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Quantum technology for HEP
(focus on applying quantum sensors to “HEP*”)

M. Doser,  CERN

* includes lower energy particle physics at laboratories like CERN
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Some words on the landscape

Quantum sensors for low energy particle physics

Quantum sensors for new particle physics experiments

Quantum detectors for high energy particle physics

Clarification of terms
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quantum sensors register a change of quantum state caused by the interaction with 
an external system: 

• transition between superconducting and normal-conducting
• transition of an atom from one state to another
• change of resonant frequency of a system (quantized)

Clarification of terms

and because the commensurate energies are very low, unsurprisingly, quantum 
sensors are ideally matched to low energy (particle) physics; 

     focus on CERN activities both in low energy and high energy particle physics

(I will not however be talking about entanglement and its potential applications)
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Axions, ALP’s, DM & non-DM 
UL-particle searches

Quantum sensors for low energy particle physics

quantum sensors & particle physics: what are we talking about?

EDM searches & tests of 
fundamental symmetries

search for NP / BSM

tests of QM wavefunction collapse, 
decoherence

https://indico.cern.ch/event/999818/

ECFA Detector R&D Roadmap Symposium of Task Force 5 Quantum and Emerging Technologies

domains of physics quantum technologies

superconducting devices (TES, 
SNSPD, …) / cryo-electronics

spin-based, NV-diamonds

optical clocks

ionic / atomic / molecular

optomechanical sensors

metamaterials, 0/1/2-D materials
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It is recommended that several “blue-sky” R&D activities be pursued. The development of solid state photon detectors from 
novel materials is an important future line of research, as is the development of cryogenic superconducting photosensors for 
accelerator- based experiments. Regarding advances in PID techniques, gaseous photon detectors for visible light should be 
advanced. Meta-materials such as photonic crystals should be developed, giving tune-able refractive indices for PID at high 
momentum. Finally, for TRD imaging detectors, the detection of transition radiation with silicon sensors is an important line of 
future research.

RECFA Detector R&D roadmap 2021

Chapter 4: Particle Identification and Photon Detectors

Chapter 5: Quantum and Emerging Technologies Detectors 
108 CHAPTER 5. QUANTUM AND EMERGING TECHNOLOGIES DETECTORS

Must happen or main physics goals cannot be met Important to meet several physics goals Desirable to enhance physics reach R&D needs being met

Quantum materials
Metamaterials, 0/1/2D-materials
Atom nterfer  i ometry
Atoms/molecules/ions
Optomechanical sensors
Superconducting sensors
Spin-based sensors
Kinetic detectors
Clocks and clock networks
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Figure 5.1: Schematic timeline of categories of experiments employing detectors from
the quantum sensing and emerging technology areas discussed in Section 5.3. A wide
range of related topics are grouped under a common heading (e.g. tests of fundamental
interactions also includes measurement of neutrino properties). The colour coding is
linked not to the intensity of the required e↵ort but to the potential impact on the
intended physics programme and experiments. Must happen or main physics goals
cannot be met (red, largest dot); Important or required to meet several physics goals
(orange, large dot); Desirable to enhance physics reach (yellow, medium dot); R&D
needs being met (green, small dot); Not applicable or fundamentally new approaches
needed (blank).

tween the large energy scale, f , whose inverse sets the overall size of the feeble cou-
plings of the axion to the Standard Model (SM) and the particle mass ma ' 6meV
(109GeV/f' 1.5THz) [Ch5-4]. Axion-like-particles (ALPs), a generalisation of the QCD
axion, have interactions again parametrically set by 1/f , but now the ALP mass is a
free parameter. The theoretical attractiveness of the QCD axion and ALPs is enhanced
both by their natural, symmetry-protected light mass, and their ubiquitous presence in
realistic completions of the SM and gravity, especially string theory [Ch5-5], [Ch5-6].
The details of their couplings and the relation between 1/f and their mass provides
information on extremely high energy scales, potentially including Planck-scale physics.
Importantly, both provide attractive DM candidates with natural early-universe produc-
tion mechanisms [Ch5-7], [Ch5-8], [Ch5-9], [Ch5-10].

Massive spin-1 “dark photons” (ultra-light dark Z
0), A

0µ, are another attractive
DM candidate with motivated production mechanisms [Ch5-11], [Ch5-12], [Ch5-13],
as well as couplings to the SM, particularly kinetic mixing ✏Fµ⌫F

0µ⌫ with the pho-
ton [Ch5-14], [Ch5-15], [Ch5-16], [Ch5-17]. Here ✏ ⌧ 1 is sensitive to physics even at
the highest energy scales. Similarly to axions, vector bosons, either broken (massive) or

https://cds.cern.ch/record/2784893

quantum sensing & particle physics
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Quantum sensors for new particle physics experiments: @ CERN

@ CERN: PBC, large low energy particle physics community…

Initial experiments with quantum sensors world-wide
     rapid investigation of new phase space

     scaling up to larger systems, improved devices
          expanding explored phase space 

https://indico.cern.ch/event/1002356/

RF cavities:                                axion searches

https://indico.cern.ch/event/1057715/ PBC technology mini workshop: superconducting RF (Sep. 2021)
PBC technology annual workshop 2021 (focus on quantum sensing)

tests of QED, symmetries particles, atoms, ions, nuclei:
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atom interferometers:                DM searches

https://indico.cern.ch/event/1002356/
https://indico.cern.ch/event/1057715/
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ECFA Detector R&D Roadmap Symposium of Task Force 5 Quantum and Emerging Technologies

Marianna Safronova (University of Delaware)https://indico.cern.ch/event/999818/ 

tests of QED, T-violation, P, Lorentz-violation, DM searches 

HCI’s in Penning traps

K. Blaum et al., Quantum Sci. Technol. 6 014002 (2021)

eEDM’s in molecules

nuclear clock (229Th)

molecular / ion clocks

Quantum Sensors for New-Physics Discoveries

https://iopscience.iop.org/journal/2058-9565/page/Focus-
on-Quantum-Sensors-for-New-Physics-Discoveries
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Quantum sensors for new particle physics experiments: @ CERN

particles, atoms, ions, nuclei:

https://indico.cern.ch/event/999818/
https://iopscience.iop.org/journal/2058-9565/page/Focus-on-Quantum-Sensors-for-New-Physics-Discoveries
https://iopscience.iop.org/journal/2058-9565/page/Focus-on-Quantum-Sensors-for-New-Physics-Discoveries
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Quantum sensors for new particle physics experiments: Penning traps

Review on HCIs for optical clocks: Kozlov et al., Rev. Mod. Phy. 90, 045005 (2018)

HCIs for ultra-precise clocks : applications & future

HCIs: much larger sensitivity to variation of α and dark matter searches then current clocks

• Enhancement factor K>100, most of present clocks K<1, Yb+ E3 K=6

• Hyperfine HCI clocks sensitive to me/mp ratio and mq/ΛQCD ratio variation 

• Additional enhancement to Lorentz violation searches

Dark matter 
searches

Tests of the equivalence principle

Search for the violation of 
Lorentz invariance

Picture: Nature 517, 592

• Searches for the variation of fundamental constants

• Tests of QED: precision spectroscopy

• Fifth force searches: precision measurements of isotope 
shifts with HCIs to study non-linearity of the King plot

5 years: Optical clocks with selected HCIs will reach 10-18 accuracy
10 years: Strongly α-sensitive transitions in HCIs will reach of 10-18 uncertainty, multi-ion HCI clocks

Picture: Jun Ye’s group

HCI (stable), (Z-n)+ HCI*(stable or unstable), (Z-1)+ HCI*(stable or unstable), (Z-1)+

e-
e- p

_

HCIs: much larger sensitivity to variation of α and dark matter searches then current clocks

Antiprotonic atoms     novel HCI systems

e-p
_

+

Ps*Z+

1 2 3 4

capture Auger ejection annihilation charge exchange w/ Rydberg atom

M. Doser, Prog. Part. Nucl. Phys, (2022), https://doi.org/10.1016/j.ppnp.2022.103964

standard HCI  novel HCI’s  
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e-

e-

p
_

1

Rydberg excitation

e-2

charge exchange

Antiprotonic Rydberg atoms: exotic couplings, similar approach as spectroscopy of muonic atoms, CPT tests

e-

p
_

1

Rydberg excitation

2

charge exchange

similar approach 
as eEDM in molecules

at end of cascade, p is
very close to nucleus…
investigate long-range 
behavior of strong
interaction?

_

Quantum sensors for new particle physics experiments: Penning traps

Antiprotonic Rydberg molecules: pEDM?
_
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Quantum sensors for low energy particle physics

10�22 eV 1048 GeVm�
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Figure 5.2: Axion mass range accessible via novel advanced quantum sensing techniques
compared to current experiments.

not necessarily thermal, of new ultra-light or massless particles in the universe. While
DM is known to exist, it is not known if there is DR. However DR arises frequently,
especially in theories with new light particles, and it often arises in theories of DM.
For example for any of the light DM candidates, e.g. axions, dark photons, etc., an
abundance of relativistic particles, thus DR, would necessarily be produced alongside
the DM. They could also be produced as a component of the dark energy (DE) density
if the DE is dynamical [Ch5-25]. Such “DE radiation” can have significantly higher
energy densities than other forms of DR, well above the usual Cosmic Microwave Back-
ground Radiation (CMBR) and Big Bang Nucleosynthesis (BBN) bounds on relativistic
species, because they are produced at late times. DR of particles such as axions or
dark photons would be an exciting signal to look for, quite distinct from cold DM. The
cosmic neutrino background (CNB) is DR that is believed to exist. While challeng-
ing [Ch5-26], observation of this CNB would provide one of the only ways to probe the
early pre-CMBR-formation universe. Further, a higher temperature population of cos-
mic neutrinos can also be produced by dynamical DE which would be significantly easier
for experiments to detect [Ch5-25] and would shed light on the nature of DE.

The success of LIGO and VIRGO in detecting gravitational waves (GWs) in the
10Hz. ⌫ . 10 kHz band has vividly demonstrated the power of quantum detectors to
advance fundamental physics [Ch5-27]. GWs enable investigations of general relativity,
black holes and neutron stars, tests of a variety of Beyond-the-Standard Model (BSM)
theories, and give a direct window on the earliest epochs of the Universe via primordial
stochastic GWs. Near-future instruments will cover the 0.1-30mHz (LISA) and 0.1µHz
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Thin Film (High Temperature) Superconducting
Radiofrequency Cavities for the Search of

Axion Dark Matter
J. Golm, S. Arguedas Cuendis, S. Calatroni, C. Cogollos, B. Döbrich, J.D. Gallego, J.M. Garcı́a Barceló, X.

