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1. Introduction

This is essentially an expository account of the Atiyah-Singer In-
dex theorem, undoubtedly one of the great theorems of the twentieth
century. The theorem establishes the equality of two numbers that
are associated with an elliptic linear differential operator on a smooth
compact manifold, one defined with the geometric data on the opera-
tor and the other by using analysis. For the precise statement of the
theorem, we refer to the next ssection. We give here a proof of the the-
orem broadly following the lines of the original proof given by Atiyah
and Singer in their announement in [AS] offering however some new
ways for dealing with the various steps that lead up to the final proof.
Atiyah and Singer did not publish the details of the proof indicated
in their paper. The details were however worked out in the seminar
conducted by Palais at the Institute for Advanced Study, the notes of
which are published in the Annals of Mathematics Studies series [P].

The proof given here follows in broad outline the ideas in the Bul-
letin announcement; however it deviates in many ways in the matter of
details indicated there (the Palais seminar follows closely the scheme
set out in [AS] even in the matter of details). Odd dimensional mani-
folds however are dealt with exactly as in [P] - both the analytic and
topological indices are zero for all differential operators on odd dimen-
sional manifolds.

The first important differece is in the proof of the all important fact
that the analytic index of a linear elliptic differential operator depends
only on the K-theory element defined by its symbol. The proof given
here makes no use of the theory of pseudo-differential operators - there
is a trade off though, in that we need to appeal to some somewhat
more refined results from topology - among others, to the fact that
the odd dimensional sphere is rational homotopy equivalent to the real
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projective space of the same dimension under the natural map.

The second point of difference is that we make use of some qualita-
tive information on the heat kernel to prove the “bordism-invariance”
of the analytic index (which is a crucial ingredient of the proof) rather
than results about boundary value problems in the theory of partial
differential equations as is done in [P]. Specifically we need the fact
that the terms in the asymptotic expansion of the heat kernel of a sec-
ond order elliptic operator are determined by the local behaviour of the
operator. This is essentally a result of Minakshisundaram and Plejel
[MP]. It may be remarked that the heat equation plays a crucial role
in many of the different proofs of the index theorem; however the use
of the heat kernel in those proofs has a very different flavour from our
use of it here.

Atiyah and Singer define an equivalence relation involving cobordism
on the set consisting of elliptic operators (on all smooth manifolds and
vector bundles on them); they give the set of equivalence classes a
natural ring structure. Then they show that both the analytic and
topological indices are constant on equivalence classes of elliptic op-
erators (this is where the “bordism invariance” mentioned in the last
paragraph is needed) and the resulting Q-valued functions are both
homomorphisms of this ring into Q. They analyse the strucure of the
ring and exhibit a set of generators; and the index theorem for these
generators is a consequence on the one hand of the Gauss - Bonnet
theorem and on the other hand Hirzebruch’s signature theorem. We
replace these arguments, by an induction argument on the dimension
of the manifold. This is achieved by viewing the indices as functions
on (even) cohomology with coefficients in Q rather than on K-theory
tensored with Q and make use of a theorem due to Serre [S](as well
as an idea employed by Thom in a different context). The theorem in
question asserts that if X is a finte complex of dimension n and α is a
q-cohomolgy class with coefficients in Q, and n < 2q − 1 then there is
a map f of of X in Sq such that α is in the image of Hq(Sq,Q) under
the map induced by f .

Finally it may be remarked that the index theorem itself is formu-
lated in [AS] for elliptic pseudo-differential operators (for which too the
topological and analytic indices are defined), but once the theorem for
differential operators is established the general case follows from the
following considerations: in the even dimensional case, the K-theory
symbol of an elliptic pseudo- differential operator (which determines
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both the indices) is the K-theory symbol of a suitable elliptic differ-
ential operator; the odd dimensional case can be reduced to the even
dimensional case by forming product with the unit circle on which there
is a pseudo differential operator for which analytic and topological in-
dices are both 1 while both these indices behave multiplicatively with
respect to the formation of (the external) tensor products of the sym-
bols and the Kunneth isomorphism in K theory.

This account confines itself to differential operators. As the remarks
in the last paragraph indicate this yields the theorem in the more gen-
eral case of pseudo differential operators as well.

My introduction to the index theorem took place in a seminar or-
ganised by Ramanan and M.S.Narasimhan soon after the Bulletin an-
nouncement of Atiyah and Singer appeared, in which I participated.
When I was thinking about that seminar (during a spell of nostalgia a
few years ago) this somewhat different way of handling the proof oc-
cured to me. This paper is the result and I am happy that it appears
in this volume in honour of Ramanan.

