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Motivation

After motivating the need for a study of Open Quantum Systems, I introduce,
briefly, some recent developments in the efforts to understand non-Markovian
phenomenon.

The discussion about non-Markovian behaviour is made in the backdrop of the
Garraway model.

This is followed by an introduction to ergotropy, entropy production, power,...in
the context of quantum thermodynamics.

Devices: Quantum Battery and Quantum Heat Engine are discussed.

These are illustrated on open system models; (a). Garraway model, (b). central
spin model, (c). Quantum Brownian Motion (QBM), (d). two-qubit decoherence.
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Open Quantum Systems: A Brief Preview and Motivation

The theory of open quantum systems addresses the problems of damping and
dephasing in quantum systems by the assertion that all real systems of interest
are ‘open’ systems, surrounded by their environments [U. Weiss: (1999); H. -P.
Breuer and F. Petruccione: (2002); SB: Open Quantum Systems: Dynamics of
Nonclassical Evolution (2019)].

Quantum optics provided one of the first testing grounds for the application of
the formalism of open quantum systems [W. H. Louisell: (1973), G. S. Agarwal:
(1973), H. Carmichael: (1993)]. Application to other areas was intensified by the
works of [Caldeira and Leggett: (1983)], [Grabert, Schramm and Ingold: 1988)]
and [Zurek: (1993)], among others.

The recent upsurge of interest in the problem of open quantum systems is
because of the spectacular progress in manipulation of quantum states of matter,
encoding, transmission and processing of quantum information, for all of which
understanding and control of the environmental impact are essential [Turchette et
al.: (2000); Myatt et al.: (2000); Haroche et al. (1996)]. This increases the
relevance of open system ideas to quantum computation and quantum
information.
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Open Quantum Systems: continued...

Hamiltonian of the total (closed system):

H = HS + HR + HSR .

S- system, R- reservoir (bath), S − R-interaction between them.

System-reservoir complex evolves unitarily by:

ρ(t) = e−
i
~Htρ(0)e

i
~Ht .

We are interested in the reduced dynamics of the system S , taking into account
the influence of its environment. This is done by taking a trace over the reservoir
degrees of freedom, making the reduced dynamics non-unitary:

ρs(t) = TrR(ρ(t)) = TrR

[
e−

i
~Htρ(0)e

i
~Ht

]
.
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Open Quantum Systems: continued...

Open quantum systems can be broadly classified into two categories:

(A). [HS ,HSR ] = 0 resulting in decoherence without any dissipation [Braginsky et
al.: (1975), (1980); Caves et al.: (1980); G. Gangopadhyay, S. M. Kumar and S.
Duttagupta: (2001); SB and R. Ghosh: (2007)] and

(B). Quantum dissipative systems, where [HS ,HSR ] 6= 0 resulting in decoherence
with dissipation [Caldeira and Leggett: (1983); H. Grabert, P. Schramm and G-L.
Ingold: (1988); SB and R. Ghosh: (2003), (2007)].

In the parlance of quantum information theory, an example of the noise generated
by (A) would be a “phase damping channel”, while that generated by (B) would
be a “(generalized) amplitude damping channel”.
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Time scales associated with the Open System Evolution

The open system evolution is characterized by a number of time-scales, the
salient ones being:

Scale associated with the natural frequency of the system.

Relaxation time scale determined by the S-R coupling strength.

Reservoir correlation time (memory time) associated with the high-frequency
cutoff in the reservoir spectral density and the time scale associated with the
reservoir temperature, which measures the relative importance of quantum to
thermal effects.
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Non-Markovian Aspects of Open Quantum Systems: Some Features

We now make a brief excursion into non-Markovian Open Quantum Systems
[Rivas, Huelga, Plenio (2014); Hall,Cresser,Li,Andersson (2014);
Breuer,Laine,Piilo,Vacchini (2016); Vega,Alonso (2017); Shrikant,Srikanth,SB
(2019); Shrikant,Srikanth,SB (2020)].

This is a bigger class than the Markovian ones.

We will illustrate our discussions using a useful model: the Garraway model

Some promiment diagnostics of non-Markovian behavior, developed in recent
years, are briefly discussed.
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Non-Markovian Master Equation:Time-Local Master Equations

A time-local master equation, providing a generalization of the usual Lindbladian
type of equation would be of the form [Hall,Cresser,Li,Andersson (2014)]

d

dt
ρS (t) = K(t)ρS (t).

The generator K(t) of the time-local master equation must preserve Hermiticity
and trace.

From these requirements it follows that the generator must be of the following
general form

K(t)ρS = −i [HS (t), ρS ]

+
∑
i

γi (t)

[
Ai (t)ρSA

†
i (t)−

1

2

{
A†i (t)Ai (t), ρS

}]
.