Granados, J. Gutierrez, I.G. Irastorza, T. Koettig, N. Lamas, J. Liberadzka-Porret, C. Malbrunot, W. L. Millar,
P. Navarro, C. Pereira Carlos, T. Puig, G. J. Rosaz, M. Siodlaczek, G. Telles and W. Wuensch

Abstract—The axion is a hypothetical particle which is a
candidate for cold dark matter. Haloscope experiments directly
search for these particles in strong magnetic fields with RF
cavities as detectors. The Relic Axion Detector Exploratory Setup
(RADES) at CERN in particular is searching for axion dark
matter in a mass range above 30 µeV. The figure of merit of our
detector depends linearly on the quality factor of the cavity and
therefore we are researching the possibility of coating our cavities
with different superconducting materials to increase the quality
factor. Since the experiment operates in strong magnetic fields
of 11 T and more, superconductors with high critical magnetic
fields are necessary. Suitable materials for this application are
for example REBa2Cu3O7�x, Nb3Sn or NbN.
We designed a microwave cavity which resonates at around
9 GHz, with a geometry optimized to facilitate superconducting
coating and designed to fit in the bore of available high-field
accelerator magnets at CERN. Several prototypes of this cavity
were coated with different superconducting materials, employing
different coating techniques. These prototypes were characterized
in strong magnetic fields at 4.2 K.

Index Terms—Superconducting resonators, SRF superconduct-
ing radio frequency cavities, Quality factor, 2G HTS Conduc-
tors,axion
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I. INTRODUCTION

THE Relic Axion Detector Exploratory Setup (RADES)
is an axion haloscope experiment searching for dark

matter axions in a strong magnetic fields with high quality
factor cavities. It differs from most haloscopes in the fact
that thus far it employs dipole magnets and not solenoids.
Many experiments successfully use copper cavities in strong
magnetic fields to set limits to the axion coupling at low
mass ranges. Reference [1] and [2] and references therein
provide a recent review of experimental axion searches and the
haloscope technique. The past years superconducting cavities
were explored by experiments like QUAX [3], [4] and CAPP
[5], [6] in order to reach a higher sensitivity. An axion
with mass mA converts into a photon due to the inverse
Primakoff effect. If the converted photon’s energy matches
the resonance frequency of the cavity, the output power is
augmented depending on the axion’s coupling strength to
photons. For a given axion-photon coupling the figure of merit
F of the experiment is

F ⇠ g2a�m
2
AB

4V 2T�2
sysG

4Q, (1)

where ga� is the axion coupling to two photons, B the external
magnetic field (assumed constant over the cavity volume), V
is the cavity volume, Tsys is the detection noise temperature,
and G is the geometric form factor of the cavity mode.

The figure of merit of the experiment increases by the power
of four with the strength of the magnetic field. Therefore
we aim at magnets with fields as high as possible. For
the current run we had a 2-m long 11T dipole magnet in
single coil configuration available, for details see [7]. This
sets the requirements for the coatings: we needed a type II
superconductor with a critical magnetic field Bc2 well above
11T at 4.2K. The materials should also possess a RF surface
resistance Rs lower than copper at our operating conditions.
Experimental results and theoretical predictions have been
described in literature, see for example [8], [9] and references
therein for Nb3Sn or high temperature superconductors like
REBa2Cu3O7�x (RE = Y, Gd, Eu) (REBCO). Both these
materials were applied to our cavities. One cavity was sputter-
coated with Nb3Sn and REBCO tapes were applied to the
second cavity, where the hastelloy substrate was stripped off,
such that the REBCO layer is exposed to the RF fields.
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Quantum sensors for new particle physics experiments: Penning traps

magnetic field oscillations sourced by ALPs. A number of
current and proposed experiments are seeking to detect
ALPs in this mass range [13–20]. In this work we show
how, depending on the coil orientation, an ultrasensitive
superconducting single-particle detector of a cryogenic
Penning-trap experiment [21,22] can also detect ALPs.
Although these devices are not dedicated axion detectors,
they are able to set strong nonastrophysical limits on
the existence of ALPs in a narrow band around their
resonance frequency. By combining detector data from
many Penning-trap experiments, it should be possible to
search for ALP signals over a significant range of frequen-
cies. In this analysis, we set limits on the ALP-to-photon
coupling strength using the axial detection system of the
analysis trap of the baryon antibaryon symmetry experi-
ment (BASE) [23], complementing our study of the
possible interactions between ALPs and antiprotons [24].
BASE is a cryogenic Penning-trap experiment located at

CERN’s Antimatter Factory [23], dedicated to testing
charge-parity-time-reversal invariance by comparing the
fundamental properties of protons and antiprotons [25,26].
An illustration of the analysis trap (AT) which is used to
determine the antiproton spin state in high-precision
magnetic moment measurements [26,27] is shown in
Fig. 1(a). It comprises a stack of cylindrical gold-plated
copper and Co/Fe ring electrodes, which are separated by
sapphire spacers, and placed into the 1.945 T axial
magnetic field of a horizontal superconducting magnet.
An antiproton is confined radially by the magnetic field and
axially by voltages applied to the electrodes. As the particle
oscillates, femtoamp-sized image currents are induced in
the trap electrodes, which are picked up using high-
sensitivity LC circuits as image-current detectors.
The LC circuit [21], which is used both to detect

antiproton image currents and to extract the ALP-photon
interaction limits presented in this work, is formed by
connecting one end of a toroidal superconducting inductor,
shown on the right-hand side of Fig. 1(a), to an electrode,
while the other end is grounded. The remaining electrodes
are low-pass filtered so that they are held at radio-frequency
ground. The inductor is composed of NT ≃ 1100 turns of
120-μm-diameter superconducting wire wound around a
cylindrical polytetrafluoroethylene (PTFE) former of inner
radius r1 ¼ 11.5 mm, outer radius r2 ¼ 19 mm, and length
l ¼ 22 mm. The inductor is placed inside a NbTi cylindrical
housing. Awire tap is connected to couple the inductor to the
amplifier chain [21], defining the amplifier coupling factor
κ ≃ 0.2. The magnetic field is jjBejj ¼ 1.85ð5Þ T at the
position of the AT detector, directed along the axis of the
toroid, as indicated by the red arrow in Fig. 1(a). Figure 1(b)
shows an effective circuit diagram of the particle detector.
The inductor and the parasitic capacitance Cp of the trap
electrode form anLC circuit with aQ factor of 4.2ð3Þ × 104,
resonance frequency νz ≃ 674.9 kHz, and effective parallel
resistance Rp ≃ 2πQνzL ≃ 288 MΩ, where L is the

inductance of the circuit. When an antiproton reaches
thermal equilibrium with the detector, it acts like a series
LC circuit, shown in blue in Fig. 1(b). By adjusting the
voltages applied to the trap electrodes, the particle’s axial
oscillation frequency can be tuned to resonance with the
detector, leading to a voltage drop Vp ¼ RpIp across the
resonator.
As well as being ideally suited to detecting single-

particle image currents, the resonant LC circuit is also
sensitive to changes in the magnetic flux within the toroidal

(a)

(b)

(c)

FIG. 1. (a) An illustration of the main elements of the cryogenic
detection system together with the external magnetic field Be and
the azimuthal ALP magnetic field Ba. The NbTi end cap is not
shown for clarity. (b) The effective circuit diagram for the
detection system. When an antiproton is in thermal equilibrium
with the detector, as is the case during temperature measure-
ments, the trapped particle behaves like the series LC circuit
shown in blue. During ALP searches, the particle’s axial
frequency is out of resonance with the detector, so the blue part
of the circuit can be ignored. (c) A single Fourier transformed
spectrum of the voltage noise Vn recorded with 60 s averaging.
The red line plots Eq. (6) with parameter values b̂ found by
maximizing Lðdjfgaγ ¼ 0; b̂gÞ for this dataset d.
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search the noise spectrum of fixed-frequency resonant circuit 
for peaks caused by dark matter ALPs converting into photons 
in the strong magnetic field of the Penning-trap magnet

H. Nagahama et al., Rev. Sci. Instrum. 87, 113305 (2016)

Resolving single antiproton spin flips requires the 
highest Q and lowest temperature LC resonant 
detectors ever built: BASE-CERN is the state of the art
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Figure 3(b) puts these limits into the wider context of
other dedicated axion experiments and astronomical obser-
vations. The mass range investigated in this work is tiny
compared to the other experimental approaches in this
region; however, the limits achieved on gaγ are comparable
to the astrophysical limits set by Fermi-LAT (red). They are
around 10 times more stringent than the first-generation
ABRACADABRA pathfinder experiment [14] and search
for halo axions with ferromagnetic toroids (SHAFT)
experiment [20] and 5 times stronger than results reported
by the CAST helioscope [44]. Our limits are around a factor
of 10–20 less stringent than the ADMX-SLIC experiment
[19], which uses a lumped LC circuit operating at 42 MHz.
In part, the difference in performance can be attributed to
the lower magnetic fields (2 T vs a maximum of 7 T in
ADMX-SLIC) and shorter data acquisition time used in the
BASE experiment. Our experiment also benefits from a
direct measurement of the detector temperature using a
trapped antiproton, an advantage of using the highly
sensitive single-particle detectors found in Penning-trap
experiments for axion and ALP searches.

To adapt these detectors into more powerful ALP search
experiments with higher detection bandwidth, we are
currently developing superconducting tunable capacitors.
Together with a dedicated low-capacitance design of the
superconducting inductor, we expect detection bandwidths
in the range of 500 kHz to 1.2 MHz, at sensitivities which
are at least comparable to the ones reported in this work.
Placing the detector in a 7 T magnet also available at BASE
and using a broader FFT span which takes advantage of the
low amplifier input noise would allow the gap between 2
and 5 neV between the Fermi-LAT and SN-1987A results
to be constrained to an upper limit of 1.5 × 10−11 GeV−1 in
around one month. The detector properties could also be
probed using trapped protons, which can also be loaded
into the apparatus. This upgraded experiment would also
investigate the favored region proposed by Ref. [9].
In this work, we have presented the first use of the

ultrasensitive image current detection system of a Penning
trap to search for axionlike particles with masses in the
neV range. With the current setup, we place the strongest
laboratory constraints for a narrow mass range around
2.791 neV, at a level which is comparable to that obtained
from astrophysical observations with the Fermi-LAT space
telescope and stronger than several other current haloscope
and helioscope experiments. The interaction of the trapped
antiproton with the detection system allows an independent
determination of the detector properties, enabling the
measured voltage noise signal to be straightforwardly
related to the expected ALP signal. We expect that similar
analyses performed on data from other Penning traps may
allow comparable limits to be placed in different frequency
ranges, provided the detectors in these experiments are
favorably aligned. This work paves the way for future
experiments which scan through broader frequency ranges
at improved sensitivity.
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FIG. 3. (a) 95% confidence exclusion region for the coupling
constant gaγ from this work shown in blue and other limits
[14,19,20,42–54] and suggested regions from astronomical
studies [7–9]. (b) Wider limits.
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magnetic field oscillations sourced by ALPs. A number of
current and proposed experiments are seeking to detect
ALPs in this mass range [13–20]. In this work we show
how, depending on the coil orientation, an ultrasensitive
superconducting single-particle detector of a cryogenic
Penning-trap experiment [21,22] can also detect ALPs.
Although these devices are not dedicated axion detectors,
they are able to set strong nonastrophysical limits on
the existence of ALPs in a narrow band around their
resonance frequency. By combining detector data from
many Penning-trap experiments, it should be possible to
search for ALP signals over a significant range of frequen-
cies. In this analysis, we set limits on the ALP-to-photon
coupling strength using the axial detection system of the
analysis trap of the baryon antibaryon symmetry experi-
ment (BASE) [23], complementing our study of the
possible interactions between ALPs and antiprotons [24].
BASE is a cryogenic Penning-trap experiment located at