2. The statement of the theorem

2.1. The symbol and the analytic index. Throughout this paper
(except in the Appendix) we will be working with smooth manifolds
and bundles. Unless otherwise specified explicitly all maps considered
will be smooth. In particular sections of vector bundles will be smooth.
Let M be a smooth compact closed manifold of dimension m. Let E
and F be complex vector bundles on M . Recall that a linear differen-
tial operator from E to F is a C-linear map D : Γ(E) → Γ(F ) such
that for any section Φ of E, the support of D(Φ) is contained in the
support of Φ. All differential operators considered in this paper will
be linear; so we will drop the suffix “linear” in the sequel. If we de-
note by Jk(E), the bundle of k-jets of E, then for all suitably large k,
D defines and is defined by a bundle homomorphism of Jk(E) in F .
The minimal k for which this homomorphism is defined is the order
of D. Let T (resp. T ∗) be the tangent (resp.cotangent) bundle of M
and Sk(T ∗) the k-th symmetric power of T ∗; then one has an inclu-
sion of Sk(T ∗) ⊗ E in Jk(E). If now D is a differential operator of
order k then the homomorphism it defines from Jk(E) in F gives by
restriction a homomorphism of Sk(T ∗) ⊗ E in F . The diagonal inclu-
sion of T ∗ in Sk(T ∗) enables one to view this last homomorphism as
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a bundle homomorphism of the pull-back p∗(E) of E in the pull-back
p∗(F ) of F under the natural projection p : T ∗ → M . This element of
Hom(p∗(E), p∗(F )) which on each fibre of T ∗ is a homogeneous poly-
nomial of degree k is the symbol, σ(D) of D. It is a basic fact from
the theory of linear differential operators that the kernel (resp. coker-
nel) of an operator D whose symbol is an injective (resp. surjective)
homomorhism outside the zero section of T ∗ is finite dimensional. A
differential operator D (from E to F ) is elliptic, iff the symbol of D is
an isomorphism outside the zero section of T ∗. This means of course
that E and F have the same rank. The analytic index a(D) of D is
defined as the integer dim.(kernel(D))− dim.(cokernel(D)).

2.2. The K-theoretic symbol. We fix a Riemanniaan metric on M
and dneote by B (resp. S) the unit disc (resp. sphere) sub-bundle of
T ∗. We denote by p the projection of T ∗ on M as well as its restriction
to B. If now D is an elliptic operator from E to F its symbol σ(D)
defines an isomorphism of the restrictions to S of the bundle p∗(E) on
the bundle p∗(F ) (here for a bundle V on M , p∗(V ) is the pull-back of
V to B under p). The “difference construction” in K-theory (see [P],
p.15) now yields an element an σ0(D) in the relative K-group K0(B, S)
which we will refer to as the K-theoretic symbol (or K-Theory symbol)
of D in the sequel. The following properties of the K-theoretic symbol
follows from its definition (via the difference construction).

Lemma 1. If D : Γ(E) → Γ(F ) and D′ : Γ(F ) → Γ(G) are elliptic
differential operators from E to F and from F to G respectively, then
D′D is an elliptic operator from E to G and and σ0(D′D) = σ0(D) +
σ0(D′). Also if the operaotor D(resp.D′) is an elliptic operator from
E (resp. E ′) to F (resp. F ′) and D ⊕D′ is the operator from E ⊕ E ′
to F ⊕ F ′defined by setting

(D ⊕D′)(σ ⊕ σ′) = D(σ)⊕D(σ′)

for sections σ, σ′ respectively of E and E ′, then D ⊕D′ is elliptic and

σ0(D ⊕D′) = σ0(D) + σ0(D′)

2.3. The topological index. Now, we have a natural ring homomor-
phism, the Chern character (see [P], p.14), Ch from K0(B, S) to the
sum of even dimensional singular cohomology groups, Heven(B, S; Q)
of the pair (B, S) with coefficients in Q (which in fact gives an isomor-
phism of K0(B, S) ⊗ Q on Heven(B, S; Q)).We get thus a cohomology
class Ch(σ0(D)) in the last group. Let Td(M) denote the Todd class
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of M as well as its pull-back in H∗(B; Q). The cup-product gives a
bilinear pairing H∗(B, S; Q) × H∗(B; Q) → H∗(B, S; Q) and we thus
obtain a cohomology class Ch(σ0(D).Td(M) in H∗(B, S; Q).Now the
pair (B, S) has a canonical orientation and hence H2n(B, S; Z) which is
isomorphic to Z has a canonical generator. The topological index t(D)
of the elliptic operator D is defined as the (rational) number obtained
by evaluating Ch(σ0(D).Td(M) on this generator. With these defini-
tions and notation we can state the Atiyah-Singer index theorem.

Theorem 2. Let D be an elliptic operator on a compact manifold from
a vector bundle E to a vector bundle F . Then a(D) = t(D).

2.4. Remarks. Note that the theorem implies that the analytic index
of D depends only on the K-theoretic symbol of D (as this is true for
t(D) by its very definition). This fact is proved as the first step in the
proof of the theorem. Also note that the topological index which we
know only to be a rational number, turns out to be an integer as a
consequence of the theorem.

