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Protocol

Chain of N Ising spins +1
+7
T T T T —» Evolve for time Tt under # — Perform measurement
FrPess N

Repeat
N N
— X X Z
Transverse Ising Hamiltonian H=- E :Si Sit1 — h E :Si
=1 j=1

Measurement: “"Are all spins up?” Yes/No
Perform measurement at each time-step with certainty

T and h are two parameters of our study 3



+7

T T T T == Unitary evolution under # for time t

172743 l

Measurement: Are all spins up?”

Yes: Probability p1 No: Probability 1-p

l

Unitary evolution under # for time t

l

Measurement: Are all spins up?
/ l

No: Probability 1-p1-p2

Yes: Probability p2

After n steps: l
Probability that the answer is no for n steps Repeat
Survival probability R, = 1-p1-p2 ... -pn



Start with |Z) = | + 4+ ---+)2

First time step:

Evolve for time 7 to get e ~/*7|T)

Perform measurement: “Are all spins up?”

Yes with probability p1 = |(Z|e= /"7 |T)|?

Wave function for No : |¢1) = e ™' "7|T) — (Z|e= "7 |T)|T)

Second time step:

Evolve for time 7 and perform measurement.
Yes with probability py = [(Z|e ™" "7 |41)| |
Wave function for No : [y»n) = e "T|4p1) — (Z|e™ "7 |1p1)|T)

n-th time step:
Evolve for time 7 and perform measurement. |
Wave function for No : |¢,) = et |¢,_1) — (Z|e ™' |4pn_1)|T)

Survival probability = Probability of getting No for n time-steps = R, = [({n|¢'n)]?

10



Recursion relation for survival probability

We start with |Z) = |+ +---4),
Define [¢n) = e~ ™™(T), f, = (Z|e=™™0|T), n=0,1,2,---
Then, [¢o) = |Z) and (¢m|Pn) = fa—m

After the first time-step, |Y1) = |p1) — A|T)
After the second time-step, |12) = |d2) — fi|d1) + (2 — £2)|T)

Basic idea: for n = 0,1, 2, the wave-function can be expressed as

n

Pn) = Ciy | )

m=0

with (O =cW=cP =1, cP=-p, P=r2_f cP=-p

11



Then, the wave-function after the next step

Y1) = e T |n) — (Z]e T )| T)

can also be expressed as
n+1

i) = > Cor Y |om)

m=0

with the recursion relations

C(”"'l) Z C(”) Fint1, C(”"'l) _ C(”)

m=0

for 0 < m < n. Using the expansion of the wave function in terms of the |¢)
functions, one can now express the survival probability after n measurements as

(n) )
= (Waln) = > (W) R fompimy

m1 ,my=0
Note that C( " — 1 and C(") C(” 1) C(" m)
If f, are known, C,Sq) are also known.

These expressions are valid for any Hamiltonian and any initial state,
provided f, are known

12



For the specific case of transverse Ising Hamiltonian, one can derive an expression for

fn = (Z|e='""7"|T) in closed form for any even value of N, by using the known exact
solution. (Damski and Rams 2013)

f, = H [cos(AnT) + isin(AnT) cos(20,)]

k=0
2(h k
A =2V h2 4+ 1+2hcosk cos(20;) = ( _:COS )
k
7 N
k=(2n+1)— with n=0,1,2,---, — —1
(2n + )N with n 5

13



In principle, one should be able to calculate the survival probability for
any system-size and time-step.
But due to precision problems, size < 1000, time-steps < 10000

Survival Probability Rn

NISO h:O 5 N=70, h:15
y 4
0.9 ———— ———— ——— ———— 1 ——— —— —— ——
N=50, h=0.5 N=70, h=1.5
08 | T=0.2
S
g
0.7 - E
3
o
0.6 | o
g
>
0.5 - (?)
°'4\ T=0.1
03 | \
0'21 T | “““‘160 | “““1‘0‘00 T 10000 0.21 | “““‘1‘0 | “““‘160 | “““1‘("00 T o000

Time-step n Time-step n



Characteristics: h=0.5, ordered phase W

| HI\‘I=5O,‘ h:05 o
. : 08| T=0.2
There is a plateau region <
>, 07
e ey 3 H
This region increases in size as T decreases £ °¢
ol
and as system size increases T s
7
" T=0.1
0.3 - i
H
How the height H of the plateau region T R R—T
. : .
varies with T? mesten
dH/dt h=0.5

H increases monotonically with .