CERN’s Antimatter Factory [23], dedicated to testing
charge-parity-time-reversal invariance by comparing the
fundamental properties of protons and antiprotons [25,26].
An illustration of the analysis trap (AT) which is used to
determine the antiproton spin state in high-precision
magnetic moment measurements [26,27] is shown in
Fig. 1(a). It comprises a stack of cylindrical gold-plated
copper and Co/Fe ring electrodes, which are separated by
sapphire spacers, and placed into the 1.945 T axial
magnetic field of a horizontal superconducting magnet.
An antiproton is confined radially by the magnetic field and
axially by voltages applied to the electrodes. As the particle
oscillates, femtoamp-sized image currents are induced in
the trap electrodes, which are picked up using high-
sensitivity LC circuits as image-current detectors.
The LC circuit [21], which is used both to detect

antiproton image currents and to extract the ALP-photon
interaction limits presented in this work, is formed by
connecting one end of a toroidal superconducting inductor,
shown on the right-hand side of Fig. 1(a), to an electrode,
while the other end is grounded. The remaining electrodes
are low-pass filtered so that they are held at radio-frequency
ground. The inductor is composed of NT ≃ 1100 turns of
120-μm-diameter superconducting wire wound around a
cylindrical polytetrafluoroethylene (PTFE) former of inner
radius r1 ¼ 11.5 mm, outer radius r2 ¼ 19 mm, and length
l ¼ 22 mm. The inductor is placed inside a NbTi cylindrical
housing. Awire tap is connected to couple the inductor to the
amplifier chain [21], defining the amplifier coupling factor
κ ≃ 0.2. The magnetic field is jjBejj ¼ 1.85ð5Þ T at the
position of the AT detector, directed along the axis of the
toroid, as indicated by the red arrow in Fig. 1(a). Figure 1(b)
shows an effective circuit diagram of the particle detector.
The inductor and the parasitic capacitance Cp of the trap
electrode form anLC circuit with aQ factor of 4.2ð3Þ × 104,
resonance frequency νz ≃ 674.9 kHz, and effective parallel
resistance Rp ≃ 2πQνzL ≃ 288 MΩ, where L is the

inductance of the circuit. When an antiproton reaches
thermal equilibrium with the detector, it acts like a series
LC circuit, shown in blue in Fig. 1(b). By adjusting the
voltages applied to the trap electrodes, the particle’s axial
oscillation frequency can be tuned to resonance with the
detector, leading to a voltage drop Vp ¼ RpIp across the
resonator.
As well as being ideally suited to detecting single-

particle image currents, the resonant LC circuit is also
sensitive to changes in the magnetic flux within the toroidal

(a)

(b)

(c)

FIG. 1. (a) An illustration of the main elements of the cryogenic
detection system together with the external magnetic field Be and
the azimuthal ALP magnetic field Ba. The NbTi end cap is not
shown for clarity. (b) The effective circuit diagram for the
detection system. When an antiproton is in thermal equilibrium
with the detector, as is the case during temperature measure-
ments, the trapped particle behaves like the series LC circuit
shown in blue. During ALP searches, the particle’s axial
frequency is out of resonance with the detector, so the blue part
of the circuit can be ignored. (c) A single Fourier transformed
spectrum of the voltage noise Vn recorded with 60 s averaging.
The red line plots Eq. (6) with parameter values b̂ found by
maximizing Lðdjfgaγ ¼ 0; b̂gÞ for this dataset d.

PHYSICAL REVIEW LETTERS 126, 041301 (2021)
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Tunability!
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Resonant cavities possible down to µeV; 
below that, need huge volume
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FIG. 1. In shaded green, the projected 90% C.L. reach of our setup to axion dark matter for several values of leakage noise
suppression ✏, intrinsic quality factor Qint, and integration time tint. We assume pump and signal mode frequencies !0 = !1 =
100 MHz, a cavity volume Vcav = m3, a magnetic field strength B0 = 0.2 T, a mode overlap form factor ⌘a = 1, a drive oscillator
width �!d = 0.1 mHz, and an attenuated RMS cavity wall displacement qrms = 0.1 nm. Further variations are shown in Fig. 3.
Shown in gray are regions excluded by CAST, cavity haloscopes, measurements of the CMB, and observations of SN1987A [17, 19–
21, 23–26, 37–41]. The orange band denotes parameter space motivated by the strong CP problem. Along the blue band, axions
are produced through the misalignment mechanism at a level consistent with the observed dark matter energy density, assuming
a temperature independent mass and an O(1) initial misalignment angle (see Ref. [42] for a recent discussion), where we have
assumed a symmetry breaking scale fa given by ga�� = ↵em/(2⇡fa). For larger couplings above the blue band, axions produced
in the same way would instead make up a subcomponent of dark matter, ⇢a <

⇠ ⇢DM . However, since Je↵ / ga��
p
⇢a / ga��fa is

independent of ga�� / 1/fa, our setup is equally sensitive to such subcomponents.

of noise in the cavity, thereby allowing this setup to explore
new parameter space for axions as heavy asma ⇠ 10�7 eV,
as shown in Fig. 1. This broadband approach is thus sen-
sitive to a wide range of axion masses without the need to
scan over frequency splittings. It is also the first approach
that could directly detect electromagnetically-coupled ax-
ion DM at the lowest viable DM masses ma ⇠ 10�22 eV,
which correspond to a de Broglie wavelength the size of
dwarf galaxies and a coherence time ten times longer than
recorded human history.

Detection Strategy. — Our setup involves preparing an
SRF cavity by driving a loading waveguide, predominantly
coupled to the pump mode, with an external oscillator at
frequency !0. In the presence of axion DM, the pump
mode magnetic field B0 sources an e↵ective current2 as in

2
The signal survives at low axion masses because in this limit

Eq. (2) that oscillates at frequency

!sig ' !0 ±ma . (3)

Since this current is parallel to B0, it drives power into
the signal mode with strength parametrized by the form
factor

⌘a =
|
R
Vcav

E⇤
1(x) ·B0(x)|

� R
Vcav

|E1(x)|2
R
Vcav

|B0(x)|2
�1/2  1 , (4)

where E1 is the signal mode electric field and Vcav is the
volume of the cavity. As a concrete example, ⌘a ⇠ O(1) for
the TE011 and TM020 modes of a cylindrical cavity, which
are degenerate in frequency for a length-to-radius ratio of

@tJe↵ ' ga�� @ta @2
t B / ma a /

p
⇢DM is independent of ma

for a fixed axion energy density. For a fixed axion field amplitude,
@tJe↵ ! 0 as ma ! 0, as required from general principles.

2

Quantum sensors for new particle physics experiments: tunable RF cavities

A. Berlin, Raffaele Tito D’Agnolo, S. Ellis, C. Nantista, J. Nielson, P. Schuster, S. Tantawi, N. Toro, K. Zhou, JHEP 07 (2020) 07, 088

Qint ≳ 1010 achieved by DarkSRF collaboration 
      (sub-nm cavity wall displacements)

A. Grassellino, “SRF-based dark matter search: 
Experiment,” 2019. https://indico.fnal.gov/event/19433/
session/2/ contribution/2/material/slides/0.pdf
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(a) Cartoon of cavity setup. (b) Signal parametrics.

FIG. 1. (a) A schematic depiction of a potential cavity setup. A photon of frequency !0 is converted by the axion dark
matter background into a photon of frequency !0 ±ma, where ma is the axion mass. The cavity is designed to have two nearly
degenerate resonant modes at !0 and !1 = !0 + ma. One possibility, as discussed in Section IV, is to split the frequencies of
the two polarizations of a hybrid HE11p mode in a corrugated cylindrical cavity. These two polarizations e↵ectively see distinct
cavity lengths, L0 and L1, allowing !0 and !1 to be tuned independently. In this case, larger frequency steps could be achieved
by adjusting the fins (shown in red), while smaller frequency steps could be achieved with piezo-actuator tuners.
(b) A schematic comparison between the proposed frequency conversion scheme (right of the dotted line) and typical searches using
static magnetic fields (left of the dotted line). The vertical and horizontal axes correspond to di↵erential power and frequency,
respectively, of either the driven field (vertical arrows) or the axion-induced signal (resonant curves). The parametric signal power
derived in Section II is shown for both setups, where we assume !sig ⇠ V

�1/3 for our proposed scheme and factored out a common
volume dependence of V 5/3.

Resonant detectors are well-suited to exploit the coherence of the axion field. To date, most axion search experiments
have matched the resonant frequency of the experiment to the mass of the axion DM being searched for. For ma ⇠ µeV,
the axion oscillates at ⇠ GHz frequencies. This enables resonant searches using high-Q normal-conducting cavities in
static magnetic fields [16–22], where a cavity mode is rung up through the interaction of Eq. (1), sourced by the axion
field and the external B field. These experiments take advantage of strong magnetic fields, the large quality factors
achievable in GHz normal-conducting cavities, and low-noise readout electronics operating at the GHz scale. However,
extending this approach to smaller axion masses would require the use of prohibitively large cavities. To probe lighter
axions, experiments have been proposed using systems whose resonant frequencies are not directly tied to their size,
such as lumped-element LC circuits [30–32] or nuclear magnetic resonance [33].

In this work, we explore an alternative approach to resonant axion detection, where the frequency di↵erence between
two modes is tuned to be on-resonance with the axion field, while the mode frequencies themselves remain parametrically
larger. Because of their large quality factors, superconducting radio frequency (SRF) cavities are ideal resonators for such
a setup. More concretely, as illustrated in Figure 1, we consider an SRF cavity with a small, tunable frequency di↵erence
between two low-lying modes, which we call the “pump mode” and the “signal mode.” The cavity is prepared by driving
the pump mode, which has frequency !0 ⇠ GHz � ma. If the signal mode is tuned to a frequency !1 ' !0 ± ma, then
the axion DM field resonantly drives power from the pump mode to the signal mode.