3. Construction of some differential operators

3.1. For a vector bundle W on M and a point x in M , Wx will denote
the fibre of W at X. Let E ad F be vector bundles on M and D a
differential operator from E to F . We introduce a Riemannian metric
on M and denote by µ the Borel measure defined by it on M . We also
intoduce hermitian inner products along the fibres of E and F . In the
sequel these inner products on E and F as well as the inner products on
T and T ∗ defined by the Riemannian metric will be denoted <,>. With
this notation, we have the notion of the adjoint D∗ of the operator:
this is the unique differential operator from F to E which satifies the
following condition: for sections α of E and β of F ,∫

M

< D(α), β > dµ =

∫
M

< α,D∗(β >)dµ

That such a D∗ exists and has the same order as D is a standard
fact and is proved easily by integration by parts on local charts over
which the bundles E and F are trivial. Also the adjoint D∗∗ of D∗

is D. When D is elliptic, so is D∗ and one has natural isomorphisms
of kernel D (resp. cokernel D) on cokernel D∗ (resp. Kernel D∗). It
follows that a(D) = −a(D∗). In particular if F is the same as E and
D is self-adjoint, i.e, D = D∗, then a(D) = 0. The symbol of the
operator ∆ = D∗D from E to itself assigns to each v in T ∗x , x in M ,
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the automorphism σ∗(v)σ(v) of Ex, where for an endomorphism U of
Ex, x in M , U∗ denotes its conjugate transpose with respect to the
inner product on Ex. It follows that σ(D∗D) is at every point of S
is a Hermitian symmetric positive definite automorphism and we can
therefore raise it to the power t for every t in the closed interval [0,1].
This yields a homotopy between the symbol of D∗D and the Identity
automorphism of p∗(E) over S. As this last automorphism (evidently)
extends over all of B, we conclude (from the definition of the difference
construction) that the K-theory symbol of D∗D is zero. We have the
following proposition.

Proposition 3. Given any vector bundle E on a manifold M there is
a self adjoint elliptic operator ∆E from E to E of order 2 such that
σ0(∆E) is zero (and a(∆E) = 0).

3.2. In the light of the disscussion in the last paragraph, to prove the
proposition, we need only exhibhit operator D of order 1 from E to
a suitable bundle F such that the symbol σ(D) is an injective bundle
homomorphism outside the zero section of T ∗- one can then take for ∆
the operator D∗D for some hermitian inner products along the fibres
of E and F and a Riemannian metric on M . To construct a D of order
1, we take F to be Hom(T,E) (= T ∗ ⊗ E), the bundle of E-valued
1-forms on M . We fix a hermitian inner product on E and a Riemann-
ian metric on E; these give rise to a natural inner product on F as
well. We then take D to be the exterior differentiation with respect
to a unitary connection ω on E. One sees then that for this operator
∆, the symbol associates to each v in T ∗x , x in M , the automorphism
|| v ||2.Identity.

3.3. For a vector bundle V and a non-negative integer r, we denote by
r.V , the direct sum of r copies of V . A differentail operaator D from E
to another vector bundle F evidently defines a differential operator r.D
from r.E to r.F which on each component of r.E is the operator D from
E to F , the latter considered as the corresponding component of F . It
follows from the definition of the K-theoretic symbol that σ0(r.D) =
r.σ0(D). With this notation we will now establish the following.

Proposition 4. For a positive integer n, let λ(n) = 22n+2. Then given
any vector bundle E on a manifold M of dimension m there is an
elliptic operator DE of order 1 from λ(m).E to itself such that a(DE)
= 0 and σ0(DE) = 0.
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3.4. Let I ′ : M → R2m+1 be an imbedding and I the imbedding in
R2m+2 obtained by composing the standard inclusion of R2m+1 in R2m+2

with I ′. We have then an inclusion of T in the trivial rank (2m + 2)
real vector bundle on M and hence (using the standard inner product
on R2m+2) an inclusion of T ∗ in the trivial real vector bundle of rank
2m+2. Now let V denote the trivial complex vector bundle of rank
2m+2. As I factors through the inclusion of R2m+1 in R2m+2, we note
that T ∗ is contained in a trivial (complex) vector sub-bundle V ′ such
that V is the direct sum of V ′ and a trivial line bundle equipped with
an everywhere non-zero section s. Now let x in M and v an element of
T ∗x . Define a homomrphism e(v)(resp.i(v)) : T ∗x ⊗Λp(V )x :→ Λp+1(V )x
(resp. i(v) : T ∗x ⊗ Λp(V )x :→ Λp−1(V )x) (where for a non-negative
integer l, Λl(V ) is the lth exterior power of V ) is the exterior (resp.
interior) multiplication by v (note that T ∗x is a subspace of Vx and V be-
ing the trivial bundle carries a natural inner product). Let Λe(V ) (resp.
Λo(V )) be the direct sum of the even (resp. odd) exterior powers of V .
Then e(v) + i(v) as v varies in T ∗ defines homomorphisms of T ∗ ⊗ V e

in V o and T ∗⊗V o in V e which we denote σe and σo respectively in the
sequel. If now E is any vector bundle on M , σe⊗ (Identity) is a homo-
morphism of p∗(V e⊗E) in p∗(V o⊗E) which is an isomorphism outside
the zero-section: this is because σo⊗ (Identity) · σe⊗ (Identity) is the
endomorphism || v ||2 .(Identity) of p∗(V e⊗E) (here v is an element of
T ∗x , x in M). Now if we introduce a hermitian inner product on E and
a connection on E compatible with it, one sees that σe ⊗ (Identity)
and σo⊗ (Identity) can be lifted to (elliptic) differential operators DE

and D∗E which are adjoints of each other. It follows that the direct sum

D̂ of DE and D∗E gives an elliptic self adjoint operator of order 1 from
Λ(V ) ⊗ E (Λ(V ) is the exterior algebra bundle of V ) to itself. More-
over t(e(v) + i(v)) + (1 − t)(e(s(x)) + i(s(x))), v in T ∗x , x in M , gives

a homotopy over S of the symbol of D̂ with an isomorphism which
extends over all of T ∗. This proves the proposition: since V is a trivial
bundle of rank 2m + 2, Λ(V ) is trivial of rank λ(m) and Λ(V ) ⊗ E is
isomorphic to a direct sum of λ(m) copies of E.