The structure of the generator provides a natural generalization of the Lindblad
structure, in which the Hamiltonian HS (t), as well as the various decay rates
γi (t) may dependent on time.

When γi (t) ≥ 0, the resulting dynamics is completely positive, since the
generator is then in Lindblad form for each fixed t ≥ 0.
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Non-Markovian Aspects: Measure

A characterization of non-Markovianity was given by [Rivas, Huelga, Plenio
(2010)]

f (t) = limε→0+

||
[
Φ(t + ε, t)⊗ I

](
|Ψ〉〈Ψ|

)
||1 − 1

ε

Follows from Choi that f (t) > 0 for non-Markovian evolution.

Measure M =
´
I dt f (t), non-Markovian behavior in t ∈ I .

A family of dynamical maps Φ(t, 0) is defined to be divisible if for all t2 ≥ t1 ≥ 0
there exists a CPT map Φ(t2, t1) such that the relation
Φ(t2, 0) = Φ(t2, t1)Φ(t1, 0) holds.

The simplest example of a divisible quantum process is given by a dynamical
semigroup. For a semigroup Φ(t, 0) = exp[Lt] and divisibility is satisfied with the
CPT map Φ(t2, t1) = exp[L(t2 − t1)].

non-Markovian quantum processes could be described by time-local master
equations whose generator involves at least one temporarily negative rate γi (t)
[Hall, Cresser, Li and Andersson (2014)].
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Non-Markovian Aspects: Information Flow

Consider two parties, Alice and Bob. Alice prepares a quantum system in one of
two states ρ1 or ρ2 with probability 1

2
each, and then sends the system to Bob. It

is Bob’s task to find out by a single measurement on the system whether the
system state was ρ1 or ρ2. It turns out that Bob cannot always distinguish the
states with certainty, but there is an optimal strategy which allows him to achieve
the maximal possible success probability given by

Pmax =
1

2

[
1 + D(ρ1, ρ2)

]
.

The trace distance D(ρ1, ρ2) = 1
2
||ρ1 − ρ2|| = 1

2
tr|ρ1 − ρ2| can therefore be

interpreted as a measure for the distinguishability of the quantum states ρ1 and

ρ2. Here tr|A| = tr
√
A†A.
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Non-Markovian Aspects: Properties of Trace Distance

The trace distance between any pair of states satisfies 0 ≤ D(ρ1, ρ2) ≤ 1.

The trace distance is sub-additive with respect to tensor products of states

D(ρ1 ⊗ σ1, ρ2 ⊗ σ2) ≤ D(ρ1, ρ2) + D(σ1, σ2).

The trace distance is invariant under unitary transformations U,

D(Uρ1U†,Uρ2U†) = D(ρ1, ρ2).

More generally, all trace preserving and completely positive maps, i.e., all trace
preserving quantum operations Λ are contractions of the trace distance,

D(Λρ1,Λρ2) ≤ D(ρ1, ρ2).
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Non-Markovian Aspects

No quantum process describable by a family of CPT dynamical maps can ever
increase the distinguishability of a pair of states over its initial value.

When a quantum process reduces the distinguishability of states, information is
flowing from the system to the environment. Correspondingly, an increase of the
distinguishability signifies that information flows from the environment back to
the system.

A definition of quantum non-Markovianity, is based on the idea that for Markovian
processes any two quantum states become less and less distinguishable under the
dynamics, leading to a perpetual loss of information into the environment.

Quantum memory effects thus arise if there is a temporal flow of information
from the environment to the system. The information flowing back from the
environment allows the earlier open system states to have an effect on the later
dynamics of the system, which implies the emergence of memory effects [Breuer
et al. (2009)].
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Non-Markovian Aspects: Measure

A quantum process described in terms of a family of quantum dynamical maps
Φ(t, 0) is non-Markovian if there is a pair of initial states ρ1,2

S (0) such that the

trace distance between the corresponding states ρ1,2
S (t) increases at a certain

time t > 0:

σ(t, ρ1,2
S (0)) ≡

d

dt
D(ρ1

S (t), ρ2
S (t)) > 0,

where σ(t, ρ1,2
S (0)) denotes the rate of change of the trace distance at time t

corresponding to the initial pair of states.

This implies that the class of quantum dynamical semigroups are Markovian.
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Non-Markovian Aspects: Measure

This suggests defining a measure N (Φ) for the non-Markovianity of a quantum
process through [BLP (2009)]

N (Φ) = max
ρ

1,2
S

(0)

ˆ
σ>0

dt σ(t, ρ1,2
S (0)).

The time integration is extended over all time intervals (ai , bi ) in which σ is
positive and the maximum is taken over all pairs of initial states. The measure
can be written as

N (Φ) = max
ρ1,2(0)

∑
i

[
D(ρ1

S (bi ), ρ
2
S (bi ))− D(ρ1

S (ai ), ρ
2
S (ai ))

]
.