The idea of detecting axions through photon frequency conversion has been studied in other contexts.2 These include
axion detection with optical cavities [38–40] and frequency conversion in SRF cavities with GHz-scale mode splittings [41].
More generally, frequency conversion is a commonly used technique in signal processing, under the name of “heterodyne
detection.”

2
Di↵erent SRF setups have also been considered for production and detection of light, non-DM axions [34, 35]. Another, distinct idea is

the proposal of Refs. [36, 37] to drive two modes and detect the resulting axion-induced frequency shifts.

2

Asher Berlin, Raffaele Tito D'Agnolo, Sebastian A. R. Ellis, Christopher Nantista, Jeffrey Neilson, Philip Schuster, Sami Tantawi, 
Natalia Toro, Kevin Zhou, https://arxiv.org/abs/1912.11048

”The cavity is designed to have two nearly degenerate resonant modes at ω0 and ω1 = ω0 + ma. One possibility is to split 
the frequencies of the two polarizations of a hybrid HE11p mode in a corrugated cylindrical cavity. These two polarizations 
effectively see distinct cavity lengths, L0 and L1, allowing ω0 and ω1 to be tuned independently.”

Tunability!
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Axion heterodyne detection problem: cavity resonance generally fixed

resonant cavities

ADMX 
experiment

driving “pump mode” at ω0 ~ GHz allows axion to resonantly 
drive power into “signal mode” at ω1 ~ ω0 ± ma

Conceptual Theory Level Proposal:

https://arxiv.org/search/hep-ph?searchtype=author&query=Berlin%2C+A
https://arxiv.org/search/hep-ph?searchtype=author&query=D%27Agnolo%2C+R+T
https://arxiv.org/search/hep-ph?searchtype=author&query=Ellis%2C+S+A+R
https://arxiv.org/search/hep-ph?searchtype=author&query=Nantista%2C+C
https://arxiv.org/search/hep-ph?searchtype=author&query=Neilson%2C+J
https://arxiv.org/search/hep-ph?searchtype=author&query=Schuster%2C+P
https://arxiv.org/search/hep-ph?searchtype=author&query=Tantawi%2C+S
https://arxiv.org/search/hep-ph?searchtype=author&query=Toro%2C+N
https://arxiv.org/search/hep-ph?searchtype=author&query=Zhou%2C+K
https://arxiv.org/abs/1912.11048
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Topological Dark Matter (TDM)

AION: atom interferometer (start small, ultimately     space)

TDM can be expressed as a scalar field that couples to fundamental constants, thus producing 
variations in the transition frequencies of atomic clocks at its passage.

Local Lorentz Invariance (LLI) searching for daily variations of the relative frequency difference of e.g. Sr optical lattice clocks
or Yb+ clocks confined in two traps with quantization axis aligned along non-parallel directions

Local Position Invariance (LPI)

independence of any local test experiment from
the velocity of the freely-falling apparatus.

independence of any local test experiment from
when and where it is performed in the Universe

spatial variation of the fundamental constants associated with a change in the gravitational potentialUltralight Dark Matter

Gravitational wave detector clocks act as narrowband detectors of the Doppler shift on the laser frequency due to
the relative velocity between the satellites induced by the incoming gravitational wave

comparing atomic clocks based on different transitions can be used to constrain the time 
variation of fundamental constants and their couplings, comparison of two 171Yb+ clocks
and two Cs clocks -> limits on the time variation of the fine structure constant and of the 
electron-to-proton mass ratio

Optical lattice clocks at up to 1 × 10−18 
   relative accuracy 

& expanded optical fibre network 
   (operated between a number of
   European metrology institutes)

& develop cold atom technology for
   robust, long-term operation

electrostatic accelerometer

atom interferometer

Atomic Electrostatic

accelerometer accelerometer

Sensitivity 4⇥ 10�8 m/s2/Hz1/2 on ground 3⇥ 10�12 m/s2/Hz1/2

(projection for space at 10�12 m/s2/Hz1/2 (demonstrated)

for interrogations of more than 20 s)

Measurement bandwidth  0.1 Hz [0.005-0.1] Hz

Scale factor Absolute Calibration required

Stability No drift Drift

Measurement Single axis Three axes

capability

Proof mass motion Residual velocities ! Coriolis acceleration

SWaP High Low

TRL Intermediate High

Table 3. Comparison of classical and quantum sensors.

left panel, and colour-coded in the right panels. The computations were carried out without any
empirical periodic parameter adjustment in the gravity-field reconstruction.

Figure 6. Spectra of gravity field recovery in equivalent water height obtainable with an atom interferometer

and an electrostatic accelerometer, shown as black and red lines, respectively, in the left panel and colour-coded

in the lower and upper maps in the right panels. Figure taken from [172].

The potential gains in Earth observation obtainable using quantum sensors are illustrated in Fig. 7.
The ellipses represent the required measurement resolutions for the indicated scientific objectives,
with the spatial resolution on the horizontal axis and the temporal resolution on the vertical axis.
Also shown are the sensitivity curves of the “classical” CHAMP [43], GRACE [44] and GOCE [13]
missions and the prospective sensitivity of a possible quantum gravimetry mission employing atom

– 17 –

L. Badurina et al., AION: An Atom Interferometer Observatory and Network, JCAP 05 (2020) 011, [arXiv:1911.11755].

arXiv:2201.07789v1 [astro-ph.IM] 19 Jan 2022

Quantum sensors for new particle physics experiments: atom interferometry

R & D needed:
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Quantum sensors for new particle physics experiments: atom interferometry

Where does this fit in? Go after 10-20 eV < ma < 10-12 eV, 
but also topological DM, ultralight DM, gravitational waves, Lorentz invariance, ...

ACES (Atomic Clock Ensemble in Space):                            2024-2025

pathfinder / technology development missions:

AEDGE: ~2045

two on-board clocks rely on atomic transitions in the microwave domain
ESA mission for ISS

probe time variations of fundamental constants, and to perform tests of the Lorentz-Violating Standard Model Extension (SME).  Possibly topological dark matter

I-SOC: key optical clock technology (laser cooling, trapping, optical resonators) for space; Sr optical lattice clock / Sr ion clock; 
            microwave and optical link technology; 

FOCOS (Fundamental physics with an Optical Clock Orbiting in Space): Yb optical lattice clock with 1 × 10−18 stability

MAGIS                                                Fermilab

~2030

El-Neaj, Y.A., Alpigiani, C., Amairi-Pyka, S. et al. AEDGE: Atomic 
Experiment for Dark Matter and Gravity Exploration in Space. EPJ Quantum 
Technol. 7, 6 (2020). https://doi.org/10.1140/epjqt/s40507-020-0080-0

M. Abe, P. Adamson, M. Borcean, D. Bortoletto, K. Bridges, S. 
P. Carman et al., Matter-wave Atomic Gradiometer 
Interferometric Sensor (MAGIS-100), arXiv:2104.02835v1.

arXiv:2201.07789v1 [astro-ph.IM] 19 Jan 2022

MAGIS collaboration, Graham PW, Hogan JM, Kasevich MA, 
Rajendran S, Romani RW. Mid-band gravitational wave 
detection with precision atomic sensors. arXiv:1711.02225

satellite missions:

satellite mission

MIGA              AION    

AION: ~2045
satellite mission

France ChinaUK

atom interferometry at macroscopic scales:

ZAIGA CERN?
shafts (100~500 m ideal testing ground),
cryogenics, vacuum, complexity…
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AION: atom interferometer (start small, ultimately     space)
L. Badurina et al., AION: An Atom Interferometer Observatory and Network, JCAP 05 (2020) 011, [arXiv:1911.11755].
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typically not obvious, given that most detectors rely on detecting the 
product of many interactions between a particle and the detector 
(ionization, scintillation, Cerenkov photons, …)

handful of ideas that rely on quantum devices, or are inspired by them. 
not necessarily used as quantum detectors per se, but rather their 
properties to enhance / permit measurements that are more difficult 
to achieve otherwise

main focus on tracking / calorimetry / 
timing / novel observables / PU ...

Quantum sensors for high energy particle physics

very speculative!!

closely related: nanostructured materials

v

          these are not fully developed concepts, but rather the kind
          of approaches one might contemplate working towards

16/39

Frontiers of Physics, M. Doser et al., 2022
doi: 10.3389/fphy.2022.887738



Bangalore, 16.11.2022

Rydberg TPC’s

helicity detectors

Atoms, molecules, ions

Spin-based sensors

5.3.5 *

5.3.3 *

GEMs (graphene)

* https://cds.cern.ch/record/2784893

active scintillators (QCL, QWs, QDs)

Quantum sensors for high energy particle physics

chromatic calorimetry (QDs)

Metamaterials, 0 / 1 / 2-dimensional materials (quantum dots, nanolayers)

5.3.6 *

17/39

Superconducting sensors
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Quantum sensors for high energy particle physics

Quantum dots: tunability

chromatic tunability      optimize for quantum efficiency of PD (fast, optimizable WLS)

Hideki Ooba, “Synthesis of Unique High Quality Fluorescence Quantum Dots 
for the Biochemical Measurements,” AIST TODAY Vol.6 , No.6 (2006) p.26- 27

Etiennette Auffray-Hillemans / CERN

deposit on surface of high-Z material       thin layers of  UV       VIS WLS

embed in high-Z material ? two-species (nanodots + microcrystals) embedded in polymer matrix?
       quasi continuous VIS-light emitter (but what about re-absorbtion?)

18/39
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Quantum sensors for high energy particle physics

idea: seed different parts of a
“crystal” with nanodots emitting
at different wavelengths, such that 
the wavelength of a stimulated 
fluorescence photon is uniquely 
assignable to a specific nanodot 
position

select appropriate nanodots

UV
illumi-
nation

e.g. triangular carbon nanodots

e.m. shower

requires: 
• narrowband emission (~20nm)
• only absorption at longer
  wavelengths
• short rise / decay times

Quantum dots: chromatic calorimetry

F. Yuan, S. Yang, et al., Nature Communications 9 (2018) 2249

absorption emission
19/39
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Quantum sensors for high energy particle physics

absorption
spectrum

emission
spectrum

leftmost nanodots:
absorb wavelengths < 650 nm
emit at > 680 nm

next band:
absorb wavelengths < 590 nm
emit at > 590 nm

…

rightmost nanodots:
absorb wavelengths < 410 nm
emit at > 420 nm

if high-Z substrate transparent 
in 400-700 nm, then no re-
absorption of emitted light

carbonized polymer dots

CsPbCl3 nanocrystals

triangular carbon nanodots

20/39 (shower profile via spectrometry) Bangalore, 16.11.2022

Metalenses?

