Completely positive trace-preserving maps for higher-order unraveling of Lindblad master equations

N. Wonglakhon, H. M. Wiseman and A. Chantasri, Phys. Rev. A 110, 062207 (2024)

Nattaphong Howard Areeya Wonglakhon M. Wiseman Chantasri **Griffith University & Griffith University Griffith University Mahidol University** (Thailand)

ICTS Program "Quantum Trajectories"

International Centre for Theoretical Sciences (ICTS) Bengaluru, India

4 February 2025

"Quantum Trajectories"

• The stochastic master equation (SME) for the quantum state:

$$\mathrm{d}\rho_t = -i\mathrm{d}t[\hat{H},\rho_t] + \mathrm{d}t\mathscr{D}[\hat{c}]\rho_t + \mathrm{d}W_t\mathscr{H}[\hat{c}]\rho_t$$

where

ere
$$\mathscr{D}[\hat{c}] \bullet = \hat{c} \bullet \hat{c}^{\dagger} - \frac{1}{2} \{ \hat{c}^{\dagger} \hat{c}, \bullet \}$$

$$\mathscr{H}[\hat{c}] \bullet = \hat{c} \bullet + \bullet \hat{c}^{\dagger} - \operatorname{Tr}(\hat{c} \bullet + \bullet \hat{c}^{\dagger}) \bullet$$

 $dW_t = y_t dt - Tr[(\hat{c} + \hat{c}^{\dagger})\rho_t]dt \quad \text{(Wiener increment)}$

• For continuous measurement : Diffusive-type measurements

By averaging all possible quantum trajectories, one gets the Lindblad master equation.

QUANTUM TRAJECTORIES

*strong Markov

assumption

Quantum Trajectories in experiments

Example: qubit z-measurement

K. Murch et al., Nature 502, 211 (2013)

S. J. Weber, ACH, et al., Nature 511, 570 (2014)

Example: qubit fluorescence measurement

Campagne-Ibarcq, Six, Bretheau, Sarlette, Mirrahimi, Rouchon, and Huard, **PRX 6**, 011002 (2016)

Quantum Trajectories in experiments

Common problems related to implementing theories to experimental data

Using SMEs requires that the time increment $dt \rightarrow 0$ is infinitesimal.

Quantum Trajectories in experiments

SME • The stochastic master equation (SME) (Too much error using SMEs)

Measurement backaction can be described by the state update in the Kraus' form:

$$\rho_r(t + \Delta t) = \frac{\hat{K}(r)\rho(t)\hat{K}^{\dagger}(r)}{\operatorname{Tr}[\hat{K}(r)\rho(t)\hat{K}^{\dagger}(r)]}$$

 $\hat{K}_{I}(y_{t})$ • Measurement operator: Conventional Itô approach H. J. Carmichael (1993)

 $\hat{K}_{\mathrm{R}}(y_t)$ • Measurement operator: Rouchon-Ralph approach P. Rouchon, Annu. Rev. Control 54, 252 (2022). P. Rouchon and J. F. Ralph, Phys. Rev. A 91, 012118 (2015).

 $\hat{K}_{G}(y_{t})$ • Measurement operator: Guevara-Wiseman approach

I. Guevara and H. M. Wiseman, Phys. Rev. A 102, 052217 (2020)

 $\hat{K}_{\rm W}(y_t)$ • Measurement operator: "High-order" completely positive map N. Wonglakhon, H. M. Wiseman and A. Chantasri, Phys. Rev. A 110, 062207 (2024)

Hierarchy criteria for Quantum Trajectories

Hierarchy criteria for Quantum Trajectories

(C1) Complete Positivity

"A map is completely positive when its acting on part of a bipartite quantum state is positive, that is, it maps a positive state to a positive state."

(C2) Convex-Linearity

"A map is convex linear if a quantum state ρ is mapped to a quantum state which is convex linear in ρ , that is, a weighted mixture of two states is mapped to the sameweight mixture of the individually mapped states."

(C3) Trace Preservation

"A map is trace pre-serving if the trace of the mapped state is the same as that of the initial state."

N. Wonglakhon, H. M. Wiseman and A. Chantasri, Phys. Rev. A 110, 062207 (2024)

We first need to define how quantum trajectories are generated and averaged.