To calculate this quantity one first determines for any pair of initial states the
total growth of the trace distance over each time interval (ai , bi ) and sums up the
contribution of all intervals. N (Φ) is then obtained by determining the maximum
over all pairs of initial states.
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Non-Markovian Aspects: Garraway Model

[B. M. Garraway (1997)]

The system Hamiltonian is
HS = ω0σ+σ−,

describing a two-state system (qubit) with ground state |0〉, excited state |1〉 and
transition frequency ω0, where σ+ = |1〉〈0| and σ− = |0〉〈1| are the raising and
lowering operators of the qubit.

The Hamiltonian of the environment is

HR =
∑
k

ωkb
†
kbk ,

represents a reservoir of harmonic oscillators with creation and annihilation

operators b†k and bk . The interaction Hamiltonian takes the form

HSR =
∑
k

(
gkσ+ ⊗ bk + g∗k σ− ⊗ b†k

)
.

Due to the RWA, the total number of excitations in the system,

N = σ+σ− +
∑
k

b†kbk ,

is a conserved quantity.
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Non-Markovian Aspects: Garraway Model

Assuming the environment to be in the vacuum state |0〉 initially one finds:

ρ11(t) = |c(t)|2ρ11(0),

ρ00(t) = ρ00(0) + (1− |c(t)|2)ρ11(0),

ρ10(t) = c(t)ρ10(0),

ρ01(t) = c∗(t)ρ01(0),

where the ρij (t) = 〈i |ρS (t)|j〉 denote the matrix elements of ρS (t).

This is the Garraway model also called the non-Markovian Amplitude Damping
(NMAD) model.

The function c(t) is the solution of the integro-differential equation

d

dt
c(t) = −

ˆ t

0
dt1f (t − t1)c(t1),

corresponding to the condition of no photons in the initial state.
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Non-Markovian Aspects: Garraway Model

where the kernel f (t − t1) represents a reservoir two-point correlation function,

f (t − t1) = 〈0|R(t)R†(t1)|0〉e iω0(t−t1)

=
∑
k

|gk |2e i(ω0−ωk )(t−t1),

of the environmental/reservoir operators

R(t) =
∑
k

gkbke
−iωk t .
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Non-Markovian Aspects: Model

These results hold for a generic environmental spectral density and the
corresponding two-point correlation function. Taking, for example, a Lorentzian
spectral density in resonance with the transition frequency of the qubit we find an
exponential two-point correlation function

f (τ) =
1

2
γ0λe

−λ|τ |,

where γ0 describes the strength of the system-environment coupling and λ the
spectral width which is related to the environmental correlation time by
τR = λ−1.

Using this we find

c(t) = e−λt/2

[
cosh

(
dt

2

)
+
λ

d
sinh

(
dt

2

)]
,

where d =
√
λ2 − 2γ0λ.
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Non-Markovian Aspects: Garraway Model

For the Garraway model, the time-local generator takes the form

K(t)ρS = −
i

2
S(t)[σ+σ−, ρS ]

+γ(t)

[
σ−ρSσ+ −

1

2
{σ+σ−, ρS}

]
,

where γ(t) = −2<
(

ċ(t)
c(t)

)
, S(t) = −2=

(
ċ(t)
c(t)

)
.

The quantity S(t) plays the role of a time-dependent frequency shift, and γ(t)
can be interpreted as a time-dependent decay rate. Due to the time dependence
of these quantities the process does not generally represent a dynamical
semigroup.
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Non-Markovian Aspects: Approach To Markovian Behaviour

In the limit of small α = γ0/λ we may approximate c(t) ≈ e−γ0t/2.

S(t) = 0 and γ(t) = γ0, i.e., the generator K(t) assumes the form of a Lindblad
generator of a quantum dynamical semigroup.

α can also be written as the ratio of the environmental correlations time
τR = λ−1 and the relaxation time τrel = γ−1

0 of the system α = τR
τrel

.

Thus we see that the standard Markov condition γ0 � λ indeed leads to a
Markovian semigroup here.
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Non-Markovian Aspects: Divisibility of dynamical Maps

For the Garraway model, the necessary and sufficient condition for the complete
positivity of Φ(t2, t1) is given by |c(t2)| ≤ |c(t1)|.
Thus the dynamical map of the model is divisible if and only if |c(t)| is a
monotonically decreasing function of time.

The rate γ(t) can be written as

γ(t) = −
2

|c(t)|
d

dt
|c(t)|.

This shows that any increase of |c(t)| leads to a negative decay rate in the
corresponding generator, and illustrates the equivalence of the non-divisibility of
the dynamical map and the occurrence of a temporarily negative rate in the
time-local master equation.
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An Illustration of Non-Markovian Measure

Considering the Garraway model, the time evolution of the trace distance
corresponding to any pair of initial states ρ1

S (0) and ρ2
S (0) is given by

D(ρ1
S (t), ρ2

S (t)) = |c(t)|
√
|c(t)|2a2 + |b|2,

where a = ρ1
11(0)− ρ2

11(0) and b = ρ1
10(0)− ρ2

10(0).

