ising spins ±1

1 2 3 N

+Z 

Evolve for time τ under H Perform measurement

Repeat

HTI = �

NX

i=1

sxi s
x
i+1 � h

NX

i=1

szi

where h is the transverse field, sx,z = �x,z , the Pauli spin matrices.

HTI = �

NX

i=1

sxi s
x
i+1 � h

NX

i=1

szi

This Hamiltonian can be diagonalised exactly. The ground state is seen to be
ferromagnetic for h < 1 and paramagnetic for h > 1.
For many Hamiltonians,
kinks appear only when hi and hf
are on two di↵erent phases
Dynamical Quantum Phase Transition

H = �

NX

i=1

sxi s
x
i+1 � h

NX

i=1

sziTransverse Ising Hamiltonian

Perform measurement at each time-step with certainty

τ and h are two parameters of our study

Measurement: ``Are all spins up?’’   Yes/No



Measurement: ``Are all spins up?’’

Yes: Probability p1 No: Probability 1-p1

Unitary evolution under H for time τ

Measurement: Are all spins up?

Yes: Probability p2

No: Probability 1-p1-p2

After n steps:
Probability that the answer is no for n steps

Survival probability Rn = 1-p1-p2 … -pn

Repeat

Unitary evolution under H for time τ
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Start with |Ii = |++ · · ·+iz

First time step:
Evolve for time ⌧ to get e�iH⌧

|Ii

Perform measurement: “Are all spins up?”

Yes with probability p1 = |hI|e�iH⌧
|Ii|

2

Wave function for No : | 1i = e�iH⌧
|Ii � hI|e�iH⌧

|Ii|Ii

Second time step:
Evolve for time ⌧ and perform measurement.

Yes with probability p2 = |hI|e�iH⌧
| 1i|

2

Wave function for No : | 2i = e�iH⌧
| 1i � hI|e�iH⌧

| 1i|Ii

n-th time step:
Evolve for time ⌧ and perform measurement.

Wave function for No : | ni = e�iH⌧
| n�1i � hI|e�iH⌧

| n�1i|Ii

Survival probability = Probability of getting No for n time-steps = Rn = |h n| ni|
2
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Start with | 0i = |++ · · ·+iz

First time step:
Evolve for time ⌧ to get e�iH⌧

| 0i

Perform measurement: “Are all spins up?”

Yes with probability p1 = |h 0|e�iH⌧
| 0i|

2

Wave function for No : | 1i = e�iH⌧
| 0i � h 0|e�iH⌧

| 0i| 0i

Second time step:
Evolve for time ⌧ and perform measurement.

Yes with probability p2 = |h 0|e�iH⌧
| 1i|

2

Wave function for No : | 2i = e�iH⌧
| 1i � h 0|e�iH⌧

| 1i| 0i

n-th time step:
Evolve for time ⌧ and perform measurement.

Wave function for No : | ni = e�iH⌧
| n�1i � h 0|e�iH⌧

| n�1i| 0i

Survival probability = Probability of getting No for n time-steps = Rn = |h n| ni|
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Recursion relation for survival probability
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We start with |Ii = |++ · · ·+iz

Define |�ni = e�iH⌧n|Ii, fn = hI|e�iH⌧n|Ii, n = 0, 1, 2, · · ·

Then, |�0i = |Ii, h�m|�ni = fn�m and | 1i = |�1i � f1|Ii
After the second time-step, | 2i = |�2i � f1|�1i+ (f 21 � f2)|Ii

Basic idea: for n = 0, 1, 2, the wave-function can be expressed as

| ni =
nX

m=0

C (n)
m |�mi

with C (0)
0 = C (1)

1 = C (2)
2 = 1, C (1)

0 = �f1, C (2)
0 = f 21 � f2 C (2)

1 = �f1

We start with |Ii = |++ · · ·+iz

Define |�ni = e�iH⌧n
|Ii, fn = hI|e�iH⌧n

|Ii, n = 0, 1, 2, · · ·

Then, |�0i = |Ii and h�m|�ni = fn�m

After the first time-step, | 1i = |�1i � f1|Ii

After the second time-step, | 2i = |�2i � f1|�1i+ (f 2
1
� f2)|Ii

Basic idea: for n = 0, 1, 2, the wave-function can be expressed as

| ni =

nX

m=0

C (n)
m |�mi

with C (0)

0
= C (1)

1
= C (2)

2
= 1, C (1)

0
= �f1, C (2)

0
= f 2

1
� f2 C (2)