Method I

 Generate trajectories using the readout PDF derived from Kraus operators

 $\wp_{\mathrm{K}}(r|\rho(t)) = \mathrm{Tr}[\hat{K}(r)\rho(t)\hat{K}^{\dagger}(r)]$

• Calculate average quantum state evolution:

$$\rho(t + \Delta t) = \int dr \wp_{K}(r|\rho(t)) \frac{\hat{K}(r)\rho(t)\hat{K}^{\dagger}(r)}{\operatorname{Tr}[\hat{K}(r)\rho(t)\hat{K}^{\dagger}(r)]}$$
$$= \int dr \hat{K}(r)\rho(t)\hat{K}^{\dagger}(r),$$

The state mapping is in the Kraus' form \Rightarrow (C1) Complete Positivity

The average is in the linear form \Rightarrow (C2) Convex-Linearity

We first need to define how quantum trajectories are generated and averaged.

Method I

 Generate trajectories using the readout PDF derived from Kraus operators

$$\wp_{\mathrm{K}}(r|\rho(t)) = \mathrm{Tr}[\hat{K}(r)\rho(t)\hat{K}^{\dagger}(r)]$$

• Calculate average quantum state evolution:

$$\rho(t + \Delta t) = \int dr \wp_{\mathrm{K}}(r|\rho(t)) \frac{\hat{K}(r)\rho(t)\hat{K}^{\dagger}(r)}{\mathrm{Tr}[\hat{K}(r)\rho(t)\hat{K}^{\dagger}(r)]}$$
$$= \int dr \hat{K}(r)\rho(t)\hat{K}^{\dagger}(r),$$

The state mapping is in the Kraus' form \Rightarrow (C1) Complete Positivity

The average is in the linear form \Rightarrow (C2) Convex-Linearity

We first need to define how quantum trajectories are generated and averaged.

Method II

Generate trajectories using simple guessed
 readout PDF (e.g., Gaussian distribution)

Guessed readout PDF: $\wp_{g}(r|\rho(t))$

• Calculate average quantum state evolution:

$$\rho(t + \Delta t) = \int \mathrm{d}r \,\wp_{\mathrm{g}}(r|\rho(t)) \frac{\hat{K}(r)\rho(t)\hat{K}^{\dagger}(r)}{\mathrm{Tr}[\hat{K}(r)\rho(t)\hat{K}^{\dagger}(r)]}$$

(Non-linear map)

The state mapping is in the Kraus' form \Rightarrow (C1) Complete Positivity

The map is always normalized by its trace \implies (C3) Trace Preservation

We first need to define how quantum trajectories are generated and averaged.

Method II

 Generate trajectories using simple guessed readout PDF (e.g., Gaussian distribution)

Guessed readout PDF: $\wp_{g}(r|\rho(t))$

Calculate average quantum state evolution:

$$\rho(t + \Delta t) = \int dr \wp_{g}(r|\rho(t)) \frac{\hat{K}(r)\rho(t)\hat{K}^{\dagger}(r)}{\text{Tr}[\hat{K}(r)\rho(t)\hat{K}^{\dagger}(r)]}$$
(Non-linear map)

The state mapping is in the Kraus' form \Rightarrow (C1) Complete Positivity The map is always normalized by its trace \Rightarrow (C3) Trace Preservation

We first need to define how quantum trajectories are generated and averaged.

Method III

Generate trajectories using the Stochastic Master
 Equations (SMEs):

 $\rho(t + \Delta t) = \rho(t) + \Delta t \mathcal{D}[\hat{c}]\rho(t) + \Delta W \mathcal{H}[\hat{c}]\rho(t)$

• Calculate average quantum state evolution:

$$\rho(t + \Delta t) = \rho(t) + \Delta t \mathcal{D}[\hat{c}]\rho(t) + \Delta W \mathcal{H}[\hat{c}]\rho(t)$$

The state mapping is NOT in the Kraus' form $\stackrel{i}{\not\Rightarrow}$ (C1) Complete Positivity

The SME is linear in the state \Rightarrow (C2) Convex-Linearity

The trace is preserved because $Tr(\mathcal{D}[\hat{c}]\rho) = 0 \implies$ (C3) Trace Preservation

We will test the hierarchy criteria for the following maps:

- $\hat{K}_{I}(y_{t})$ Measurement operator: Conventional Itô approach
- $\hat{K}_{R}(y_{t})$ Measurement operator: Rouchon-Ralph approach
- $\hat{K}_{G}(y_{t})$ Measurement operator: Guevara-Wiseman approach
- $\hat{K}_{W}(y_{t})$ Measurement operator: "High-order" completely positive map

Considering the finite time resolution: $\Delta t \gg dt$

The **coarse-grained** measurement record:

$$Y_t = \frac{1}{\Delta t} \int_t^{t+\Delta t} \mathrm{d}s \, y_s$$

We will test the hierarchy criteria for the following maps:

- $\hat{K}_{I}(y_{t})$ Measurement operator: Conventional Itô approach
- $\hat{K}_{R}(y_{t})$ Measurement operator: Rouchon-Ralph approach
- $\hat{K}_{G}(y_{t})$ Measurement operator: Guevara-Wiseman approach
- $\hat{K}_{W}(y_{t})$ Measurement operator: "High-order" completely positive map

Considering the finite time resolution: $\Delta t \gg dt$

The **coarse-grained** measurement record:

$$Y_t = \frac{1}{\Delta t} \int_t^{t+\Delta t} \mathrm{d}s \, y_s$$

 $\underline{\text{Method II}} \int dr \wp_{g}(r|\rho(t)) \frac{\hat{K}(r)\rho(t)\hat{K}^{\dagger}(r)}{\operatorname{Tr}[\hat{K}(r)\rho(t)\hat{K}^{\dagger}(r)]}$

 $\int dr \, \hat{K}^{\dagger}(r) \hat{K}(r) = \hat{1}$ (C3) Trace Preservation

(C2) Convex-Linearity

 $\hat{M}_{I}(y_{t})$ • Measurement operator: Conventional **Itô approach**

$$\hat{K}_{I}(Y_{t}) = \sqrt{\wp_{ost}(Y_{t})}\hat{M}_{I}(Y_{t}).$$

$$\hat{M}_{I}(Y_{t}) = \hat{1} - \frac{1}{2}\hat{c}^{\dagger}\hat{c}\Delta t + \hat{c}Y_{t}\Delta t \qquad \text{with} \quad \wp_{ost}(Y_{t}) = \left(\frac{\Delta t}{2\pi}\right)^{1/2}\exp\left(-Y_{t}^{2}\Delta t/2\right)$$

$$\underbrace{\text{Method I}}_{(C3) \text{ Trace Preservation}} \qquad (C2) \text{ Convex-Linearity}$$

$$\int dY_{t}\wp_{ost}(Y_{t})\hat{M}_{I}^{\dagger}(Y_{t})\hat{M}_{I}(Y_{t}) = \hat{1} + \frac{1}{4}(\hat{c}^{\dagger}\hat{c})^{2}\Delta t^{2}$$

$$p_{I,g}(Y_{t}|\rho(t)) = \left(\frac{\Delta t}{2\pi}\right)^{1/2}\exp[-(Y_{t} - \langle \hat{c} + \hat{c}^{\dagger} \rangle)^{2}\Delta t/2].$$

$$\mu_{I} = \langle \hat{c} + \hat{c}^{\dagger} \rangle + O(\Delta t)$$

$$\sigma_{I}^{2} = 1/\Delta t + O(\Delta t^{0})$$
Mean and variance of Gaussian PDF

Satisfies (C3) condition at: $\mathcal{O}(\Delta t)$

Satisfies (C2) condition at:
$$\mathcal{O}(\Delta t)$$

Satisfies (C) condition at: $\mathcal{O}(\Delta t) \implies$ Satisfies (B) condition at: $\mathcal{O}(\Delta t)$

 $\hat{M}_{R}(y_{t})$ • Measurement operator: **Rouchon-Ralph approach**

$$\hat{K}_{\mathrm{R}}(Y_t) = \sqrt{\wp_{\mathrm{ost}}(Y_t)}\hat{M}_{\mathrm{R}}(Y_t)$$

$$\hat{M}_{\mathrm{R}}(Y_t) = \hat{1} - \frac{1}{2}\hat{c}^{\dagger}\hat{c}\Delta t + \hat{c}Y_t\Delta t - \frac{1}{2}\hat{c}^2(\Delta t - Y_t^2\Delta t^2)$$