M. Khorasaninejad 
& F. Capasso, 
Science 358, 6367 
(2017)
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Quantum sensors for high energy particle physics

Active scintillators (QWs, QDs, QWDs, QCLs)

standard scintillating materials are passive
• can not be amplified 
• can not be turned on/off 
• can not be modified once they are in place

is it possible to produce active scintillating materials?
• electronically amplified / modulable
• pulsed / primed 
• gain adapted in situ

Appl. Sci. 2020, 10, 1038 5 of 27
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Figure 1. Schematic representation of InGaAs structures of different dimensionalities—self-organized 
Stranski–Krastanow quantum dots, QDs (a); quantum well-dots, QWDs (b); and quantum wells, QW 
(c). 

2. Growth and Structural Properties 

The formation of QWDs takes place during the MOCVD deposition of a lattice-mismatched 
InGaAs thin film on the GaAs substrate. Structures have been grown on exact oriented (100) and 
vicinal (4–6° off) GaAs substrates using an MOCVD installation with a low pressure (100 mbar) 
horizontal reactor. Metal alkyls (trimethylgallium, trimethylaluminum, trimethylindium) and arsine 
were used as precursors. GaAs and AlGaAs layers were deposited at 700 °C, the ratio of molar flows 
of V to III group precursors is about 30, and 0.4 nm/s growth rate. InGaAs QWDs are formed at 
lowered growth temperatures 500–550 °C, the ratio of molar flows of V to III group precursors is 
about 30 and 0.2 nm/s growth rate. Compositional and thickness modulations appear due to surface 
migration of In atoms in the lateral strain fields. In other words, the appearance of In-rich islands is 
energetically favorable because of partial strain relaxation. On the one hand, elastic strain should be 
strong enough to cause such modulations. On the other hand, it should not be too high in order to 
avoid the transition to the Stranski–Krastanow growth mode and formation of conventional self-
organized QDs. The strain energy depends both on the thickness and composition of the lattice-
mismatched epitaxial material (i.e., the In content), and both parameters should be optimized. The 
most direct method to study the structural properties of InGaAs nanostructures is transmission 
electron microscopy (TEM). The combination of cross-section and plan-view TEM images allows one 
to determine the size, shape, and density of in-rich islands. 

Let us consider the growth of InxGa1ƺxAs layer of different In concentrations (x) on GaAs 
substrate. Deposition of In0.2Ga0.8As results in the formation of a planar uniform layer. If the indium 
concentration exceeds 60%, the growth occurs in Stranski–Krastanow mode via the formation of the 
wetting layer on the top of which large-sized pyramid-shaped islands are formed. In both cases of 
low and high In contents, QWDs are not observed in TEM images. The window of In composition to 
grow QWDs is from 30 to 50%.  

Figure 2 illustrates the impact of indium composition on structural properties of InGaAs layers 
formed on 6o misoriented GaAs (100) substrates. The strain fields caused by variation of indium 
composition are visualized as black-and-white contrast. Plan-view TEM images reveal the formation 
of islands with a higher In composition as compared to the In concentration in the surrounding 
InGaAs layer (residual QW). It is these islands that we refer to as quantum well-dots. The QWDs are 
aligned along the [1–10] direction, have a round or oval shape and lateral size (in case of In0.3Ga0.7As) 
of 10–20 nm. The islands tend to form nanowire-shaped clusters along the [1–10] direction, which 
corresponds to the direction of atomic steps [33,34]. This tendency is weakening with increasing the 
indium composition. The nanowire-like objects show periodicity in the [110] direction with a period 
of 20-40 nm. Note that the length of monolayer steps for 6° misoriented GaAs (100) surface is about 
3 nm. The larger value of the found periodicity is due to the “step-bunching” effect [35] that occurs 
during the MOVPE growth on vicinal substrates [16]. 

Figure 1. Schematic representation of InGaAs structures of di↵erent dimensionalities—self-organized
Stranski–Krastanow quantum dots, QDs (a); quantum well-dots, QWDs (b); and quantum wells,
QW (c).

2. Growth and Structural Properties

The formation of QWDs takes place during the MOCVD deposition of a lattice-mismatched
InGaAs thin film on the GaAs substrate. Structures have been grown on exact oriented (100) and vicinal
(4–6� o↵) GaAs substrates using an MOCVD installation with a low pressure (100 mbar) horizontal
reactor. Metal alkyls (trimethylgallium, trimethylaluminum, trimethylindium) and arsine were used
as precursors. GaAs and AlGaAs layers were deposited at 700 �C, the ratio of molar flows of V to
III group precursors is about 30, and 0.4 nm/s growth rate. InGaAs QWDs are formed at lowered
growth temperatures 500–550 �C, the ratio of molar flows of V to III group precursors is about 30 and
0.2 nm/s growth rate. Compositional and thickness modulations appear due to surface migration of
In atoms in the lateral strain fields. In other words, the appearance of In-rich islands is energetically
favorable because of partial strain relaxation. On the one hand, elastic strain should be strong enough
to cause such modulations. On the other hand, it should not be too high in order to avoid the
transition to the Stranski–Krastanow growth mode and formation of conventional self-organized QDs.
The strain energy depends both on the thickness and composition of the lattice-mismatched epitaxial
material (i.e., the In content), and both parameters should be optimized. The most direct method to
study the structural properties of InGaAs nanostructures is transmission electron microscopy (TEM).
The combination of cross-section and plan-view TEM images allows one to determine the size, shape,
and density of in-rich islands.

Let us consider the growth of InxGa1�xAs layer of di↵erent In concentrations (x) on GaAs substrate.
Deposition of In0.2Ga0.8As results in the formation of a planar uniform layer. If the indium concentration
exceeds 60%, the growth occurs in Stranski–Krastanow mode via the formation of the wetting layer on
the top of which large-sized pyramid-shaped islands are formed. In both cases of low and high In
contents, QWDs are not observed in TEM images. The window of In composition to grow QWDs is
from 30 to 50%.

Figure 2 illustrates the impact of indium composition on structural properties of InGaAs layers
formed on 6� misoriented GaAs (100) substrates. The strain fields caused by variation of indium
composition are visualized as black-and-white contrast. Plan-view TEM images reveal the formation of
islands with a higher In composition as compared to the In concentration in the surrounding InGaAs
layer (residual QW). It is these islands that we refer to as quantum well-dots. The QWDs are aligned
along the [1–10] direction, have a round or oval shape and lateral size (in case of In0.3Ga0.7As) of 10–20 nm.
The islands tend to form nanowire-shaped clusters along the [1–10] direction, which corresponds to the
direction of atomic steps [33,34]. This tendency is weakening with increasing the indium composition.
The nanowire-like objects show periodicity in the [110] direction with a period of 20–40 nm. Note that
the length of monolayer steps for 6� misoriented GaAs (100) surface is about 3 nm. The larger value of
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Carrier di↵usion and correspondingly surface non-radiative recombination is activated with
temperature increase. At room temperature, the carrier concentration in the continuum states is
enhanced, and the PL intensity of QD structure drops by about two times when the mesa diameter
decreases down to 0.2 µm. In the case of mesas with QWD, the photoluminescence intensity (both at 77
and 290 K) exhibits faster deterioration with decreasing the mesa diameter as compared to QDs. This is
explained by the fact that QWDs provides weaker carrier localization. The smallest mesa size showing
detectable PL was 1 µm (at room temperature) or 0.3 µm (at liquid nitrogen). In the case of mesas with
QW, photoluminescence was observed only in 6–10-µm in diameter mesas, whereas in the mesas with
smaller sizes the luminescence was not detected. We conclude that carrier di↵usion lengths in QWD
structures are much shorter than in QW structures, which is in agreement with the suppressed carrier
di↵usion in disordered QWs [52]. This makes QWDs very advantageous for their use as an active area
in compact nanophotonic devices (this will be discussed in more detail in Section 3.5).

3.3. Dynamic Characteristics of QWDs

The quantum dimensionality naturally influences carrier relaxation and recombination processes
in low dimensional structures. In this section, we compared results of time-resolved PL studies for 0D
InAs/InGaAs/GaAs quantum dots [51], 2D InGaAs/GaAs quantum wells, and InGaAs/GaAs QWDs
nanostructures of mixed (0D/2D) dimensionality.

The PL spectra at the CW excitation are demonstrated in Figure 9a. The spectrum of the QD sample
contains a dominant peak at 1270 nm due to the emission from the ground-state optical transition as
well as weaker peaks at higher energies due to the emission from the first and second excited-state
transitions. The spectra of QWD- and QW-samples show intense peaks of the ground-state optical
transition and weaker shoulder from the higher energy states. All the samples show high optical
quality: the drop in integrated PL intensity with temperature increase from 78 K to 300 K is 3.2, 1.6,
and 1.3 for QDs, QWDs, and QWs, respectively.
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Figure 9. Normalized PL spectra (a) and temporal evolution of PL signal at its spectral maximum (b) 
for quantum dots (blue), quantum well-dots (green), and quantum well (red). 

QWD PL intensity temporal dependence can be fitted by a mono-exponential expression, which 
is ascribed to the absence of discrete high energy levels involved in carrier relaxation processed to 
the ground state. The PL decay time at 1/e level for ground-state transition is about 6 ns.  

The QW structure shows the slowest PL decay with a characteristic time of 20 ns. This value is 
comparable with carrier radiative lifetime measured for QWs in the temperature range 150–250 K 
[59]. At higher temperatures, PL decay time is limited by non-radiative lifetime and is decreasing 
rapidly. Taking into account extremely high optical quality of the structures under study, which 
demonstrates room-temperature PL intensity comparable to the one at 78 K (to compare, in contrast, 
in [59], PL intensity degradation in the temperature range 10–250 K is higher than two orders of 
magnitude), one can suppose that non-radiative recombination processes are still not significant even 
at room temperature, and PL decay time corresponds to radiative recombination time. 

Summarizing, the presented data show, that the carrier radiative recombination time is affected 
by structure dimensionality. The localization of charge carriers in QWDs results in the attraction of 
the carrier of opposite electrical charge and facilitates faster radiative recombination as compared to 
QWs. 

3.4. Edge Emitting Lasers 

In this section, we describe properties of edge-emitting lasers based on QWDs.  
The active area of semiconductor laser diodes, as well as device design, should be optimized for 

certain applications. For instance, high power QW lasers usually contain one or two QWs in the active 
area because the devices should have low internal losses. In the case of QD lasers, more QD layers 
(typically 5–10) are required to avoid gain saturation and switching to excited state lasing at high 
injection currents [60]. QWDs are an intermediate case between QWs and QDs, so the number of 
QWDs layers in the active area should be optimized.  