The time derivative of this expression yields

σ(t, ρ1,2
S (0)) =

2|c(t)|2a2 + |b|2√
|c(t)|2a2 + |b|2

d

dt
|c(t)|.

From this we conclude that the trace distance increases at time t if and only if
the function |c(t)| increases at this point of time. It follows that the process is
non-Markovian, N (Φ) > 0, if the dynamical map is non-divisible, which in turn is
equivalent to a temporarily negative rate γ(t).
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Non-Markovian Evolution: Foundations and Classification

Temporal Self-Similarity (S. Utagi, R. Srikanth, SB (2020))

We identify a concept of memorylessness with temporal self-similarity, the
property of a system dynamics whereby the propagator between two intermediate
states is independent of the initial time.

Constitutes a stronger concept of memorylessness than CP-divisibility: NCP maps
are not QDS. However, there could be CP maps, for e.g., those defining the
generalized OUN, PLN maps, that are not QDS.

Temporal self-similarity can be identified with the quantum dynamical semigroup
(QDS), generated by the GKLS (Lindbladian) evolution.

Any deviation from QDS (whether CP-indivisible or not) makes the map
dependent on initial time.
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Characterizers of quantum thermodynamics: Ergotropy

Ergotropy refers to the maximum amount of work that can be extracted from a
quantum system via a unitary transformation. [Allahverdyan et al EPL 67 565 (2004)]

Consider a quantum state ρ with its internal Hamiltonian H having spectral
decomposition

ρ =
∑

i ri |ri 〉 〈ri | , with eigenvalues r1 ≥ r2 ≥ ....,

and

H =
∑

i εi |εi 〉 〈εi | , with eigenvalues ε1 ≤ ε2 ≤ ....

Ergotropy can be obtained after minimizing the internal energy of the final state

W = Tr(ρH)−min{Tr(UρU†H)},

The state ρf = UρU† that achieves this minimum has the form ρf =
∑

j rj
∣∣εj〉 〈εj ∣∣.

This is known as the passive state.
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Characterizers of quantum thermodynamics: Ergotropy

Using the Bloch vector form, the state of a two-level system under NMAD:

ρ(t) =
1

2

(
1 + z(t) x(t)− iy(t)

x(t) + iy(t) 1− z(t)

)
. (1)

The analytical expression for the ergotropy of the system is given by [D. Tiwari, SB
(2023)]

W(ρ(t)) =
ω0

2

(√
x(t)2 + z(t)2 + z(t)

)
. (2)
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Coherent and Incoherent Ergotropy

It was recently recognized that quantum ergotropy can be separated into two different
contributions, coherent (Wc ) and incoherent (Wi ) ergotropies.
(G. Francica et.al. Phys. Rev. Lett. (2020))

Wi = Tr {(ρ− σ)H} is the maximal work that can be extracted from ρ without
changing its coherence. Here Tr {σH} = minU∈U(i) Tr

{
UρU†H

}
, where U (i) is the

set of unitary operations without changing the coherence of ρ.

The coherent ergotropy Wc is the work that is exclusively stored in the coherence.
The expression for the coherent ergotropy is given as

βWc (ρ) = C(ρ) + S (E(σ)||ρeq)− D (ρ||ρeq) ,

where S (E(σ)||ρeq) = Tr {σ ln(σ)} − Tr {E(σ) ln(ρeq)} is the quantum relative

entropy, C(ρ) is the relative entropy of coherence and D (ρ||ρeq) =
∑

i pi ln
(

pi
si

)
is

the classical relative entropy; pi and si are the eigenvalues of the state ρ and ρeq ,
respectively. E(σ) is the pure dephasing operation (

∑
i 〈i |σ |i〉 |i〉〈i |) on the coherence

invariant state σ. The state ρeq is the Gibbs state ρeq = exp(−βH)
Z

with
Z = Tr {exp(−βH)} and β = 1/kBT .
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Coherent and Incoherent Ergotropy (Contd.)