Method I

(C3) Trace Preservation

Method II

(C2) Convex-Linearity

Similar to the Ito case

 $\int dY_t \wp_{ost}(Y_t) \hat{M}_{R}^{\dagger}(Y_t) \hat{M}_{R}(Y_t)$

$$= \hat{1} + \left[\frac{1}{4}(\hat{c}^{\dagger}\hat{c})^{2} + \frac{1}{2}(\hat{c}^{\dagger})^{2}\hat{c}^{2}\right]\Delta t^{2} + O(\Delta t^{3}),$$

Satisfies (C2) condition at: $\mathcal{O}(\Delta t)$

Satisfies (C3) condition at: $\mathcal{O}(\Delta t)$

Satisfies (C) condition at: $\mathcal{O}(\Delta t) \implies$ Satisfies (B) condition at: $\mathcal{O}(\Delta t)$

 $\hat{M}_{G}(y_{t})$ • Measurement operator: Guevara-Wiseman approach

$$\hat{K}_{\rm G}(Y_t) = \sqrt{\wp_{\rm ost}(Y_t)} \hat{M}_{\rm G}(Y_t)$$

$$\hat{M}_{\mathrm{G}}(Y_t) = \hat{1} + \left(Y_t\hat{c} - \frac{1}{2}\hat{c}^{\dagger}\hat{c}\right)\Delta t - \frac{1}{8}(\hat{c}^{\dagger}\hat{c})^2\Delta t^2$$

Method I

(C3) Trace Preservation

Method II

(C2) Convex-Linearity

$$\int \mathrm{d}Y_t \wp_{\mathrm{ost}}(Y_t) \hat{M}_{\mathrm{G}}^{\dagger}(Y_t) \hat{M}_{\mathrm{G}}(Y_t) = \hat{1} + O(\Delta t^3)$$

Satisfies (C3) condition at: $\mathcal{O}(\Delta t^2)$

$$\mu_{\rm G} = \langle \hat{c} + \hat{c}^{\dagger} \rangle - \frac{1}{2} \langle \hat{c}^{\dagger} \hat{c}^2 + \hat{c} (\hat{c}^{\dagger})^2 \rangle \Delta t + O(\Delta t^2)$$
$$\sigma_{\rm G}^2 = \frac{1}{\Delta t} + [2 \langle \hat{c}^{\dagger} \hat{c} \rangle - \langle \hat{c}^{\dagger} + \hat{c} \rangle^2] + O(\Delta t)$$

These came from: $\text{Tr}[\wp_{ost}(Y_t)\hat{M}_G(Y_t)\rho(t)\hat{M}_G^{\dagger}(Y_t)]$

Guevara and Wiseman, PRA **102**, 052217 (2020) Satisfies (C2) condition at: $O(\Delta t^2)$

Satisfies (C) condition at: $\mathcal{O}(\Delta t^2)$ BUT Satisfies (B) condition at: $\mathcal{O}(\Delta t)$

Proposed High-order Completely Positive map

 $\hat{M}_{\rm W}(y_t)$ • Measurement operator: "High-order" completely positive map N. Wonglakhon, H. M. Wiseman and A. Chantasri, Phys. Rev. A 110, 062207 (2024)

• A physical model of a quantum system coupled to a Markovian Bosonic field and the bath's state is then observed via a homodyne measurement:

$$\hat{K}(y_s) = \langle y_s | \hat{U}_{t+dt,t} | 0 \rangle = \langle y_s | \exp(\hat{c} d\hat{B}_t^{\dagger} - \hat{c}^{\dagger} d\hat{B}_t) | 0 \rangle$$

Homodyne measurement: $\hat{Q}_t = d\hat{B}_t + d\hat{B}_t^{\dagger}$ with $\hat{Q}_s |y_s\rangle = y_s |y_s\rangle$ and $[d\hat{B}_t, d\hat{B}_t^{\dagger}] = dt$

This gives:
$$\hat{K}(y_s) = \langle y_s | \hat{1} + \hat{c}d\hat{B}_t^{\dagger} - \frac{1}{2}\hat{c}^{\dagger}\hat{c}d\hat{B}_t d\hat{B}_t^{\dagger} + \frac{1}{2}\hat{c}^2 (d\hat{B}_t^{\dagger})^2$$

+ $O(|d\hat{B}_t|^3)|0\rangle$
= $\langle y_s | 0 \rangle [\hat{1} - \frac{1}{2}\hat{c}^{\dagger}\hat{c}dt + \hat{c}y_s dt + \frac{1}{2}\hat{c}^2 (y_s^2 dt^2 - dt)$
+ $O(dt^{3/2})]$
Some interesting features here!

where $\langle y_s | n \rangle = \frac{(\alpha/\pi)^{1/4}}{\sqrt{2^n n!}} \exp\left(-\alpha y_s^2/2\right) H_n(\sqrt{\alpha} y_s)$ is the wave function of

a harmonic oscillator in terms of the Hermite polynomials.