1
= �f1
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These expressions are valid for any Hamiltonian and any initial state, 
provided fn are known

Then, the wave-function after the next step

| n+1i = e�iH⌧
| ni � hI|e�iH⌧

| ni|Ii

can also be expressed as

| n+1i =

n+1X

m=0

C (n+1)

m |�mi

with the recursion relations

C (n+1)

0
= �

nX

m=0

C (n)
m fm+1, C (n+1)

m = C (n)
m�1

for 0 < m  n. Using the expansion of the wave function in terms of the |�i
functions, one can now express the survival probability after n measurements as

Rn = h n| ni =

(n)X

m1,m2=0

⇣
C (n)
m1

⌘
⇤

C (n)
m2

fm2�m1

Note that C (n)
n = 1 and C (n)

m = C (n�1)

m�1
= C (n�m)

0
.

If fn are known, C (n)
m are also known.



For the specific case of transverse Ising Hamiltonian, one can derive an expression for

fn = hI|e�iH⌧n
|Ii in closed form for any even value of N, by using the known exact

solution. (Damski and Rams 2013)

fn =

⇡Y

k=0

[cos(�kn⌧) + i sin(�kn⌧) cos(2✓k )]

�k = 2

p
h2 + 1 + 2h cos k cos (2✓k ) =

2(h + cos k)

�k

k = (2n + 1)
⇡

N
with n = 0, 1, 2, · · · ,

N

2
� 1

13
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In principle, one should be able to calculate the survival probability for 
any system-size and time-step. 
But due to  precision problems, size ≤ 1000, time-steps ≤ 10000
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Characteristics:  h=0.5, ordered phase
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There is a plateau region 

This region increases in size as τ decreases 
and as system size increases

How the height H of the plateau region 
varies with τ?
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H increases monotonically with τ.

The curve of dH/dτ vs τ shows a peak.
Sharpness and position of the peak depends 
on system-size.



1. As system-size increases, the peak 
becomes sharper and higher. 

2. At the peak there is an area-law to 
volume-law transition in entanglement

Hence we identify the peak with a 
transition. Location of the peak is 
the critical value of τ, namely τc
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Skinner, Ruthman & Nahum, PRX, 2019
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Quantum circuit with random unitary dynamics, 
At every time step z-component of spin is 
measured with probability p. 
Volume-law for p < pc         Area-law for p > pc

von-Neumann entanglement entropy between 
the two halves of the system shows a collapse 
for p > pc when S(p) - S(pc) is plotted against 
(p - pc)L1/ν
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For our system we compute von-Neumann entanglement entropy between the 
subsystems of sizes (L/4) and (3L/4) for system size 20 to 26, and find a collapse 
for τ < τc when S(τ) - S(τc) is plotted against (τ - τc)L0.3   τc=0.2

Area Law : τ < τc

Volume Law : τ > τc

 τc = 0.2
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Scaling: τ ∝ 1/√ N

Curves for different N coincide 
when σ = τ √ N is used instead of τ.

 τc ∝ 1/√ N

 At N →∞, τc = 0. 
Transition occurs for finite size only.

The peak moves to the left as N increases.
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Characteristics:  h=1.5, disordered phase
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Again, there is a plateau region and this 
region increases in size as τ decreases and 

as system size increases
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Area Law : τ < τc

Volume Law : τ > τc

 τc = 0.1
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For h=1.5, the scaling τ ∝ 1/√ N is good for larger system size only
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Scaling Relation τ ∝ 1/√ N
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Survival probability is Rn = h n| ni =
P(n)

m1,m2=0

⇣
C (n)
m1

⌘
⇤

C (n)
m2

fm2�m1

with the recursion relations

C (n+1)

0
= �

nX

m=0

C (n)
m fm+1, C (n+1)

m = C (n)
m�1

(0 < m  n) C (n)
n = 1 C (n)

m = C (n�m)

0

and the initial values, C (1)

0
= �f1, C (2)

1
= �f1, C (2)

0
= f 2

1
� f2

The coe�cients are fn =
Q

k [cos(�kn⌧) + i sin(�kn⌧) cos(2✓k )]

Write fn as fn = ⇢nei�n , so that

⇢n = exp

"
1

2

X

k

log

"
1�

✓
2 sin k sin(�kn⌧)

�k

◆
2
##

(1)

�n =

X

k

tan
�1


2(h + cos k)

�k
tan(�kn⌧)