The laser wafers with different numbers of QWDs in the active region (from 1 to 10) were grown 
by MOCVD on the GaAs substrates misoriented on 6° toward [111] direction. Each QWD layer was 
formed by the deposition of 8 ML of In0.4Ga0.6As. The QWD sheets were separated with 40 nm thick 
undoped GaAs spacers. The laser structures have undoped GaAs waveguides with a thickness of 
0.68 µm not exceeding the third mode cut-off. The active region locates in the center of the waveguide, 
which ensures lasing on the fundamental transverse mode. The waveguide was sandwiched between 
p-type and n-type Al0.4Ga0.6As claddings having the thicknesses of 0.75 µm and 1.5 µm, respectively. 
For reducing the internal loss, the claddings doping levels of 2 × 1018 cmƺ3 were reduced down to 7 × 
1017 cmƺ3 in the vicinity of the waveguide. The wafers were processed into broad-area lasers with 100-
µm-wide shallow-mesa ridges with etching through the p-contact and partly through the p-cladding 

Figure 9. Normalized PL spectra (a) and temporal evolution of PL signal at its spectral maximum (b)
for quantum dots (blue), quantum well-dots (green), and quantum well (red).

Figure 9b compares the temporal evolution of PL signal for the QD, QWD, and QW structures [53].
In case of QDs, the PL intensity temporal evolution can be well fitted by bi-exponential expression
PL(t) = A1exp(⌧1/t) + A2exp(⌧2/t). The decay of PL signal is characterized by the fast component
(⌧1 = 1.1 ns) and slow component (⌧2 = 7 ns). This agrees with previous estimations of PL decay
time about 1 ns made for self-organized In(Ga)As QDs by several research groups [54,55]. The slow
component is attributed to carrier radiative recombination from the QD ground state. It is generally
believed that at room temperature, the carrier lifetime in semiconductors is limited by non-radiative
recombination [56]. The obtained large value of PL decay time can be explained by carrier recapture in

existing QD’s, QWD’s are elements of optoelectronic devices,
typically running at 10 GHz, quite insensitive to temperature

Light Emitting Devices Based on Quantum Well-Dots, Appl. Sci. 2020, 10, 1038; doi:10.3390/app10031038

R. Leon et al., "Effects of proton irradiation on luminescence emission and carrier dynamics of self-assembled III-V 
quantum dots," in IEEE Transactions on Nuclear Science, 49, 6, 2844-2851 (2002), doi: 10.1109/TNS.2002.806018.QD’s are radiation resistant

Emission in IR! Silicon is transparent at these wavelengths…
Can this IR light be transported through a tracker to outside PDs?
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QD’s produce sharp atom-like emission peaks
generate photons by optical pumping or electrical injection of electrons into the QD
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Emitted light is IR~THz, normally mono-chromatic but tunable from 3 !m ~ 12 !m

+
+

+ -
-
-

(msteps)

Radiation resistant (Radiation Physics and Chemistry 174, 2020, 108983)

Couple bulk semi-
conductor to electron 
injection layer: 
    ne           msteps x nγ

23/39

https://www.laserfocusworld.com/test-measurement/spectroscopy/article/16556856/quantumcascade-lasers-qcls-enable-applications-in-ir-spectroscopy
https://www.sciencedirect.com/journal/radiation-physics-and-chemistry
https://www.sciencedirect.com/journal/radiation-physics-and-chemistry/vol/174/suppl/C


Bangalore, 16.11.2022

Quantum sensors for high energy particle physics

Quantum dots and wells:

https://arxiv.org/abs/2202.11828

DoTPiX

= single n-channel MOS transistor, in  
   which a buried quantum well gate
   performs two functions: 

• as a hole-collecting electrode and 

• as a channel current modulation gate

submicron pixels scintillating (chromatic) tracker

Figure 4: A schematic drawing of the proposed tracking sensor. A charged particle enters
the GaAs scintillator, producing electron-hole pairs. The electrons are then quickly trapped
by the positively charged InAs quantum dots (QDs). The QDs undergo photoluminescence
(PL) and emit photons that travel through the medium. The emitted photons are collected
by a photodiode (PD) array.

Figure 5: Scope traces of events from Am241 events. Recorded pulses showing 100 ps rise
time, 270 ps decay time, and 38 ps time resolution with average collected charge of 1.5⇥105

electrons. Adapted from Ref. [40].
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https://arxiv.org/abs/2202.11828

IR emission from InAs QD’s
integrated PD’s (1-2 !m thick)

Figure 6: Light yield in photons/MeV of deposited energy versus decay time for various
known scintillators. Faster performance (decreasing decay-time) extends rightward along
the horizontal axis. Adapted from Ref. [40].

Significant exploratory research and development is required to accurately assess ex-
pected performance of these detectors in future high-energy physics applications. First, we
must demonstrate detection performance with minimum ionizing particles, corresponding
to expected signals of about 4000 electron-hole pairs in a single detector of 20 µm thick-
ness. Given that the measurements with ↵-particles are noise-limited, we also expect to
encounter significant challenges developing a suitable electronics solution for optimal energy
and timing performance for MIP detection. Furthermore, the radiation tolerance of this
type of custom epitaxially-grown detector is not known, although the QD medium itself is
among the most radiation hard semiconductor materials [41]. We will ultimately need to
assess the performance of these detectors in the high-radiation environments expected in
future high-energy physics experiments.

7 Conclusion
Five contemporary technologies are under development for applications at future high en-
ergy physics experiments. Collaborators interested in joining any of these e↵orts are wel-
come.
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Florian Brunbauer / CERN
2-D materials for MPGDs

use of 2-D materials to improve: 
• tailor the primary charge production process, 
• protect sensitive photocathodes in harsh environments 
• improve the performance of the amplification stage

State-of-the-art MPGDs: 
• high spatial resolution
• good energy resolution 
• timing resolution <25ps 
  (PICOSEC Micromegas)

tunable work function

efficiency of the photocathode          timing resolution; QE 
tune via resonant processes in low dimensional coating structures

amplification
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Figure 3. Panels (a), (b), and (c) show WF of graphene versus the number of layers. 

Reprinted with permission from Ref. [58], [59], [60]. 
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devices [97]. The WF of FLG was also successfully increased by introducing Ag NPs 

onto the FLG structure, resulting in an increase in WF from 4.39 to 4.55 eV, while its 

sheet resistance and transmittance were stable [98]. 

 

Figure 6. Tuning the WF of (a) GO, (b) graphene with different alkali metal dopants, (c) 

schematic image of HATCN with different configuration respect to graphene, and (d) 

changing the WF of graphene with HATCN dopant with different configuration. 

Reprinted with permission from Ref. [99], [100], [101]. 

 

For producing low-WF graphene, apart from using alkali metals, other graphene dopants 

such as PEIE could successfully decrease the WF from 4.6 for pristine graphene to 3.8 

eV [102]. Furthermore, functionalization of GO by amino acids was reported as an 

Tuning the work function of graphene toward application as anode and cathode, Samira 
Naghdi, Gonzalo Sanchez-Arriaga, Kyong Yop Rhee, https://arxiv.org/abs/1905.06594

(additionally, encapsulation of semiconductive as well as 
metallic (i.e. Cu) photocathodes increases operational lifetime)

back flow of positive ions created during charge amplification to the drift
region can lead to significant distortions of electric fields

Graphene has been proposed as selective filter to suppress ion back flow 
while permitting electrons to pass: 
Good transparency (up to ~99.9%) to very low energy (<3 eV) electrons (?)

Space charge neutralization by electron-transparent suspended graphene, Siwapon 
Srisonphan, Myungji Kim & Hong Koo Kim, Scientific Reports 4, 3764 (2014) 
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enhanced electron signal through “priming” of gas in 
amplification region:             effective reduction of 
ionization threshold of gas in amplification region
             higher electron yield

Rydberg atoms can serve to up-convert THz / GHz 
radiation into the optical regime          optical R/O 
of avalanche intensities

Quantum sensors for high energy particle physics

Rydberg atom TPC’s
Georgy Kornakov / WUT

Act on the amplification region
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Rydberg atom TPC’s
Georgy Kornakov / WUT

principle carries over to drift region:
enhanced electron signal through “priming” of gas in drift region:             
effective reduction of ionization threshold of gas in amplification region
increased dE/dx through standard primary ionization + photo-ionization of atoms excited by mip’s

reduction of ionization and
atomic excitation threshold

ionization + excitation;
natural decay of unmodified atoms
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-- + ++

- - -
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--

photo-ionization of excited atoms

Act on the drift region
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https://www.metaboliqs.eu/en/news-
events/MetaboliQs_PM_first_year.html

Diamond plates of up to 8 × 8 mm² 
in size, fabricated by Element Six

© Dr. Christoph Nebel, Fraunhofer IAF

https://www.nature.com/articles/ncomms9456

Local and bulk 13C hyperpolarization in nitrogen-vacancy 
centred diamonds at variable fields and orientations, G. 
Alvarez et al., Nature Communications 6, 8456 (2015)

optically polarizable elements: Nitrogen-vacancy diamonds (NVD)

NV in diamond

guides for optical polarization polarized scattering center

silicon trackers
(direction and timing) 

spin-spin scattering for helicity determination: usually with polarized beams and/or polarized targets

introduce polarized scattering planes to extract track-by-track particle helicity

Georgy Kornakov / WUT

HEP

1016 ~1018 / cm3

 x 102
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1 Background

Single-photon detectors based on superconducting nanowires (SSPDs or SNSPDs) have rapidly become
the detector of choice for photonic quantum information science and technology. The table below summa-
rizes the state-of-the-art performance for SNSPDs as well as anticipated progress that is likely to be achieved
in the next five years. To be clear, the performance described in the table are for different devices, and is not
currently possible to achieve in one device. However, with suitable investment in research and development,
many of these detector metrics could be obtained simultaneously.

Parameter SOA 2020 Goal by 2025
Efficiency 98% @ 1550nm >80 % @10µm

Energy Threshold 0.125 eV (10 µm) 12.5 meV (100 µm)
Timing Jitter 2.7 ps < 1ps
Active Area 1 mm2 100 cm2

Max Count Rate 1.2 Gcps 100 Gcps
Pixel Count 1 kilopixel 16 megapixel

Operating Temperature 4.3K 25 K

The SNSPD response over a broad range of wavelengths with picosecond scale timing resolution and low
dark count rates makes the technology attractive for HEP applications. For example, SNSPDs can be used
to search for low-mass Dark Matter where it is critical for any detector to have (1) a high photon detection
efficiency; (2) extremely low (on the order of 1 per day or lower) intrinsic false (or “dark”) counts; and (3)
low energy thresholds for infrared single photon detection. SNSPDs are the highest performing detectors
available in all three metrics, and they are still far from reaching their fundamental limits. Other potential
HEP applications of SNSPDs include exploiting their exceptional timing resolution in collider experiments
and implementing large photodetector arrays for cosmological surveys at IR wavelengths. Furthermore, with
advances in detector readout, one could imagine performing on-chip combination of signals from multiple
nanowires, making a superconducting analog of the SSPM. This could enable a new class of photodetector
for HEP applications that has a lower energy threshold and much lower dark count rate.