Proposed High-order Completely Positive map

 $\hat{M}_{\rm W}(y_t)$ • Measurement operator: "High-order" completely positive map N. Wonglakhon, H. M. Wiseman and A. Chantasri, Phys. Rev. A 110, 062207 (2024)

• We construct a high-order measurement operator for the coarse-grained record with the time resolution $\Delta t \gg dt$:

$$\hat{M}_{W}(Y_{t}) \approx \lim_{m \to \infty} \hat{M}_{dt}(y_{t+(m-1)dt}) \cdots \hat{M}_{dt}(y_{t+dt}) \hat{M}_{dt}(y_{t}) \quad \text{when} \quad m \, dt = \Delta t$$

and expand terms to Δt^2 to obtain:

$$\hat{M}_{W}(Y_{t}) = \hat{1} - \frac{1}{2}(\hat{c}^{2} + \hat{c}^{\dagger}\hat{c})\Delta t + \frac{1}{8}(\hat{c}^{\dagger}\hat{c})^{2}\Delta t^{2} + \left[\hat{c}\Delta t - \frac{1}{4}(\hat{c}^{\dagger}\hat{c}^{2} + \hat{c}\hat{c}^{\dagger}\hat{c})\Delta t^{2}\right]Y_{t} + \frac{1}{2}\hat{c}^{2}\Delta t^{2}Y_{t}^{2}$$

This gives the Kraus operator: $\hat{K}_W(Y_t) = \sqrt{\wp_{ost}(Y_t)} \hat{M}_W(Y_t)$

with the ostensible probability: $\wp_{ost}(Y_t) = \left(\frac{\Delta t}{2\pi}\right)^{1/2} \exp\left(-\frac{Y_t^2 \Delta t}{2}\right)$ coming from

an infinite product of the vacuum state wavefunctions.

Proposed High-order Completely Positive map

 $\hat{M}_{W}(y_{t})$ • Measurement operator: "High-order" completely positive map

N. Wonglakhon, H. M. Wiseman and A. Chantasri, Phys. Rev. A 110, 062207 (2024)

$$\hat{K}_{\mathrm{W}}(Y_t) = \sqrt{\wp_{\mathrm{ost}}(Y_t)} \hat{M}_{\mathrm{W}}(Y_t)$$

$$\hat{M}_{W}(Y_{t}) = \hat{1} - \frac{1}{2}(\hat{c}^{2} + \hat{c}^{\dagger}\hat{c})\Delta t + \frac{1}{8}(\hat{c}^{\dagger}\hat{c})^{2}\Delta t^{2} + \left[\hat{c}\Delta t - \frac{1}{4}(\hat{c}^{\dagger}\hat{c}^{2} + \hat{c}\hat{c}^{\dagger}\hat{c})\Delta t^{2}\right]Y_{t} + \frac{1}{2}\hat{c}^{2}\Delta t^{2}Y_{t}^{2}$$

Method I

(C3) Trace Preservation

 $\int dY_t \wp_{\text{ost}}(Y_t) \hat{M}_{\text{W}}^{\dagger}(Y_t) \hat{M}_{\text{W}}(Y_t) = \hat{1} + O(\Delta t^3)$

Satisfies (C3) condition at: $\mathcal{O}(\Delta t^2)$

 $\rho(t + \Delta t) = \rho(t) + \mathcal{D}[\hat{c}]\rho(t)\Delta t + \frac{1}{2}\mathcal{D}^{2}[\hat{c}]\rho(t)\Delta t^{2} + O(\Delta t^{3}),$

Method II

(C2) Convex-Linearity

Satisfies (C2) condition at: $O(\Delta t^2)$

Bonus!