4. K-theoretic symbol and the analytic index

Our aim in this section is to establish the following:

Theorem 5. Let D and D′ be elliptic operators from vector bundles E
and E ′ to F and F ′ respectively. If the K-theoretic symbols of D and
D′ are equal, then a(D) = a(D′).
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4.1. We will first prove the following much weaker statement:

Proposition 6. Suppose given two elliptic differential operators D and
D′, both from E to F of the same order k such that there is a smooth
homotopy σt, t in [0,1], of isomorphisms of p∗(E) on p∗(F ) such that
each σt is homgeneous polynomial of degree k along the fibres of T ∗

then a(D) = a(D′). In particular if D and D′ have the same symbol,
a(D) = a(D′).

4.2. For any vector bundle W on M with a Hermitian inner prod-
uct and a non-negative integer k, one defines a pre-Hilbert struture on
Γ(W ) with the inner product<,>k defined as follows. Fix once and
for all a finite covering {Ui | i ∈ I} of M by cooordinate open sets
and isomorphisms of the restrictions of E and F to the Ui, with trivial
bundles. Fix a shrinking {Vi | i ∈ I} of {Ui | i ∈ I}. Then each
section of W defines a collection F = {Fi | i ∈ I}, each Fi being a Rn

valued smooth function on Vi. For a pair F, F’ of sections of W , let
< F,F′ >k =

∑
i∈I, |α|≤k < ∂αFi/∂x

α, ∂α/∂xα >. The completion of

this pre-Hilbert strucure on Γ(W ) is denoted Hk(W ). The topological
vector space structure on Hk(W ) is independent of the choice of the
covering, its shrinking and the trivialisations of W over the open sets
of the covering.

We now fix vector bundles E and F on M . With the notation intro-
duced above, one then sees that a differentaial operator D : Γ(E) →
Γ(F ) of order k extends to a continuous linear map of Hk(E) in H0(F )
and when D is elliptic, there is a constant C = C(D) > 0 such that
for all σ in the orthogonal complement of kernelD, one has || D(σ) ||0
≥ C(D). || σ ||k. Suppose now that Dt, t in [0,1], is a smooth family of
elliptic operators. Let t0 in [0,1] and let H ′ be the orthogonal comple-
ment of kernel Dt0 in Hk(E) Then there is a neighbourhood U of t0 in
[0,1] and a constant C > 0 such that C(Dt) ≥ C for all t in U . From
this it follows easily that a(Dt) is independent of t. Now if D and D′

have the same symbol, t.D+(1−t)D′, t in [0,1] provides a smooth fam-
ily of elliptic operators leading to the conclusion that a(D) = a(D′).
Now since the inclusion of the pull-back of Sk(T ∗)⊗E to M × [0, 1] in
the pull-back of Jk(E) admits a right inverse vector bundle morphism,
we see that given σt as in the statement of the proposition, we can find
a smooth family of (elliptic) operators Dt, t in [0,1] such that σ(Dt) =
σt. It follows now that a(D) = a(D′).
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4.3. Suppose now that D is an elliptic differential operator from a vec-
tor bundle E to a vector bundle F . It is obvious that t(r.D) = r.t(D)
and a(r.D) = r.a(D) for any non-negative integer r. Thus equality of
a(D) and t(D) holds if it holds for a(r.D) and t(r.D) for some integer r
greater than zero. Observe next that if D′ is an elliptic operator from
F to a vector bundle G of the same rank then a(D′D) = a(D′) + a(D)
and t(D′D) = t(D′) + T (D). Now suppose that D (resp. D′)is an
elliptic operaor from E to F (resp. from E ′ to F ′) of order k (resp.
k′) are such that their k-theoretic symbols are the same. We want to
show that they have the same analytic index. Observe first that we
may replace the operators D and D′ by r.D and r.D′ for any positive
integer r and by choosing r = λ(n) as in the proposition above and
composing with a suitable power of DF (resp. D′F ), we may assume
that k = k′ = 2l is an even integer. Let W (resp. W ′) be a vector
bundle such that the direct sum of E (resp. E ′) and W (resp. W ′)
is trivial of rank q. Let ∆E and ∆′E) be as in Proposition 3 and let

L and L′ denote their respective lth powers. Let D̂ (resp. D̂′) be the

direct sum of D (resp. D′) and L (resp. L′). Clearly D̂ and D̂′ have
the same K-theoretic symbol and we need to prove that their analytic
indices are the same.