2 Objective and Plans

In the past few years, several applications have been proposed for SNSPDs in the field of low-mass DM
detection. Some examples include optical haloscopes,1 optical readout of cryogenic semiconductor targets,2

electron recoil in superconduding nanowires,3 resonant scattering and absorption in cryogenic molecular
gases,4 and, should the energy thresholds improve, axion detection. Likewise, the recent demonstration
of sub-3ps timing resolution in specialized nanowires5 and operation in high magnetic fields6 may enable
future HEP applications involving ultrafast timing in future high-luminosity colliders. And advances in
the fabrication and readout of large nanowire detector arrays7 provide a compelling technical foundation
for low-noise high-efficience IR detector arrays that may be appropriate for cosmological surveys at longer
wavelengths.

Active Area: Many of the DM detection applications discussed above require large sensor active areas
to enable scaling to large target masses in experiments. The active areas of SNSPDs have grown steadily
over the past several years from the order of the cross section of a single-mode optical fiber core (about
100 µm2) to kilopixel arrays with ⇠ mm2 active area.7 The maximum nanowire length is subject to material
inhomogeneity and geometrical imperfections. Recent developments in superconducting detector design and
fabrication8–10 have enabled few-micron-wide superconducting microwires that are potentially much more
robust to many of these issues and can enable scaling to far greater active areas in the near future. We
believe that it is physically possible to scale the SNSPD arrays to a level >10 megapixels (4096x4096),
and an active area of ⇠100 cm2. To achieve this, significant research and development will be required

1
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SNSPD’s Near term future 

Moving to SC strips conventional lithography à scale up
Development towards SC SSPM
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Extremely low energy 
threshold detectors: SNSPD

wavelength blackbody photons) is reduced as the temperature
increases.76 Therefore, in a system in which blackbody radiation is
well filtered out, the signal to noise ratio (SNR) often decreases as the
temperature is increased.

The timing properties of SNSPDs (recovery time and time jitter)
have been thoroughly studied: Early on, the recovery time of NbN
SNSPDs was found to be limited by their kinetic inductance,77 reveal-
ing an intrinsic trade-off between large-area devices and fast recovery
times. A more systematic electro-thermal model78 was presented to
better explain the detection dynamics with a practical solution to
shorten recovery time by adding a resistor in series to SNSPDs.
However, in the same work, it was demonstrated that there is a limit
to reducing SNSPDs recovery times, this limit is dictated by electro-
thermal feedback and hence depends on the substrate material, on the
superconductor, temperature, bias, critical current, as well as on the
SNSPD’s kinetic inductance. While detectors with very fast electrical
recovery time (<1ns) have been demonstrated, it has also been shown
that the electrical recovery time (extracted from the pulse traces) is not
necessarily the same as the detector recovery time.79 Alternatively,
multi-pixel56 and multi-element structures80 were proposed and dem-
onstrated to increase the active area without sacrificing time perfor-
mance and even offering photon number resolution prospects.81

Since SNSPDs typically cover areas of hundreds of square micro-
meters and the electrical signal propagates through the detector with
finite speed, photons detected at different locations generate detection
pulses that reach the readout circuit at different times, leading to a geo-
metrical jitter.82 In 2017,83 the influence of Fano fluctuations on tim-
ing jitter was also reported. In the same year, timing jitter caused by
distributed electronic and geometric inhomogeneity of a supercon-
ducting nanowire84 was analyzed. Also, vortex-crossing-induced jitter
was systematically studied, and the theoretical limit of SNSPDs’ intrin-
sic timing jitter was estimated to be around 1 ps.85 Another study,
based on the two-temperature model coupled with the modified time-
dependent Ginzburg–Landau equation,86 argued that photon absorp-
tion location on a current-carrying superconducting strip has direct
influence on the minimal achievable time jitter. The minimum jitter
was shown to depend on the critical temperature of the superconduct-
ing film. This was calculated to be of the order 0.8 ps for a nanowire
with a width of 130nm made from a typical NbN superconducting
films with a critical temperature of 10K. Narrower nanowires can
potentially improve the minimum achievable jitter. If no other funda-
mental limitation for time jitter is discovered, ultimately, the time jitter
would be limited by the dynamics of suppression of superconductivity
(pair breaking) which depends on material, temperature, and the opti-
cal excitation density.87

D. Scope and content of this perspective
After summarizing the history and development of SNSPDs over

the past two decades, we highlight the leading theories to explain the
operation mechanism and provide the status quo and state-of-the-art
in SNSPD technology (Sec. II). A selected number of current and
potential future applications are discussed in Sec. III. Finally, we pro-
vide an outlook for future development (Sec. IV). For a more in-depth
and technical review of SNSPD’s working principle, intrinsic limita-
tions, and design solutions, we refer the readers to Ref. 88.

II. SNSPD DETECTION MECHANISMS AND STATE-OF-
THE-ART
A. SNSPD detection mechanisms

This section gives an overview of the leading physical models of
the detection mechanisms in SNSPDs, providing a qualitative descrip-
tion to understand basic working principles and device physics. We
consider the most common SNSPD implementation, based on a
superconducting nanowire (width 50–100nm) patterned from a thin
film (thickness 5–10nm) using a top-down nanofabrication process.
The nanowire, often designed as a meandering structure, is “DC-
biased” close to the device’s critical current via a bias tee, and low noise
amplifiers and counting electronics are used to detect single-photon
events and register corresponding voltage pulses. A phenomenological
model of the detection process was proposed in the initial reports on
SNSPDs22,89 and has been revised in the following two decades. To
allow for quantitative modeling and design optimizations, the detec-
tion process90 was divided into subsequent steps (see Fig. 1): (I) pho-
ton absorption; (II) creation of quasiparticles and phonons combined
with their diffusion; (III) emergence of a non-superconducting nano-
wire segment; (IV) re-direction of bias current in readout circuitry,
leading to a voltage pulse; and (V) detector recovery.

(I) The initial absorption of a single photon within the active
detector area is well described by a classical electromagnetic theory.
This allows for the use of established modeling tools92 to optimize
optical absorption in the superconducting layer for a desired wave-
length range. The absorption of a visible or near-infrared photon
results in (II) the formation and expansion of a cloud of quasiparticles,
which is initiated by the relaxation of the photo-excited electron and
followed by the creation, multiplication, and diffusion of quasiparticles
and phonons. These processes are governed by electron-electron,
electron-phonon, as well as phonon-phonon interactions and their
characteristic timescales,93 whereas the diffusion constants as well as
the ratio of the heat capacities of electrons and phonons are crucial for
the spatiotemporal relaxation dynamics. This downconversion process
is modeled through deterministic kinetic equations for electrons and
phonons94 or through a stochastic loss of excitation energy into the

FIG. 1. Macroscopic explanation of the detection mechanism (based on Refs. 22,
78, and 89). In the steady state (SS), the superconducting thin-film strip is current
biased. Photon absorption (I) leads to the creation of quasi-particles and phonons
(II). This leads to the formation of a normal-conducting part of the strip (III).
Redirection of the current toward the readout electronics allows a recovery of the
superconducting state (IV), which leads to a return of the current (V) to its initial
value. This reset dynamics is limited by the kinetic inductance of the device.
Center: The voltage readout signal with each step labeled. Adapted with permission
from Allmaras et al., Nano Lett. 20, 2163–2168 (2020). Copyright 2020 American
Chemical Society.91
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FIG. 1. Single-electron charge resolution using a Skipper
CCD with 4000 samples per pixel (bin width of 0.03 e�). The
measured charge per pixel is shown for pixels with low-light
level illumination (top) and stronger illumination (bottom).
Integer electron peaks can be distinctly resolved in both
regimes contemporaneously. The peak at 0 e� has rms noise
of 0.068 e� rms/ pix while the peak at 777 e� has rms noise of
0.086 e� rms/ pix. The Gaussian fits have �2 = 22.6/22 and
�2 = 19.5/21, respectively. The two measurements demon-
strate the single-electron sensitivity over a large dynamical
range.

TECHNICAL DESCRIPTION

CCD detector

The detector studied here is a p-channel CCD fabri-
cated on high resistivity (⇠10 k⌦ cm) n-type silicon that
was fully depleted at a substrate voltage of 40 V. The sen-
sor is 200 µm thick and composed of 15µm⇥15µm square
pixels arranged in a 4126⇥866 array. The characteristics
of the Skipper CCD are collected in Table I. To reduce
the number of electrons promoted to the silicon conduc-
tion band by thermal fluctuations (“dark current”), the
sensor is operated at low temperatures. Here we operate
the sensor at 140 K, but this could be lowered to ⇠ 100 K
before charge-transfer e�ciency is significantly reduced.
As we discuss further below, the dark current may be
the limiting factor for some applications though signifi-

TABLE I. Skipper CCD Detector Characteristics

Characteristic Value Unit

Format 4126⇥ 866 pixels

Pixel Scale 15 µm

Thickness 200 µm

Operating Temperature 140 Kelvin

Number of Amplifiers 4

Dark Currenta < 10�3 e�/ pix/day

Readout Time (1 sample) 10 µs/pix/amp

Readout Noise (1 sample) 3.55 e� rms/ pix

Readout Noise (4000 samples) 0.068 e� rms/ pix
a The upper limit on dark current comes from measurements on
a similar CCD used by the DAMIC experiment [13].

cant investment has been made to minimize it [14, 15].
Figure 2 shows a simplified diagram of the Skipper

CCD output stage. At t0, all the charge is drained from
the sense node (SN) to Vdrain by applying a pulse to
the dump gate (DG), and the SN voltage is restored
to Vref with a pulse to the reset gate (RG). At t1, the
summing-well gate (SG) phase is raised to transfer the
charge packet to the SN and conclude the readout of the
first sample. To take the second sample, the output gate
(OG) and SG phase are lowered at t2, moving the charge
packet in the SN back under the SG phase and the ref-
erence voltage of the SN is restored applying a pulse to
the RG. This cycle can be repeated to sample the same
charge packet multiple times. A more detailed descrip-
tion of the Skipper output stage can be found in [11].
The CCD is divided into four rectangular regions of

2063⇥433 pixels, each of which is read by an independent
amplifier possessing a distinct readout design. The most
important di↵erence between the readout designs tested
is the size of the floating gate. Smaller floating gates
have smaller capacitance and higher gain, but can be

FIG. 2. Simplified diagram of the Skipper CCD output stage.
H1, H2 and H3 are the horizontal register clock phases. MR
is a switch to reset the sense node to Vref . M1 is a MOSFET
in a source follower configuration. Due to its floating gate,
the Skipper readout performs a non-destructive measurement
of the charge at the SN.
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CCD with 4000 samples per pixel (bin width of 0.03 e�). The
measured charge per pixel is shown for pixels with low-light
level illumination (top) and stronger illumination (bottom).
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of 0.068 e� rms/ pix while the peak at 777 e� has rms noise of
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beam