Satisfies (C) condition at: $\mathcal{O}(\Delta t^2)$ AND Satisfies (B) condition at: $\mathcal{O}(\Delta t^2)$

- $\hat{K}_{I}(y_{t})$ Measurement operator: Conventional Itô approach
- $\hat{K}_{R}(y_{t})$ Measurement operator: Rouchon-Ralph approach
- $\hat{K}_{G}(y_{t})$ Measurement operator: Guevara-Wiseman approach
- $\hat{K}_{W}(y_{t})$ Measurement operator: "High-order" completely positive map

Condition	<i>Ŕ</i> _I	$\hat{K}_{ m R}$	$\hat{K}_{ m G}$	\hat{K}_{W}
(A) VQT (two examples)(B) Lindblad solution(C) VAQE (methods I & II)	$O(\Delta t)$ $O(\Delta t)$ $O(\Delta t)$	$O(\Delta t)$ $O(\Delta t)$ $O(\Delta t)$	$O(\Delta t) \\ O(\Delta t) \\ O(\Delta t^2)$	$O(\Delta t)$ $O(\Delta t^2)$ $O(\Delta t^2)$

N. Wonglakhon, H. M. Wiseman and A. Chantasri, Phys. Rev. A 110, 062207 (2024)

Valid Quantum Trajectory criterion

Using two qubit examples to show the map's accuracy at the quantum trajectory level.

Example: qubit z-measurement (Exact)

(Or any measurements with Hermitian Lindblad operators)

$$\hat{K}_{\rm H}(Y_t) = \sum_j \sqrt{\wp(Y_t|a_j)} |a_j\rangle \langle a_j|$$

where
$$\wp(Y_t|a_j) = \left(\frac{\gamma \Delta t}{\pi}\right)^{1/2} \exp\left[-\frac{\gamma}{2}\left(\frac{Y_t}{\sqrt{2\gamma}} - a_j\right)^2 \Delta t\right]$$

Example: qubit fluorescence measurement (Nearly exact)

$$\hat{M}_{\text{F,ex}}(X_t) = \begin{pmatrix} e^{-\gamma \, \Delta t/2} & 0\\ \sqrt{\gamma} X_t & 1 \end{pmatrix}$$
where $X_t \equiv \int_t^{t+\Delta t} e^{-\gamma s/2} y_s \text{d}s \approx \left[1 - \frac{\gamma}{2} \left(t + \frac{\Delta t}{2}\right)\right] Y_t \Delta t - \frac{\gamma}{2} Z_t$
Approximation to Δt^2

Estimated by two types of coarse-grained records

$$Y_t = \frac{1}{\Delta t} \int_t^{t+\Delta t} ds \, y_s$$
$$Z_t \equiv \int_t^{t+\Delta t} \left[s - \left(t + \frac{\Delta t}{2} \right) \right] y_s ds$$

Valid Quantum Trajectory criterion

Using the exact maps, we can now compute the average trace distance for our maps.

Coarse-grained trajectories

$$\rho_{A}(Y_{t}, \tilde{\rho}) = \frac{\hat{K}_{A}(Y_{t})\tilde{\rho}\hat{K}_{A}^{\dagger}(Y_{t})}{\operatorname{Tr}[\hat{K}_{A}(Y_{t})\tilde{\rho}\hat{K}_{A}^{\dagger}(Y_{t})]}$$

$$D_{\rm A} = \frac{1}{2} \int \mathrm{d}\mu_{\rm H}(\tilde{\rho}) \int \mathrm{d}\tilde{Y}_t \wp_{\rm ex}(\tilde{Y}_t|\tilde{\rho}) \mathrm{Tr}|\rho_{\rm A} - \rho_{\rm ex}|$$

For Q fluorescence $\tilde{Y}_t = \{Y_t, Z_t\}$

The Kraus operators:
$$\hat{K}_{A}(Y_{t}) \in \left\{ \hat{K}_{I}(y_{t}), \hat{K}_{R}(y_{t}), \hat{K}_{G}(y_{t}), \hat{K}_{W}(y_{t}) \right\}$$