The curve of dH/dt vs T shows a peak.

Sharpness and position of the peak depends
on system-size.

1 | |
0 0.05 0.1 0.15 0.2

15 r



30

dH/dt h=0.5

1 | |
0 0.05 0.1 0.15 0.2

1. As system-size increases, the peak
becomes sharper and higher.

2. At the peak there is an area-law to
volume-law transition in entanglement

Hence we identify the peak with a
transition. Location of the peak is
the critical value of T, namely .

4
3}
SE]
j L=20
i L=22
2t — L=24
— L =26
— L =28
0.10 0.15 0.20 0.25 0.30
T
— [ =28
4t 0
|
|
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T3 :
TIO Area Law . Volume Law
:
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|
|
. . i . . .
0.10 0.15 0.20 0.25 0.30

T
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Skinner, Ruthman & Nahum, PRX, 2019

Quantum circuit with random unitary dynamics,

t ! B & At every time step z-component of spin is

t ¢ b ¢ I measured with probability p.

? ¢ ¢ 0 Volume-law forp <p.  Area-law for p > p,

? ¢ ¢ ¢ I

? ¢ ¢ ¢

1 T 1 T 1

von-Neumann entanglement entropy between o Ty
the two halves of the system shows a collapse U T
for p > p. when S(p) - S(p.) is plotted against o~ |l < os) E
(p-pC)Ll/v c,'|;2— % ol -
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For our system we compute von-Neumann entanglement entropy between the

subsystems of sizes (L/4) and (3L /4) for system size 20 to 26, and find a collapse

for t < t. when 5(7) - S(7.) is plotted against (7 - 7,)L%3 7,=0.2

3.0

T
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Area Law : Tt < 1,
Volume Law : Tt > 1.

TC P 0.2
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L=20
L=22

:
1
i

L=24 ! y

L=26 : %
1 4
i y




30

dH/dt

h=0.5

| | |
0.05 0.1 0.15

0.2

L=20
L=22
L=24
L=26
L=28

0.10

0.15 0.20 0.25 0.30

T

The peak moves to the left as N increases.

Scaling: T« 1/v N

Tex 1/V N

At N —o0, 1.= 0.
Transition occurs for finite size only.

Curves for different N coincide
when o = t v N is used instead of .

0.9

dH/do

0.8 I

0.7

0.6 |
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04

03

0.2

01

N=100, 200, 300, 500, 1000
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h=0.5

! ! !
0.5 1 1.5
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Characteristics: h=1.5, disordered phase

Again, there is a plateau region and this
region increases in size as t decreases and

as system size increases

30

N=200

h=1.5

=100

N=70, h=1.5
c
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E
©
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0.4 1 T=0.1 1
0'37 7\
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1 10 100 1000 10000
Time-step n

dH/dt vs T shows peak. As N increases, it
becomes sharper
becomes higher
moves to the left
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L=20
L=22

[ —— L=24

010 0.15 0.20 0.25 0.30 0.35 0.40

Area Law : 1t < 1,
Volume Law : Tt > 1,

Tc - 01

0.05
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e

|
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5
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For h=1.5, the scaling T =« 1/v N is good for larger system size only

30 T T T T T T T T T 0.9

h=1.5 dH/do os | h=1.5
0.7
0.6 |-

0.5

04 |
N=100, 200, 300, 500, 1000

0.3 | upwards

N=200

0.2 |

=1OO 1 0.1

| | | | | I | !
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

AtN_)OO, TC:O
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Scaling Relation T« 1/v N

Survival probability is R, = (¢¥n|tn) = va’:l),mQZO (C,Sqnl))* C,Sqr;) fry —my

with the recursion relations

clr ) _ zcwfﬂ, Co ¢ (o<m<ny W1 ¢ _ clrm

and the initial values, C{") = —f, c® =—f, c®=r_4

The coefficients are f, = | [, [cos(AxnT) + isin(A,nT) cos(20,)]

Write f, as f, = pne'®n, so that

pn = exp [; S log _1 3 <25ink i:(AkM)Y”

k L

[ 2(h k
b, = E:tan_1 ( —;COS ) tan(Akm—)]
_ k

For small values of 7 and n, &, = >, 2n7(h 4 cos k) = pun where pp = 27hN

= Arg (C,S,n)) = u(n—m) = Arg [(C,S?nl))* C,(n';) fmZ_ml} =0

23



(n) )
Ro = (nltn) = > (i) i

ml,m2:0

= only the modulus of f, matters. In the limit of small nT,
1,5
pn = |fn| = exp —En 7N

Hence, 7 and N occur as the combination 72N in the value of survival probability.