4.4. This means that we can assume that we are in the following sit-
uation. Let E denote the trivial bundle of rank q and D (resp. D′)
be an elliptic operator from E to a rank-q vector bundle F (resp. F ′)
of even order 2l such that σ0(D) = σ0(D′). We have to show that
a(D) = a(D′). Since E is trivial, so is F (resp F ′) over S. This means
that the bunndles F and F ′ are stably isomorphic: this follows from
the fact that the K-theoretic symbols of D and D′ obtained by the di-
ifference construction are the same. Using Proposition 4 for the trivial
bundle, one finds that by forming direct sum with suitable number of
copies of the trivial line bundle 1 equipped with a suitable power of
∆1, we may assume that both D and D′ are elliptic operators from the
(trivial) bundle E to the same bundle F .

4.5. That the two operators have the same K-theoretic symbol im-
plies the following: there exists a positive integer N and an automor-
phism u : E ⊕ 1N → E ⊕ 1N such that Σ1 = σ(D) ⊕ IdN).u and
Σ2 = σ(D′)⊕ IdN are homtopic through a 1-paramaeter family Σt, t in
[0, 1] of sections of Hom(p∗(E)⊕1N , p

∗(F )⊕1N) over S, each Σt being
an isomorphism. Σ1 and Σ2 are both symbols of differential operators
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D1 and D′1 respectively of order k = 2l (see Proposition 3 and the
discussion in 3.2) with the same K-theoretic symbols as D and D′ re-
spectively; further a(D1) = a(D′1) as u, a 0th order operator has index
0. Now let P denote the real projective space bundle associated to T ∗:
this is a quotient of S by the involutive automorphism which maps each
unit vecor in S into its negative. Let q denote the natural projection
of P on M . Then since the order k of D and D′ is even, σ(D) and
σ(D′) are pull backs of sections σ and σ′ of Hom(q∗(E), q∗(F )). It is
shown in the Appendix that the existence of the homotopy σt implies
that replacing D1 and D′1 by r.D1 and r.D′1 we can assume that Σ1 and
Σ2 are homotopic through sections of Hom(q∗(E), q∗(F )) which are all
isomorphisms of q∗(E) on q∗(F ). Equivalently, we can assume that the
homotopy Σt above is such that for v in T ∗x , x in M , Σt(v) = Σt(−v).

4.6. Fix some extension of the homotopy Σt to a homotopy of sections
over all of T ∗ of Hom(p∗(E), p∗(F ) and denote this extension by Σ̃t.
We assume that the Σ̃t vanish outside a compact neighbourhood of S
in T ∗. Now convolving Σ̃t with the function (c/π)1/2exp(−c || (.) ||2
on T ∗ along the fibres of T ∗ we obtain a homotopy Σ̃(c,t) such that on
every fibre of T ∗, it admits a Taylor expansion which converges uni-
formly on compact sets. As c tends to ∞, Σ̃(c,t) converges uniformy on

compact sets to Σ̃t. It follows that for all large c, Σ̃(c,t) is invertible over
S as also suitable a truncation θ(c,t) of its Taylor expansion (along the
fibres). Let τ(c,t) = (θ(c,t) + θ(c,−t))/2. Since Σt is an even function on
the fibres of T ∗, we can choose c and the truncation so that τ(c,t) is in-

vertible over all of S and τ(c,0) (resp. τ(c,1)) equals Σ̃(c,0) (resp.Σ̃(c,1). We

replace Σ̃t now by such a τ(c,t) and denote the latter by Σt in the sequel.

4.7. It is clear that Σt is now a polynomial along the fibres of T ∗ with
every homogeneous component of even degree. It can therefore be made
homgeneous with the function || . ||2 on T ∗ (which is homogeneous of
degree 2 along the fibres of T ∗ and is identically 1 on S. In other words
we can aassume that the homotopy σt is a homogeneous polynomial
function along the fibres of T ∗ of fixed degree. This may mean however
that the degrees of Σ0 and Σ1 have been raised. However from Propo-
sition 4 we know that the composites of ∆F⊕1N

raised to any power
with D1 and D′1 have the same analytic index as well as K-theoretic
symbol as D and D′ respectively. We are now in a situation where the
homotopy between the symbols of D and D′ is through isomorphisms
of p∗(E) on p∗(F ) all of which are homogeneous polynomials of the
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same even degree. Theorem 5 now follows from Proposition 6.

5. The signature operators

In this section we will describe the so called twisted signature oper-
ators.

5.1. Let M be a manifold of dimension m. We fix a Riemannian
metric on M which gives rise to a Borel measure µ on M . Let ΩM