	Method for Qubit measurement examples			
Kraus operator	Average trace distance compared to $\hat{K}_{\rm H}(Y_t)$	Average trace distance compared to $\hat{K}_{\rm F}(Y_t, Z_t)$		
$\widehat{K_{\mathrm{I}}}$	$\frac{7\sqrt{\pi}}{48}(\gamma\Delta t)^{3/2} + O(\Delta t^{5/2}) \approx 0.2585(\gamma\Delta t)^{3/2}$	$\frac{1}{2\sqrt{6\pi}} (\gamma \Delta t)^{3/2} + O(\Delta t^{5/2}) \approx 0.1152 (\gamma \Delta t)^{3/2}$		
$\hat{K}_{ m R}$	$\frac{(1+e^3)\sqrt{\pi}}{12e^3}(\gamma\Delta t)^{3/2} + O(\Delta t^{5/2}) \approx 0.1551(\gamma\Delta t)^{3/2}$	$\frac{1}{2\sqrt{6\pi}} (\gamma \Delta t)^{3/2} + O(\Delta t^{5/2}) \approx 0.1152 (\gamma \Delta t)^{3/2}$		
$\hat{K}_{ m G}$	$\frac{7\sqrt{\pi}}{48} (\gamma \Delta t)^{3/2} + O(\Delta t^{5/2}) \approx 0.2585 (\gamma \Delta t)^{3/2}$	$\frac{1}{2\sqrt{6\pi}} (\gamma \Delta t)^{3/2} + O(\Delta t^{5/2}) \approx 0.1152 (\gamma \Delta t)^{3/2}$		
\hat{K}_{W}	$\frac{(4+e^{3/2})\sqrt{\pi}}{48e^{3/2}}(\gamma\Delta t)^{3/2} + O(\Delta t^{5/2}) \approx 0.0699(\gamma\Delta t)^{3/2}$	$\frac{1}{4\sqrt{6\pi}} (\gamma \Delta t)^{3/2} + O(\Delta t^{5/2}) \approx 0.0576 (\gamma \Delta t)^{3/2}$		

Wonglakhon, Wiseman and ACH, PRA 110, 062207 (2024)

Valid Quantum Trajectory criterion

Using the exact maps, we can now compute the average trace distance for our maps.

Coarse-grained trajectories

$$\rho_{A}(Y_{t}, \tilde{\rho}) = \frac{\hat{K}_{A}(Y_{t})\tilde{\rho}\hat{K}_{A}^{\dagger}(Y_{t})}{\operatorname{Tr}[\hat{K}_{A}(Y_{t})\tilde{\rho}\hat{K}_{A}^{\dagger}(Y_{t})]}$$

$$D_{\rm A} = \frac{1}{2} \int \mathrm{d}\mu_{\rm H}(\tilde{\rho}) \int \mathrm{d}\tilde{Y}_t \wp_{\rm ex}(\tilde{Y}_t|\tilde{\rho}) \mathrm{Tr}|\rho_{\rm A} - \rho_{\rm ex}|$$

For Q fluorescence $\tilde{Y}_t = \{Y_t, Z_t\}$

The Kraus operators:
$$\hat{K}_{A}(Y_{t}) \in \left\{ \hat{K}_{I}(y_{t}), \hat{K}_{R}(y_{t}), \hat{K}_{G}(y_{t}), \hat{K}_{W}(y_{t}) \right\}$$

	Method for Qubit measurement examples			
Kraus operator	Average trace distance compared to $\hat{K}_{\rm H}(Y_t)$	Average trace distance compared to $\hat{K}_{\rm F}(Y_t, Z_t)$		
$\overline{\hat{K}_{\mathrm{I}}}$	$\frac{7\sqrt{\pi}}{48}(\gamma\Delta t)^{3/2} + O(\Delta t^{5/2}) \approx 0.2585(\gamma\Delta t)^{3/2}$	$\frac{1}{2\sqrt{6\pi}} (\gamma \Delta t)^{3/2} + O(\Delta t^{5/2}) \approx 0.1152 (\gamma \Delta t)^{3/2}$		
$\hat{K}_{ m R}$	$\frac{(1+e^{3})\sqrt{\pi}}{12e^{3}}(\gamma\Delta t)^{3/2} + O(\Delta t^{5/2}) \approx 0.1551(\gamma\Delta t)^{3/2}$	$\frac{1}{2\sqrt{6\pi}} (\gamma \Delta t)^{3/2} + O(\Delta t^{5/2}) \approx 0.1152 (\gamma \Delta t)^{3/2}$		
$\hat{K}_{ m G}$	$\frac{7\sqrt{\pi}}{48}(\gamma\Delta t)^{3/2} + O(\Delta t^{5/2}) \approx 0.2585(\gamma\Delta t)^{3/2}$	$\frac{1}{2\sqrt{6\pi}} (\gamma \Delta t)^{3/2} + O(\Delta t^{5/2}) \approx 0.1152 (\gamma \Delta t)^{3/2}$		
\hat{K}_{W}	$\frac{(4+e^{3/2})\sqrt{\pi}}{48e^{3/2}}(\gamma\Delta t)^{3/2} + O(\Delta t^{5/2}) \approx 0.0699(\gamma\Delta t)^{3/2}$	$\frac{1}{4\sqrt{6\pi}} (\gamma \Delta t)^{3/2} + O(\Delta t^{5/2}) \approx 0.0576 (\gamma \Delta t)^{3/2}$		