In the case considererd here, using the Bloch vector form of a single denisty matrix
at any time t, the coherent part of the ergotropy can be expressed analytically as

Wc (ρ(t)) =


ω0
2

(√
x(t)2 + z(t)2 − z(t)

)
, for z(t) ≥ 0

ω0
2

(√
x(t)2 + z(t)2 + z(t)

)
, for z(t) < 0

(3)

and in terms of l1 norm of the coherence Cl1 as

Wc (ρ(t)) =


ω0
2

(√
Cl1 (ρ(t))2 + z(t)2 − z(t)

)
. for z(t) ≥ 0

ω0
2

(√
Cl1 (ρ(t))2 + z(t)2 + z(t)

)
. for z(t) < 0

(4)

The incoherent ergotropy of the system is

Wi (ρ(t)) =

{
ω0z(t). for z(t) ≥ 0

0. for z(t) < 0
(5)

It is interesting to note that, in this case, if z(t) < 0, the coherent ergotropy is equal
to the ergotropy of the system.
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Characterizers of quantum thermodynamics: Instantaneous and Average
powers

The instantaneous charging power is defined by available work in the battery as

P(t) = lim∆t→0
W(t+∆t)−W(t)

∆t
= dW

dt
.

It is also possible to define the average power-to-energy transfer given by

Pav = W(t)−W(t0)
t−t0

,

where t − t0 refers to the charging time of the battery.
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Characterizers of quantum thermodynamics: internal energy, heat, and work

Consider a general quantum system S interacting with a bath B. The change in the
internal energy of the system at any time t is given by

∆US (t) = Tr[HS (ρS (t)− ρS (0))],

where HS (assumed to be time-independent here) is the system’s Hamiltonian and
ρS (t) is the system’s state at t.

Further, the total change in the energy of the bath is given by

QB = Tr[HB(ρB(t)− ρB(0))],

where HB and ρB(t) are the Hamiltonian and the state (at time t) of the bath,
respectively.

The mismatch between the total change in the internal energies of the system and
bath is the work W [G.T. Landi and M. Paternostro, Rev. Mod. Phys. 93, 035008
(2021)], i.e.,

W = ∆US (t) + QB ,

where W > 0 means that work is performed on the system. The above can be referred
to as the first law of quantum thermodynamics.
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Characterizers of quantum thermodynamics: entropy production

In a general system-bath dynamics, the irreversibility is introduced when we partially
trace the bath. In the process, discarding any information stored locally in the state of
the bath as well as the non-local information shared between the system and the bath
is the source of irreversibility. This is accounted by the entropy production [G.T. Landi
and M. Paternostro, Rev. Mod. Phys. 93, 035008 (2021), M. Esposito et. al., New.
J. Phys. 12, 013013 (2010)], given by

Σ = IρSB (t)(S : B) + S(ρB(t)||ρB(0)),

where IρSB (t)(S : B) = S(ρS (t)) + S(ρB(t))− S(ρSB(t)) is the mutual information of
any bipartite system SB with S(ρ(t)) = −Trρ(t) ln ρ(t) being the von Neumann
entropy. S(ρ||σ) = Tr[ρ ln ρ− ρ lnσ] is the quantum relative entropy.

The above equation can be further simplified to give

Σ = S[ρSB(t)||ρS (t)⊗ ρB(0)].

Further, if the initial state of the bath is taken to be a thermal state

(ρB(0) = e−βHB

Tr[e−βHB ]
with β = 1/kBT being the inverse temperature), the entropy

production can be given as

Σ = ∆SS + βQB ,

where ∆SS is the change in the von Neumann entropy of the system and QB is the
total change in the bath’s internal energy.
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Devices: Quantum Battery and Heat Engine

Battery:

Quantum thermodynamics is the study of thermodynamical processes from a
quantum mechanical point of view.

Due to the constant decrement in user device sizes, several thermodynamic
devices, such as quantum heat engines and quantum batteries [R. Alicki, and M.
Fannes (2013], are required to be smaller as their unit cells approach the order of
molecular and atomic scales.

Various theoretical bases have been implemented to review quantum batteries,
including spin chains and qubits in an optical cavity.

The realistic implementation of quantum batteries would need to consider
dissipation and decoherence effects... open systems.

The system of interest HS could be the battery, and its environment HE the
charger mechanism.

We could envisage the scenario where the environment, being in a thermal
equilibrium state, will not initially charge the quantum battery. To this end, we
choose an initial state of the quantum battery, which has non-zero ergotropy that
dissipates to the environment.

However, due to the non-Markovian nature of the environment, the battery gets
recharged. This discharging-recharging behavior is a uniquely non-Markovian
feature and will not be observed in a Markovian scenario.
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Devices: Quantum Battery

A schematic diagram of charging-discharging and work extraction processes of a quantum battery
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Devices: Quantum Battery-Charger Open System Models

NMAD model

Central Spin model

Quantum Brownian Motion (QBM) model
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Battery: Ergotropy in NMAD

Discharging of battery under Markovian evolution:

0 2 4 6 8 10
t

0.00

0.05

0.10

0.15

0.20

0.25

QSL/t

(t)

Variation of QSL time using Fisher information metric (τQSL), ergotropy (W), instantaneous
(P(t)) and average (Pav ) powers, with time. The evolution of the state is through the Markovian
AD channel. The parameters are taken to be ω0 = 1, λ = 0.5, γ0 = 0.1.