denote the line bundle of exterior m-forms on M . When there is no
ambiguity about the underlying manifold M , we denote ΩM simply
Ω. The metric gives a canonical reduction of the strcure group R∗ of
the line bundle Ω to the subgroup (1,-1) so that a 2-sheeted cover of
M imbeds in Ω, the two sheeted covering being trivial or non-trivial
according as M is orientable or not; in the former case an orienttion
gives a natural trivialisation of the covering. This reduction of structure
group leads also to a canonical isomorphism of Ω⊗ Ω with the trivial
bundle M × R. If the manifold is oriented, the metric gives a natural
trivialisation of Ω. For an integer p with 0 ≤ p ≤ m, let Ωp denote
the p-th exterior power of T ∗;Ωm = Ω. The exerior multiplication
then defines a pairing Ωp ⊗ Ωm−p → Ω which is non-degenerate and
hence gives a non-degenerate pairing of Ωp with Ωm−p ⊗ Ω. Using the
isomorphism of Ωm−p with its dual given by the Riemannian metric,
we obtain a bundle isomorphism of Ωp on Ωm−p⊗Ω which is denoted ∗
in the sequel. The natural isomorphism of Ω⊗Ω on the trivial bundle
yields (by taking tensor product of with the Identity morphism of Ω) an
isomorphism of Ωp⊗Ω on Ωm−p which will also be denoted ∗. One then
finds that ∗2 on Ωp equals (−1)p(m−p). Suppose now that α and β are
two p-forms on M ; then α∧∗β is a section of Ω⊗Ω and - as this last line
bundle is naturally isomorphic to the trivial bundle - is a function on
M . On the other hand the Riemannian metric gives an inner product
denoted <,> on the Ωp. One checks easily that < α, β >= α∧∗β. For
α, β as above we set

(α, β) =

∫
M

< α, β > dµ

5.2. Suppose now that E is a complex vecor bundle with a hemitian
inner product along its fibre. Let ω be a unitary connection on E. We
then have the differential operator of order 1, viz., exterior differenti-
ation with respect to ω of E-valued p-forms on M - these are nothing
but sections of the bundle Ωp ⊗ E.

dω : Γ(Ωp ⊗ E)→ Γ(Ωp+1 ⊗ E)
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The hermitian inner product on E gives a conjugate-linear isomorphism
of E on the dual E∗. Forming the tensor product of this isomorphism
with ∗ we obtain a conjugate linear isomorphism of Ωp⊗E on Ωm−p⊗
Ω⊗ E∗ which also we denote ∗.

∗ : Ωp ⊗ E → Ωm−p ⊗ Ω⊗ E∗

Now, if α (resp. β) is a p-form (resp. (m− p)-form) on M with values
in E (resp. E∗), then using the pairing between E and E∗, we get a
m-form α∧β with values in Ω⊗Ω. One checks easily that for p−forms
α, β with values in E, < α, β > (the inner product on Ωp ⊗ E is the
one deduced from that given by the Riemannian metric on M and the
Hemitian inner product on E) equals α∧ ∗β (treated as a function via
the canonical trivialisation of Ω⊗Ω). It follows moreover from Stoke’s
theorem that for a p-form α and a p+ 1-form β, we have, setting δω =
(−1)p+1 ∗ dω∗, ∫

M

< dωα, β > dµ =

∫
M

< α, δωβ > dµ

Thus we see that δω is the adjoint of dω. Let Ωe (resp. Ωo the direct
sum of the even (resp. odd) exterior powers of T ∗. Then dω + δω is an
elliptic differential operator (of order 1) from Ωe ⊗ E to Ωo ⊗ Ω ⊗ E.
In the sequel we denote this operator DE,deRh and refer to it as the
de Rham - Hodge operator for E (or the E-twisted de Rham - Hodge
operator). When E is the trivial line bundle, we drop the E in the
suffix and refer to it simmply as the de Rham - Hodge operaator.

5.3. When the dimension m of M is even, equal to 2n, say, there is an-
other way of decomposing the bundle ΛT ∗ of (all) exterior differential
forms into a direct sum of two vector bundles Ω+ and Ω−: if we define
′∗ : Ωp → Ωm−p ⊗ Ω by setting ′ ∗ (ξ) = ip(p−1) ∗ (ξ), one checks easily
that (′∗)2 = (−1)n (here i is a square root of -1 fixed once and for all).
It follows that when n is even (resp. odd), that ΛT ∗ decomposes as
a direct sum of two sub-bundles Ω+ and Ω− where Ω+ (resp. Ω−)is
the eigen-sub-bundle of ΛT ∗ corresponding to the eigen-value θ (resp.
−θ) for ′∗, θ being 1 or i according as n is even or odd. The operator
dω+δω is then seen to define an elliptic operator from Ω+⊗E to Ω−⊗E
(which will be denoted DE,ω in the sequel) is the E-twisted signature
operator on M . We have then the following crucial fact from K-theory.
For a proof see [P], pp. 225-26.
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Theorem 7. Let Th : K0(M)→ K0(B, S) be the homorphism defined
by setting Th(E) = σ0(DE,ω) for a vector bundle E on M . Then Th
gives an isomorphism of K0(M)⊗Q on K0(B, S)⊗Q.

Note that for a vector bundle E, Th(E) depends only on the K-
theory class of E and is independent of the choice of the hermitian
metric and the connection on E and defines a homorphissm of K0(M)
into K0(B, S). Theorems 5 and 7 together show that to prove Theorem
2, it suffices to prove that a(DE,ω) = t(DE,ω) and this is what will be
done in the rest of this paper.

6. “Bordism Invariance” of the index

We adopt the following notation in the sequel. For a vector bundle E
on a mnaifold M , a(E) (resp.t(E)) will be the analytic (resp. topolog-
ical) index of the E-twisted signature operator DE,ω. This notation is
justified as the indices in question are independent of the connection ω
as the K-theoretic symbol of DE,ω itself is independent of ω. We then
have:

Theorem 8. Suppose now that M and M ′ are two smooth manifolds
and E and E ′ are vector bundles on them. Suppose further that there
is a manifold with boundary W such that the boundary of W is the
disjoint union of M and M ′ and there is a vector bundle E on W such
that E restricts to E (resp. E ′) on M (resp. M ′). Then a(E) = a(E ′)
and t(E) = t(E ′).