24



Quantum Phase Transition and
Measurement-Induced Transition

Normally, measurement-induced transitions may not be related to quantum phase
transitions.

Here, we find a change in behavior in the pattern of decay of the survival probability
1 N=50, h=1.5 1 ~ N=50,h=05 -
Ground state: Disordered ol 1=0.25 Ground state: Ordered |
: T=0.25 |
c 0.8 - . . ] <
z Logarithmic decay T o) 1=0.20
S =
© =
3 8 o7}
n_ﬂ_s £ T=0.15
g g 0.6 |-
@O 05f
0.4 |
T=0.1
03 -
O1 | | “““1‘0 | | 160 | | ““‘1‘0‘00 | | ““‘1(‘3000 0.2 : SE— ‘ —— ] ‘ ] ‘ S—
) 1 10 100 1000 10000
Time-step n Time-step n

However, when / is too high, the logarithmic decay is not there 25



Another Analytically Tractable
Measurement-Induced Transition

Here, at each measurement, we have removed the component of initial state and
retained the other states. Something more straightforward happens when we do
the reverse, that is, retain the initial state only. (S. Dhar & Dasgupta, PRA 2016)

Start with |[Z) = |+ +---+)2

After the first time-step: |
Wave function : [¢1) = p|Z) where p = (Z|e='"t7|T)

After the second time-step:
Wave function : |v2) = p|i1)

After the n-th time step:

[Yn) = pltn—1) = p"|T)

1 u 2sin k sin(\ 2
p— o—alT2/2 alh,7) = — / dk log |1 — < sin k sin( kT))
2772 Ji—o Ly

« Is non-analytic at TC\/]. — hs = 7
26



<¢n—|—1|¢n—|—1> e—ozNT2

(nthn)

Kinks exist ath <1

1. Phase transition since there is non-analyticity at thermodynamic limit.

p vanishes in the thermodynamic limit.

3. Atevery stage, only the ““all-up” state is retained. Hence a study of
entanglement is not meaningtul. 07

I



Summary

We present a protocol for measurement-induced transition, where at each time-
step we evolve a quantum Ising chain under transverse Ising Hamiltonian for time
1, and then make a global measurement with certainty.

For system size < 28, there is a transition in entanglement at some t.. We also
calculate survival probability of the initial state and find that a quantity dH/dz
derived from this probability also shows a peak at t.

Using some recursion relation, one can compute survival probability (and hence
dH /dt) in our set-up for size upto 1000. It is found that t.~ 1/v' N Hence, the
transition occurs for finite size only. It will be interesting to investigate the size-
dependence of the critical point in other measurement-induced transitions.

We also find that the behaviour of survival probability has some relation to the
order present in the ground state of the Hamiltonian.

28
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For the specific case of transverse Ising Hamiltonian, one can derive an expression for

f, = (I]e_iHT”]I> in closed form for any even value of N, by using the known exact
solution.

Transform spin variables s; to fermion variables a; and perform Fourier transformation
to fermion variables a,, to get H as a Kronecker sum of commuting operators H :

H = Z?—tk, Hi = —2isink [a}:aT_k + aka_k} — 2(h + cos k) [a}:ak -+ aT_ka_k — 1}
k=0

where k = (2n+ 1)n/N with n =10,1,2,--- ,N/2 — 1. The ground state and excited
state of H, are

|G5>k == iCOS(gk‘11>k,_k — sin 9k|00>k,—k
|E5>k = Jsin 9k|11>k,—k‘|‘C059k|00>k,—k

with eigenvalues TA, = T2V h2 + 1 4 2hcos k. Here, 2% =2(h 4 e=*) /X

Since » _; 57 = Zk(2a;£ak — 1), the state |Z) = |+ + + - - - ), corresponds to one
where all k-modes are occupied by fermions. Then

e "MK I11) e _ . = [cos(AxnT) + isin(AgnT) cos(204)] [11) k. _ k—sin(20x) sin(Ax7)]00) k. _ &

Finally, f, = [[;_g [cos(AxnT) 4 isin(AxnT) cos(20y)]

Damski & Rams, J. Phys. A 47, 025303 (2013) 30