In the case of Markovian dynamics, we observe that the system does not recharge via
interaction from the bath.
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Battery: Ergotropy in NMAD

Discharging-charging of battery under non-Markovian evolution

0 2 4 6 8 10
t

0.4

0.2

0.0

0.2

0.4

0.6 QSL/t

(t)
av

Variation of QSL time using τQSL, ergotropy (W), and instantaneous (P(t)) and average (Pav )
powers, with time. The evolution of the state is through the NMAD channel. The parameters are
taken to be ω0 = 1, λ = 0.5, γ0 = 10. [D. Tiwari, SB (2023)]
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Battery: Ergotropy in NMAD

Here, we observe that the peaks and valleys of the τQSL occurs exactly at the
points when a cycle of discharging and charging is completed.

This coincides with the points where average charging power is calculated.

The revivals in the ergotropy (recharging of the battery) are completely due to
non-Markovian nature of the system, indicating the role of non-Markovian
evolution in modelling the system as a quantum battery.
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Internal energy, work, and entropy production in central spin model

Consider, a single qubit central spin model (a single spin surrounded by a spin bath),

H = HS + HB + HSB =
ω0

2
σz +

ω

N
Jz +

ε
√
N

(σxJx + σyJy ) ,

where σk are Pauli spin matrices and Jk = 1
2

∑N
i=1 σ

k
i (for (k = x , y , z)) are the

collective angular momentum operators. N is the number of spins in the bath. ω0 and
ω are the transition frequencies for the central and the bath spins, respectively, and ε
is the interaction strength.

We calculate the change in the internal energy of the central spin, spin bath, the
corresponding work done W , and the entropy production for this model.
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Internal energy, work, and entropy production in central spin model
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Variation of (a) change in the internal energy of the system ∆US , (b) change in the energy of the
bath QB , (c) Work done by the bath W , and (d) entropy production Σ with time t. The
parameters are chosen to be N = 50, ω = 3, ω0 = 3.25, and T = 0.25. Further, the system’s

initial state is taken to be 1
2 |0〉 +

√
3

2 |1〉, and the thermal state at temperature T is taken to be
the bath’s initial state. [D. Tiwari, B. Bose, SB (2024)]
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Internal energy, work, and entropy production in central spin model

As the internal energy of the bath decreases, system’s internal energy increases
and the corresponding mismatch between the system and bath internal energies is
the work done by the bath on the system, consistent with the first law of
thermodynamics.

The corresponding changes in the internal energies and work done is more
prominent in the strong coupling regime.

The entropy production can be seen to be positive during the system’s dynamics,
consistent with the second law of thermodynamics.

However, the rate of change in the entropy production is sometimes negative due
to the non-Markovian nature of the system’s dynamics.
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Two-Qubit central spin model

Schematic diagram of the two-qubit central spin model.

[S. Bhattacharya and SB (2021); D. Tiwari, S. Datta, S. Bhattacharya and SB (2022)]

Here we write the two-qubit central spin model.

H′ = HS1
+ HS2

+ HS1S2
+ H′E1

+ H′E2
+ HS1E1

+ HS2E2
,

=
~ω1

2
σz

01 +
~ω2

2
σz

02 +
~δ
2
V +

~ωa

2M

M∑
i=1

σz
i1 +

~ωb

2N

N∑
i=1

σz
i2 +

~ε1

2
√
M

M∑
i=1

(σx
01σ

x
i1 + σy

01σ
y
i1)

+
~ε2

2
√
N

N∑
i=1

(σx
02σ

x
i2 + σy

02σ
y
i2).

We categorise the interaction between the two central spins using two different kind of
interactions. In the first case the two central spin interact using V = σx

01 ⊗ σx
02, and in

the second case, there is the anisotropic Dzyaloshinskii - Moriya (DM) interaction in
the z direction, (V = σx

01 ⊗ σ
y
02 − σ

y
01 ⊗ σx

02) between the two central spins.
(G. Bhanja, D. Tiwari, and SB: work in progress)
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Ergotropy and power in the central spin model

Using σx ⊗ σx interaction
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Variation of ergotropy (W) with time in the case of the central spin model.
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Ergotropy and power in the central spin model

Using σx ⊗ σx interaction
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Variation of instantaneous (P(t)) and average (Pav ) charging and discharging powers with time in
the case of the central spin model.
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Ergotropy and power in the central spin model

Using DM interaction
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Variation of ergotropy (W) with time in the case of the central spin model.
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Ergotropy and power in the central spin model

Using DM interaction
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Variation of instantaneous (P(t)) and average (Pav ) charging and discharging powers with time in
the case of the central spin model.
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Collective charing-discharging behavior in the two-spin central spin model

The average discharging behavior depicts how fast or slow the battery discharges.
The higher the discharging power, the quicker the battery discharges. Therefore,
lower values of discharging power correspond to the slow discharging of the
battery.