6.1. For the result for the topological index which is easy to prove, see
[P], p.228. For the analytic index we will make use of some results about
the heat kernel essentially due to Minakshisundaram and Plejel [MP].
We recall these now. The operator DE,ω has for its adjoint the operator
DE⊗Ω,′ω with ′ω denoting the connection on E ⊗ Ω obtained from ω
and the flat connection on Ω. We set ′E = E ⊗ ω in the sequel.Then
D′E,′ωDE,ω (resp. DE,ωD′E,′ω) is an elliptic second order operator of
Ω+ ⊗ E (resp.Ω− ⊗′ E) to itself which we denote simply ∆+ (resp.
∆−) in the rest of this section. For t ≥ 0, the operator exp(−t∆+)
(resp. exp(−t∆−) has a smooth kernel K+(t, x, y) (resp.K−(t, x, y)) a
smooth section of Hom(p∗1(Ω+⊗E), p∗2(Ω+⊗E)) (resp. Hom(p∗1(Ω−⊗′
E), p∗2(Ω− ⊗′ E)) which depends smoothly on the parameter t as well.
Further K+(t, x, x) (resp. K−(t, x, x)) has an asymptotic expnasion∑

0≤r≤∞ t
r−m/2K+

r−m/2(x, x) (resp.
∑

0≤r≤∞ t
r−m/2K−r−m/2(x, x)) as t
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goes to zero. The analytic index of D+
E,ω is then equal to∫

M

Trace(K+
0 (x, x))dµ(x)−

∫
M

Trace(K−0 (x, x))dµ(x)

The crucial fact we need about the asymptotic expansion is the follow-
ing. If E and E ′ are two vector bundles with hermitian inner products
<,> and <,>′ and unitary connections ω and ω′ respectively such that
on an open set U of M , we have a Hermitian isomorphism of the restric-
tion of E on the restriction of E ′, which carries ω into ω′, then on U×U ,
all the terms in the asymptotic expansions of the two heat kernels co-
incide. In particular, the function Trace(K+

0 (x, x))−Trace(K−0 (x, x))
on M (which we will denoe TE in the sequel) is determined in the
neighbourhood of any point by the local data on the Riemannian met-
ric, the Hermitian inner product on E and the unitary connection in
that neighbourhood. TE is naturally a section of Ω⊗Ω and so is to be
regarded as a closed m-form on M with values in Ω.

6.2. Since any cobordism between manifolds is a composition of suc-
cessive elementary cobordisms, we may assume for proving Theorem 8
that W is an elementary cobordism. In other words, there is smooth
function f : W → [−1, 1] such that M = f−1(−1), M ′ = f−1(1) and f
has exactly one non-degenerate critical point w (of index r, say) with
f(w) = 0. One then has an open neighbourhood U of w in W and a
diffeomorhism F of of an open disc D(4ε), ε > 0, of radius 4ε around
the origin 0 in Rm, on U with F (0) = w and such that f composed with
F is the fuction Q defined on D(4ε) as follows: for a suitable decom-
position of Rm as an orthogonal direct sum of Rr and Rs (r + s = m),
denoting by x1, x2, ....xr (resp. y1, y2, .....ys) the coordinates in Rr (resp.
Rs) one has

Q(x1, x2....xr, y1, y2, ....ys) =
∑

1≤i≤s

y2
i −

∑
1≤j≤r

x2
j .

.

For any c > 0, let D(c) denote the disc of radius c around the origin
in Rm. Introduce a Riemannian metric g′ on W such that it induces
the standard metric on D(3ε) under the map F . Let X be the vector
field on W ′ = W \ {w} such that < X, Y >= 0 for all vector fields
Y on W ′ with Y f = 0 and < X,X > = 1. The local 1-parameter
group φt of local diffeomorphisms of W determined by X then defines
for 0 < c < 3ε a smooth map Φ : (M \F (D(c)))× [0, 1]→ W given by
Φ(x, t) = φ2t(x) which is a diffeomorphism onto a closed subset W (c) in
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W ; the interior of the manifold with boundary (M \F (D(3ε)))× [0, 1]
maps onto the interior of W (c) as a subset of W . This last open set is
also diffeomorphic to (M ′ \F (D(c)))× [0, 1] under the map that takes
(x′, t) to φ−2t(x