Wonglakhon, Wiseman and ACH, PRA 110, 062207 (2024)

Valid Quantum Trajectory: Numerical results

Two Examples: $dt = 0.0001, \Delta t = 0.01$

Qubit z-basis measurement

 $\Omega = 0, \eta = 1$

$$\Omega = 2\pi, \eta = 0.4$$

Qubit Fluorescence measurement \bigcirc

> $\Omega = 0, \eta = 1$ $\Omega = 2\pi, \eta = 0.4$

> > Exact map

z-measurement ($\Omega = 0, \eta = 1$)

 $0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0$

0.4 0.6 0.8 1.0

 $\gamma_z t_\ell$

1.0

0.5

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

0.0

0.0

 (\mathbf{a})

(**b**)

0.2

Wonglakhon, Wiseman and ACH, (in preparation)

 1.0^{-1}

0.5 -

0.0

-0.5

-1.0

1.0

0.5

0.0

-0.5

-1.0

0.0

 (\mathbf{c})

0.2

0.2

0.4

0.4

0.6

0.6

 $\gamma_z t_\ell$

0.8 1.0

0.8 1.0

0.0

Valid Quantum Trajectory: Numerical results

The average trace distances for the Qubit z-basis measurement

 $\Omega = 0, \eta = 1$

 $\Omega = 2\pi, \eta = 0.4$

Valid Quantum Trajectory: Numerical results

The average trace distances for the Qubit Fluorescence measurement

 $\Omega = 0, \eta = 1$

 $\Omega = 2\pi, \eta = 0.4$

Other applications of the high-order map

Parameter calibration for Transmon qubit experiments

C. Manoworakul, J. Ralph, H. Wiseman, and ACH, (in preparation)

Using signal data from K. Murch's group:

Naghiloo, Foroozani, Tan, Jadbabaie, Murch, Nat. Commun. 7, 11527 (2016) Processing data using:

$$\rho_r(t + \Delta t) = \frac{\hat{K}(r)\rho(t)\hat{K}^{\dagger}(r)}{\text{Tr}[\hat{K}(r)\rho(t)\hat{K}^{\dagger}(r)]}$$

with
$$\hat{K}_{\mathrm{W}}(Y_t) = \sqrt{\wp_{\mathrm{ost}}(Y_t)} \hat{M}_{\mathrm{W}}(Y_t)$$

and finding Bayesian estimators using The Sequential Monte Carlo technique.

Other applications of the high-order map

Parameter calibration for Transmon qubit experiments

Manoworakul, Ralph, Wiseman and ACH, (in preparation)

Numerical results showing convergence of the unknown parameters:

Estimated parameters with the error bars:

Take away messages

- Quantum trajectories for real measurement data require more than just integrating the Stochastic Master Equations.
- There are issues regarding: the **time resolution** $\Delta t \gg dt$ (finite time step).
- We have introduced the Hierarchy criteria for Quantum Trajectories
 - (A) Valid Quantum Trajectory (strongest)
 - (B) Linblad Evolution (stronger)
 - (C) Valid Average Quantum Evolution (weaker)
 - (C1) Complete Positivity
 - (C2) Convex-Linearity
 - (C3) Trace Preservation
- We considered 3 approaches in the literature and proposed 1 approach:

• $\hat{K}_{\rm I}$, $\hat{K}_{\rm R}$, $\hat{K}_{\rm G}$, and $\hat{K}_{\rm W}$: Wonglakorn "high-order" complete positive map • We showed that $\hat{K}_{\rm W}$ satisfied all conditions(B) and (C) to $\mathcal{O}(\Delta t^2)$ and gave the best condition (A) among all maps.