In the case of the DM interaction between the two central spins, we observe that
the average discharging power is lower at various points than the corresponding
average charging power and the time spans of their appearance is also larger.
This suggests that the DM interaction is favorable for the discharging of the
collective two-spin batteries.

Here, we have studied the collective behavior of the two-spin battery, that is,
both spins are considered as a quantum battery.
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QBM model

The total Hamiltonian Ĥ of the system is [D Tiwari, SB (2024)]

Ĥ = ĤS + ĤE + ĤI ,

=
p̂2

2m
+

1

2
mω2

s q̂
2 +

∑
n

(
p̂2
n

2mn
+

1

2
ω2
n q̂

2
n

)
+ (q̂ − µp̂)

∑
n

cnq̂n,

where ωs and m are the free frequency of the harmonic oscillator and its mass,
whereas ωn is the frequency of the n th bath mode, respectively.

Here, ĤS can be thought of as a quantum battery and the environment ĤE as a
charger that interacts with the quantum battery via ĤI .

For µ = 0, the above model reduces to the one whose master equation was
obtained by Hu, Paz, and Zhang in [Hu, Paz, Zhang: 1994].

The master equation for the system coupled via position-position coupling to an
Ohmic environment and in the high-temperature limit was obtained by
Caldeira-Leggett [1983].

The reduced dynamics of the harmonic oscillator system of interest at any time t
is

ρS (t) = TrE

(
e−i Ĥtρ(0)e i Ĥt

)
.
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QBM model
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Variation of ergotropy W(ρ(t)) with time t (in natural units, where ~ = kB = 1) for different
initial states ρS (0). We have taken the following values of the parameters: T = 1, ωs = 1, and

m = 1.5. |ψ1〉 = (
√

3|0〉 + |1〉)/2, |ψ2〉 = (|0〉 + |1〉)/
√

2.
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QBM model
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Variation of Ergotropy W(ρ(t)) (in subplot (a)), instantaneous and average powers (in subplot
(b)) with time t (in natural units, where ~ = kB = 1) for different values of temperature T . The
dots of respective colors depict the average power during the charging cycle at a particular
temperature. We have taken the following values of the parameters: µ = 0.5, ωs = 1, and
m = 1.5.
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QBM model

0.50

0.55

0.60

0.65

0.70
(a)

0.4

0.5

0.6

0.7
(b)

0 20 40 60 80 100

0.3

0.4

0.5

0.6

0.7
(c)

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7
(d)

t

Tr
ac

e 
Di

st
an

ce
 D

(
1(

t),
2(

t)) = 0
= 0.5
= 1.0

Variation of the trace distance D (ρ1(t), ρ2(t)) with time t (in natural units, where ~ = kB = 1)
for states ρ1(t) and ρ2(t) using initial states ρ1(0) = |α1〉〈α1| and ρ2(0) = |α2〉〈α2|, where

|αi 〉 = eαi â
†−α∗i â |0〉 with α1 = 3 + 4i and α2 = 1, respectively. The values of temperature T in

(a), (b), (c), and (d) are 0.1, 0.5, 1.0, and 5.0, respectively. We have chosen ωs = 1, and m = 1.5.
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Devices: Quantum Heat Engine

Quantum heat engines (QHEs), e.g., quantum Carnot engine (QCE), and
quantum Otto engine (QOE), produce work using quantum matter as their
working substance, e.g., qubit, h.o.

QHEs offer good model systems to study the relation between thermodynamics
and quantum mechanics.

Any QHE cycle consists of several basic quantum thermodynamic processes, such
as
quantum adiabatic processes: there is no heat exchange in a quantum adiabatic
process, but work can still be nonzero,
quantum isothermal processes: working substance is kept in contact with a heat
bath at a constant temperature. The particle can perform positive work, and
absorb heat from the bath. Both the energy gaps and the occupation probabilities
need to change simultaneously, so that the system remains in an equilibrium state
with the heat bath at every instant.
quantum isochoric processes: working substance is placed in contact with a heat
bath. No work is done in this process while heat is exchanged between the
working substance and the heat bath.
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Quantum Heat Engine: Otto Engine

The traditional Otto cycle has two isochoric (constant volume) and two adiabatic
operations and employs an ideal gas as the working medium.
Isochoric processes: heat exchanged with the thermal reservoirs,
Adiabatic processes: work done

In the quantum model of an Otto cycle, the working medium is a quantum
system, such as a spin-1/2 system.

The quantum isochoric process involving a two-level system keeps the energy-level
spacing unchanged (instead of fixing the volume as in a classical system). The
system being connected to a reservoir during the isochoric phase, the evolution is
nonunitary in these steps, whereas it remains unitary in the adiabatic processes.
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Otto Cycle

Schematic diagram of the quantum Otto cycle with squeezed thermal reservoirs.
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Otto Engine

Working substance: two-qubit system. [A Kumar, T Bagarti, S. Lahiri, SB:
(2023)].