�

For small values of ⌧ and n, �n =
P

k 2n⌧(h + cos k) = µn where µ = 2⌧hN

Survival probability is Rn = h n| ni =
P(n)

m1,m2=0

⇣
C (n)
m1

⌘
⇤

C (n)
m2

fm2�m1

with the recursion relations

C (n+1)

0
= �

nX

m=0

C (n)
m fm+1, C (n+1)

m = C (n)
m�1

(0 < m  n) C (n)
n = 1 C (n)

m = C (n�m)

0

and the initial values, C (1)

0
= �f1, C (2)

1
= �f1, C (2)

0
= f 2

1
� f2

The coe�cients are fn =
Q

k [cos(�kn⌧) + i sin(�kn⌧) cos(2✓k )]

Write fn as fn = ⇢nei�n , so that

⇢n = exp

"
1

2

X

k

log

"
1�

✓
2 sin k sin(�kn⌧)

�k

◆
2
##

(1)

�n =

X

k

tan
�1


2(h + cos k)

�k
tan(�kn⌧)

�

For small values of ⌧ and n, �n =
P

k 2n⌧(h + cos k) = µn where µ = 2⌧hN

) Arg
⇣
C (n)
m

⌘
= µ(n �m) ) Arg

h⇣
C (n)
m1

⌘
⇤

C (n)
m2

fm2�m1

i
= 0

and hence the argument of each summand in the expression for Rn in Eq. (??) is zero.

Thus, the main contribution to Rn comes from ⇢n, which, in the limit of small n⌧
becomes

⇢ = exp


�
1

2
n2⌧2N

�

This indicates that the parameters ⌧ and N may be expected to occur as the

combination ⌧2N in the value of survival probability.



) Arg
⇣
C (n)
m

⌘
= µ(n �m) ) Arg

h⇣
C (n)
m1

⌘
⇤

C (n)
m2

fm2�m1

i
= 0

Rn = h n| ni =

(n)X

m1,m2=0

⇣
C (n)
m1

⌘
⇤

C (n)
m2

fm2�m1

) only the modulus of fn matters. In the limit of small n⌧ ,

⇢n = |fn| = exp


�
1

2
n2⌧2N

�

Hence, ⌧ and N occur as the combination ⌧2N in the value of survival probability.
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Quantum Phase Transition and 
Measurement-Induced Transition

27Jan2025_1

25

Normally, measurement-induced transitions may not be related to quantum phase 
transitions.
Here, we find a change in behavior in the pattern of decay of the survival probability
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However, when h is too high, the logarithmic decay is not there

Logarithmic decay



Another Analytically Tractable  
Measurement-Induced Transition

26

Here, at each measurement, we have removed the component of initial state and 
retained the other states. Something more straightforward happens when we do 
the reverse, that is, retain the initial state only. (S. Dhar & Dasgupta, PRA 2016)

Start with |Ii = |++ · · ·+iz

After the first time-step:
Wave function : | 1i = p|Ii where p = |hI|e�iH⌧

|Ii|

After the second time-step:
Wave function : | 2i = p| 1i

After the n-th time step:
| ni = p| n�1i = pn|Ii

p = e�↵N⌧2/2
with ↵(h, ⌧) = �

1

2⇡⌧2

Z ⇡

k=0

dk log

"
1�

✓
2 sin k sin(�k⌧)

�k

◆
2
#

↵ is non-analytic at ⌧0
p
1� h2 =

⇡
4

p =
h n+1| n+1i

h n| ni
= e�↵N⌧2

Start with |Ii = |++ · · ·+iz

After the first time-step:
Wave function : | 1i = p|Ii where p = |hI|e�iH⌧

|Ii|

After the second time-step:
Wave function : | 2i = p| 1i

After the n-th time step:
| ni = p| n�1i = pn|Ii

p = e�↵N⌧2/2
with ↵(h, ⌧) = �

1

2⇡⌧2

Z ⇡

k=0

dk log

"
1�

✓
2 sin k sin(�k⌧)

�k

◆
2
#

↵ is non-analytic at ⌧c
p

1� h2c =
⇡
4

p =
h n+1| n+1i

h n| ni
= e�↵N⌧2

Start with |Ii = |++ · · ·+iz

After the first time-step:
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|Ii
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After the n-th time step:
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with ↵(h, ⌧) = �

1
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Z ⇡
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dk log