SNSPD stack target

mip

mip

Short lived neutral particle

a fixed target experiment with a very thinly layered (~10 nm layers) SNSPDs as target and make a thick stack perhaps a 
mm thick: very short-lived neutral particles would appear as a nx10nm gap in the signal plane stack between where the
mip projectile interacts and the short-lived particle decays into mips. Addition of a B-field helpful

A way to measure the lifetime of very short-lived particles?

mip

mip
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Figure 5.3: Prospective time line for selected developments with a range of quantum and
emerging technologies; increases in sensitivity or accessible range are highlighted in red.
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Particle DM detectors (e.g. levitated particles in cavity) for TeV~PeV scale DM

100 m scale cryogenic Levitated sensors for high frequency GW and axion searches
Cavity & accelerometer scalar/vector DM searches, squeezed light

10-100x improvement in spin amplifiers & masers
Precessing ferromagnets

Squeezing / entanglement in vapor and NV sensors,  NV sensor ensembles
Large-scale networks of spin-based detectors

Precessing ferromagnets in space missions
Prototype ultra-low energy neutrino scattering detection

Particle DM detectors (mechanical accelerometers) for Planck scale DM

Upgraded magnetic torsion balance:  factor 100 improvement on ultra-low mass axion DM 

Full kinematics of decaying trapped radioisotopes: keV sterile ν

Full kinematics of decaying trapped radioisotopes: keV sterile ν factor 100 improvement

Full kinematics of decaying trapped radioisotopes: keV sterile ν 5-6 orders improvement

Space-based atom interferometry (GW & DM)
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Phase-sensitive upconverters (Squeezing, entangled resonators) 
TES, MKID, CEB ( f < 100 GHz )

Qubits / QND photon counters, entangled cavities( f > 30 GHz)
Superconducting RF cavities: factor 100-1000 improvement on dark photons 

Space-based networked detectors (DM)

Figure 5.3: Prospective time line for selected developments with a range of quantum and
emerging technologies; increases in sensitivity or accessible range are highlighted in red.
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In line with the RECFA R&D roadmap, it makes sense to consider a 
quantum-sensing R&D program that brings together the following 
strands:

also for HEP!

next step: implementation of ECFA-wide R&D pgm
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next step: implementation of ECFA-wide R&D pgm

define structure of implementation of TF5:

DRD5, aka “RDq” RD18 RD42
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low energy particle physics
high energy particle physics

...

6 families defined by ECFA roadmap

• different countries / entities currently involved 
in different RDq R&D activities relevant to low 

energy and/or high energy particle physics

• different countries / entities interested in pursuing R&D 
activities in other (new to them) RDq areas relevant to 

low energy and/or high energy particle physics

Community consists of:

Monday 31 October 22

• consists of 6 families of quantum technologies,
   each with many sub-activities and sub-collaborations

• formal collaboration (“DRD5”, a.k.a. “RDq”)

• spread load by hosting families in several platforms / institutions

timeline

draft 25/10/22 M. Doser35/39
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interested
parties 

identified /
approached 
by platform 
convenors

1.2023 ff

projects 
proposed by 
interested

parties
(initial main 

focus on HEP)

LOI based on 4-5 initial 
projects subm. to DRDC
(by RDq spokesperson)

proposal based on 4-5 
initial  projects subm. 

to DRDC
(by RDq spokesperson)

platform convenors
identified

1.1.20247.2023

workshop to 
brainstorm / 
discuss the
proposed 

projects and 
select the 

initially most 
promising 

ones

9.2023

conference to 
discuss & fine-

tune the
proposed 

projects and 
to explore 

further ideas

3.2023

formal 
constitution of 
DRD5 / “RDq”  
collaboration

preparation 
of proposal

containing the 
“DRDC” 
projects, 

(as well as 
indicating 
additional

“non-DRDC”
projects)

preparation
 of LOI

timeline

draft 25/10/22 M. Doser36/39

“town-hall meeting”

call for wide participation in RDqi

dra
ft!dra

ft!



draft 25/10/22 M. Doser

CERN

DESY

FermiLab

ORNL

KEK

IISc / TIFR

possible platform hosting sites  

possible ECFA TF5 family platforms
HEP-related Quantum initiatives

INFN
CNRS
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CERN/SPC/1155/Rev.2  3 
CERN/3566/Rev.2 
 

 

More details of the main deliverables and the related timeline are given in document 

CERN/SPC/1161/RA – CERN/3588/RA. A mid-term review of the Feasibility Study by the 

Council is expected to take place in 2023.  

 
CERN’s resources for the Feasibility Study were included in the 2020 Medium-Term Plan and 

amount to some 100 MCHF over the period 2021-2025; the activities described in this 

document are covered by these resources.  

 

III. PROPOSED ORGANISATIONAL STRUCTURE 
 
CERN will host the Feasibility Study, which will be carried out in collaboration with 

institutions in the Member and Associate Member States and beyond, under the overall 

authority and strategic guidance of the Council.  
 
The proposed organisational structure builds on the effective structure of the first phase of the 

FCC Study1, while being adapted to the new phase as needed. It aims to ensure: 

1) ownership of the Feasibility Study by the Council, which is responsible for strategic 

decisions related to the Study; 
2) effective and timely supervision of the Study; 

3) integration of scientific and technical advice; 

                                                 

1 

https://fcc.web.cern.ch/Documents/Organisation/FCC-1409051000-JGU_GovernanceStructure_V0200.pdf 

structure of RDq
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collaboration 
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example from FCC
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DRDC

follows progress of platforms;
follows DRDC approved projects;

verifies that focus of projects 
is along lines of roadmap

reports to DRDC;
informs about new ECFA-

relevant developments
(RDq spokesperson)

reportingECFA
EDP

platform collaborators

int. advisory committee 

representatives of 
the hosting entities

1

2

3

4

5

6
metamaterials,

0-, 1-, 2-D materials

atoms, molecules,

ions, interferometry

optomechanical 

sensors

superconducting,

spin-based sensors

kinetic
detectors

clocks, clock 

networks DRD5 
collaboration 
spokesperson

projects 
proposed by 
collaborators

> 1.1.2024

new RDq projects 
internally evaluated

funding
agencies

grant requests for 
DRDC-approved
proposal projects

grant requests for 
RDq-vetted

proposal projects

funding
agencies
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thank you!

EP seminar, 13.5.2022



Open symposium organized by  TF5

Anna Grassellino, Marcel Demarteau, Michael Doser, Caterina 

Braggio, Stafford Withington, Peter Graham, John March-Russel, 
Andrew Geraci


14 presentations


first block covering 
physics landscape


following blocks

focusing on 
technologies


discussion of three

important points


ECFA Detector R&D Roadmap Symposium of Task Force 5: Quantum and emerging technologies

Monday 12 Apr 2021, 09:00 → 18:30 Europe/Zurich

09:00 → 09:15 Introduction

09:15 → 11:00 science targets – Overview and Landscape

9:15 EDM searches & tests of fundamental symmetries   Peter Fierlinger / TU Munich

9:45  Tests of QM [wavefunction collapse, size effects, temporal separation, decoherence] 

10:15 Multimessenger detection [including atom interferometer or magnetometer networks]  Giovanni Barontoni / Birmingham

10:45 Axion and other DM (as well as non-DM Ultra-light) particle searches Mina Arvanitaki / Perimeter Institute

11:15 → 11:30  Coffee break 

11:30 → 12:30  Experimental methods and techniques - Overview and Landscape

11:30 Precision spectroscopy and clocks, networks of sensors and of entangled systems [optical atomic clocks] David Hume / NIST

12:00 Novel ionic, atomic and molecular systems [RaF, multiatomic molecules, exotic atoms]  Marianna Safranova / U. Delaware

12:30 → 13:30  Lunch break 

13:30 → 16:00 Experimental and technological challenges, New Developments

13:30 Superconducting platforms [detectors: TES, SNSPD, Haloscopes, including single photon detection] 

14:00 High sensitivity superconducting cryogenic electronics, low noise amplifiers  Stafford Withington / Cambridge

14:30 Broadband axion detection Kent Irwin / Stanford

15:00 Mechanical / optomechanical detectors Andrew Geraci / Northwestern

15:30 Spin-based techniques, NV-diamonds, Magnetometry    Dima Budker / Mainz

16:00 → 16:15   Coffee break 

16:15 → 18:30  Experimental and technological challenges, New Developments

16:15  Calorimetric techniques for neutrinos and axions potential speaker identified

16:35  Quantum techniques for scintillators potential speaker identified 

16:55  Atom interferometry at large scales (ground based, space based)  Jason Hogan / Stanford

17:25 → 18:15 Discussion session : discussion points
  • Scaling up from table-top systems  
  • Networking – identifying commonalities with neighboring communities                         
  • Applying quantum technologies to high energy detectors 

18:15 → 18:30 Wrap-up 

ECFA Detector R&D Roadmap Symposium of Task Force 5 Quantum and Emerging Technologies

https://indico.cern.ch/event/999818/ Symposium: April 12, 2021
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Quantum Technologies for High Energy Physics (QT4HEP) (Nov. 1-4, 2022)

https://indico.cern.ch/event/1190278/timetable/

Applications of superconducting technologies to particle detection 
Caterina Braggio (Univ. Padova (IT))

Scaling up of atomic interferometers for the detection of dark matter 
Oliver Buchmuller (Imperial College (GB)) 

Applying traps and clocks to the search for new physics 
Piet Schmidt (Univ. Hannover / PTB (DE))

Applications of quantum devices to HEP detectors 
Ian Shipsey (University of Oxford (GB)) 

Molecular systems for tests of fundamental physics 
Steven Hoekstra (Univ. Groeningen (NL))

Development of detectors for ultra-low energy neutrinos 
Gianluca Cavoto (Sapienza Universita e INFN, Roma I (IT)) 

topics chosen to overlap with
CERN focus and expertise

DM searches via RF, superconducting 
electronics, coatings, cavities

AION, MAGIS, ... DM searches via 
atom interferometers in vertical shafts

AD, ISOLDE: symmetry & BMS 
tests via precision spectroscopy

Quantum systems for HEP 
(novel or enhanced detectors)

AD, ISOLDE: symmetry & BMS 
tests via precision spectroscopy

neutrino physics at the low 
energy frontier (CNB)

https://indico.cern.ch/event/1190278/timetable/
https://indico.cern.ch/event/1190278/contributions/5091044/
https://indico.cern.ch/event/1190278/contributions/5091050/
https://indico.cern.ch/event/1190278/contributions/5091052/
https://indico.cern.ch/event/1190278/contributions/5091058/
https://indico.cern.ch/event/1190278/contributions/5091059/
https://indico.cern.ch/event/1190278/contributions/5091066/