The evolution of working system described by the von Neumann equations in the
unitary steps A→B and C→D, and by Open System Dynamics during the
dissipative steps B→C and D→A.

Stroke 1: Consider a quantum Otto cycle for a time-dependent Hamiltonian. The
frequency of the Hamiltonian is linearly modulated with time from ωc to
ωh > ωc . The system Hamiltonian changes from H(ωc ) to H(ωh);

ω(t) = ωc (1− t/τ) + ωht/τ.

The time duration of each stroke is set to a finite time interval τ , which gives a
total cycle time of 4τ : non-equilibrium process.
Stroke 2: In this stroke, the hot bath at temperature Th is connected to the
system. The energy spacing is held constant at ωh, resulting in H(ωh) =(ωh/2)σz
as the final Hamiltonian at point C. Heat is transferred from the hot bath,
modeled here as a squeezed thermal bath (SQTh), to the working medium during
this process.
Stroke 3: The system is then decoupled from the bath. The frequency
corresponding to the energy level spacing is changed linearly from ωh to ωc .
Stroke 4: The system is now connected to the cold bath. The energy gap is held
constant at ωc , resulting in H(ωc ) = (ωc/2)σz as the final Hamiltonian at the
end of this stroke.
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Otto Engine

Working substance: two-qubit system

Interaction with SQTh modelled by [SB, V Ravishankar, R. Srikanth (2010)]

∂ρ(t)

∂t
= −i [H̃, ρ(t)]

−
1

2
Γ12

∑
i,j=1,2

[1 + Ñ](ρS+
i S−j + S+

i S−j ρ− 2S−j ρS
+
i )

−
1

2
Γ12

∑
i,j=1,2

Ñ(ρS−i S+
j + S−i S+

j ρ− 2S+
j ρS

−
i )

+
1

2
Γ12

∑
i,j=1,2

M̃(ρS+
i S+

j + S+
i S+

j ρ− 2S+
j ρS

+
i )

+
1

2
Γ12

∑
i,j=1,2

M̃∗(ρS−i S−j + S−i S−j ρ− 2S−j ρS
−
i ),
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Working Substance

H̃ consists of a total energy operator for the two qubits, and an interaction
between them, which is mediated by the qubits’ interaction with the bath:

H̃ = ~(ω1S
z
1 + ω2S

z

2 ) + ~Ω12(S+
1 S−2 + S+

2 S−1 ),

where

Sz
1 =

1

2
(|e1〉 〈e1| − |g1〉 〈g1|)

Sz
2 =

1

2
(|e2〉 〈e2| − |g2〉 〈g2|)

S+
1 = |e1〉 〈g1| , S+

2 = |g2〉 〈e2|

S−1 = |e1〉 〈g1| , S−2 = |g2〉 〈e2| .

Here S±1,2 are the raising and lowering operators and Sz
1,2 are the energy operators

of the concerned qubits.
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Working Substance

The strength of the interaction between the two qubits is given by

Ω12 = Ω21 =
3

4
Γ

[
−{1− (µ̂.r̂12)2}

cos (k0r12)

(k0r12)

+{1− 3(µ̂.r̂12)2} ×
{

sin (k0r12)

(k0r12)

2

+
cos (k0r12)

(k0r12)3

}]
.

The magnitude of the wavevector is k0 = 2π/λ0 = ω0/c, where λ0 is the
resonant wavelength.

The decoherence may be broadly categorized as (a) independent decoherence
where k0.r12 > 1 and (b) collective decoherence where k0.r12 � 1.

Ω12 provides the shifts in atomic energy levels.
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Power of Two-Qubit Engine
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parameters rh and rc . Other parameters are: ω0h = 20, ω0c = 10, r12= 0.5.
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Power of Two-Qubit Engine
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(b) Power as a function of the frequency ratio
ω0c/ω0h for different values of bath temperature
ratio Tc/Th . The squeezing parameters are: rh = 1,
rc = 0. Other parameters are same as in (a).
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Power of Two-Qubit Engine
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Variation of Engine power as the function of Tc/Th at different r12. Other parameters are rh = 0,
rc= 0, ω0h= 20, ω0c= 10. (b) Same plots when rh = 1.
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Conclusions

Some recent developments in the efforts to understand non-Markovian
phenomenon were discussed.

Quantitites like, ergotropy, entropy production, power were discussed.

Two types of Quantum Thermodynamics Devices were discussed: Quantum
Battery and Quantum Heat Engine.

They were illustrated on open system models; (a). the Garraway type, (b).
central spin model, (c). QBM, (d). two-qubit decoherence.
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