"
1�

✓
2 sin k sin(�k⌧)
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◆
2
#

↵ is non-analytic at ⌧c
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⇡
4

p =
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h n| ni
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h

h

Start with |Ii = |++ · · ·+iz

After the first time-step:
Wave function : | 1i = p|Ii where p = |hI|e�iH⌧

|Ii|
2

After the second time-step:
Wave function : | 2i = p| 1i

After the n-th time step:
| ni = n| n�1i = pn|Ii

p = e�↵N⌧2

with ↵(h, ⌧) = �
1

2⇡⌧2

Z ⇡

k=0

dk log

"
1�

✓
2 sin k sin(�k⌧)

�k

◆
2
#

↵ is non-analytic at ⌧0
p
1� h2 =

⇡
4

p =
h n+1| n+1i

h n| ni
= e�↵N⌧2

1. Phase transition since there is non-analyticity at thermodynamic limit.
2. p vanishes in the thermodynamic limit.
3. At every stage, only the ``all-up’’ state is retained. Hence a study of 

entanglement is not meaningful.

Kinks exist  at h < 1
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Summary

28

We present a protocol for measurement-induced transition, where at each time-
step we evolve a quantum Ising chain under transverse Ising Hamiltonian for time 
τ, and then make a global measurement with certainty. 

Using some recursion relation, one can compute survival probability (and hence 
dH/dτ) in our set-up for size upto 1000. It is found that τc ~ 1/√ N  Hence, the 
transition occurs for finite size only. It will be interesting to investigate the size-
dependence of the critical point in other measurement-induced transitions.

We also find that the behaviour of survival probability has some relation to the 
order present in the ground state of the Hamiltonian.

For system size ≤ 28, there is a transition in entanglement at some τc. We also 
calculate survival probability of the initial state and find that a quantity dH/dτ 
derived from this probability also shows a peak at τc



Thank you for your attention        
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For the specific case of transverse Ising Hamiltonian, one can derive an expression for
fn = hI|e�iH⌧n

|Ii in closed form for any even value of N, by using the known exact
solution.
One can transform spin variables sj to fermion variables aj and perform Fourier
transformation to fermion variables ak , to get H as a Kronecker sum of commuting
Hamiltonians Hk :

H =
⇡X

k=0

Hk , Hk = �2i sin k
h
a†ka

†

�k + aka�k

i

�2(�+ cos k)
h
a†kak + a†

�ka�k � 1
i

(1)

where k = (2n + 1)⇡/N with n = 0, 1, 2, · · · ,N/2� 1. Each of these Hk ’s can be
described by four basis states namely, |00ik , |11ik , |10ik and |01ik , where the
numbers in each basis signify the occupation status of the fermions having momenta
+k and �k respectively. (We consider the even-occupation states only.) The ground
state and excited state of Hk are

|GSik = i cos ✓k |11ik � sin ✓k |00ik ,

|ESik = i sin ✓k |11ik + cos ✓k |00ik (2)

with eigenvalues ⌥�k = ⌥2
p
�2 + 1 + 2� cos k respectively. Here, ✓k is defined by

e2i✓k = 2(�+ e�ik )/�k .
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For the specific case of transverse Ising Hamiltonian, one can derive an expression for

fn = hI|e�iH⌧n
|Ii in closed form for any even value of N, by using the known exact

solution.

Transform spin variables sj to fermion variables aj and perform Fourier transformation

to fermion variables ak , to get H as a Kronecker sum of commuting operators Hk :

H =

⇡X

k=0

Hk , Hk = �2i sin k
h
a†ka

†

�k + aka�k

i
� 2(h + cos k)

h
a†kak + a†

�ka�k � 1

i

where k = (2n + 1)⇡/N with n = 0, 1, 2, · · · ,N/2� 1. The ground state and excited

state of Hk are

|GSik = i cos ✓k |11ik,�k � sin ✓k |00ik,�k

|ESik = i sin ✓k |11ik,�k + cos ✓k |00ik,�k

with eigenvalues ⌥�k = ⌥2
p
h2 + 1 + 2h cos k. Here, e2i✓k = 2(h + e�ik

)/�k .

Since
P

j s
z
j =

P
k (2a

†

kak � 1), the state |Ii = |+++ · · · iz corresponds to one

where all k-modes are occupied by fermions. Then

e�iHk n⌧ |11ik,�k = [cos(�kn⌧) + i sin(�kn⌧) cos(2✓k )] |11ik,�k�sin(2✓k ) sin(�k⌧)|00ik,�k

Finally, fn =
Q⇡

k=0
[cos(�kn⌧) + i sin(�kn⌧) cos(2✓k )]