′). We now replace the metric g′ by a metric g which
coincides with g′ on F (D(ε)) and induces on (M \ F (D(2ε))) × [0, 1]
a product Riemannian metric under the map Φ - note that F (D(ε))
and W (2ε) have disjoint closures. The vector bundle E on W when
pulled back to (M \ F (D(ε))) × [0, 1] is necessarily isomorphic to the
pull back of a bundle on (M \F (D(ε))) under the cartesian projection
on (M \ F (D(ε))). We assume the Hermitian inner product to be the
pull back of one on the bundle on (M \ F (D(ε))). We note that the
complement of W (3ε) in W is contaied in F (D(4ε)) and hence E is
trvial over this copmlement. Observe that if ν denotes the unit inward
normal field along the boundary, the interior product with ν yields
isomorphism of) the bundle ΩW of m + 1-forms on W restricted to
M (resp.M ′) on ΩM (resp. Ω′M), the bundle of m-forms on M (resp.
M ′), which in addition is compatible with the flat connections on thsee
bundles. Now consder the closed ΩM -valued m-form TE on M and let
α denote the pull-back of its restriction to M \ F (D(3ε)) to W (3ε)
(identified with (M \ F (D(3ε))) × [0, 1] via Φ). Then α restricted to
Φ((M \ F (D(3ε)))× 1 = M ′ \ F (D(3ε)) is the same as the restriction
of T ′E (on M ′). Let α be a m-form on W which equals α on W (3ε),
equals TE on M and T ′E on M ′.
Applying Stoke’s theorem to the ΩW -valued m form α, we get:∫

M ′
α−

∫
M

α =

∫
W

dα.

Now since the form α is closed, so is its pull back to W (3ε).) It fol-
lows that the integral on the right hand side equals the integral over
F (D(4ε)). Now there is an elementary cobordism V between the sphere
Sm and Sr×Ss admitting a Morse function g : V → [−1, 1] with exactly
one non-degenerate critical point of index r admitting a neighbourhood
with properties entirely analogous to the neighbourhood U of w in W .
Let F (resp. F , F ′) be the trivial bundle of rank equal to rank-E.
Then we see that the same arguments as above shows that the integral
above over F (D(4ε)) is equal to∫

Sr×Ss

T ′F −
∫
Sm

TF

and this is zero as the analytic index of the signature operator for the
trivial bundle on the product of two spheres is zero as can be checked
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easily (using the Hodge- De Rham theorem). This proves Theorem 8.

7. Proof of the Atiyah - Singer theorem

In this section we complete the proof of the theorem. We first dis-
pose off the case of odd dimensional M in the same way as is done in
[P]: we show that both the analytic and topological indices vanish.

7.1. The odd dimensional case. When M is odd dimensional the
asymptotic expansion of the heat kernel is in odd powers of t1/2 so that
for any vector bundle E on M (with a unitary connection ω), TE is zero.
Hence a(DE) = 0. On the other hand t(DE) is zero as the K-theoretic
symbol of any elliptic differential operator itself is zero. This is seen as
follows. As we have seen we may assume that the operator has even
degree. But this means that the symbol and hence also the K-theoretic
symbol is invariant under the bundle automorphism −(Identity) while
this automorphism induces the map −(Identity) on K0(B, S) as the
antipodal map on even dimensional spheres is orientation reversing.

7.2. The case of spheres. When M is an even dimensional sphere,
the group K0(B, S)⊗Q is ismorphic to Q2 and is generated as a vector
space over Q by D1 and the de Rham-Hodge operator. Here 1 denotes
the trivial line bundle (see [P]). For the first of these two operators, it
is easily checked (as was observed earlier) that both indices vanish; for
the second the equality of the two operators follows from the Gauss-
Bonnet theorem (see [P]). Thus the theorem holds for all spheres.

7.3. Products. If M and M ′ are two manifolds for which the analytic
and topological indices are equal the same holds for M ×M ′. This is
easily seen from the following facts: (i) K0(M ×M ′) ⊗ Q is isomor-
phic to (K0(M)⊗Q)⊗ (K0(M ′)⊗Q) under the natural map induced
by the formation of “external” tensor products and this is compatible
with the Kunneth isomorphism in cohomology and the Chern charac-
ter; note also that the isomorphism Th for M×M ′ is the tensor product
of the Th for the two factors. This implies that the topological index
is multiplicative: If E (resp. E ′) is a vector bundle on M (resp. M ′)
and p (resp. p′) is the Cartesian projection of M ×M ′ on M (resp.
M ′), the t(p∗(E) ⊗ p′∗(E ′)) = t(E).t(E ′). (ii) That a(p∗(E) ⊗ p′∗(E ′))
= a(E).a(E ′) follows from the fact that the twisted signature operator
on (p∗(E) ⊗ p′∗(E ′)) is obtained from the E and E ′ twisted operators
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on M and M ′ respectively by taking tensor product of these last oper-
ators. Since we have proved the theorem for spheres and on the even
dimensional sphere there is bundle E with a(E) non-zero - the one
which corresponds to the de Rham-Hodge operator - it follows that the
theorem holds for M if (and only if) it holds for M × S2q.

7.4. Spherical cohomology classes. We need the following result
due to Serre (see [S]):

Theorem 9. Let X be a finite C-W complex of dimension n and α
an element of Hq(X,Q). Assume that n < 2q − 1. Then there is a
continous map f : X → Sq and an element α0 in Hq(Sq,Q) such that
f ∗(α0) = α.

.

7.5. Conclusion of the proof. Since the Chern character is an iso-
morphism of K0(M) ⊗ Q on Heven(M ; Q), we may view the analytic
and topological indices as homomorphisms of Heven(M ; Q) in Q. Sup-
pose now that the theorem holds for all manifolds of (even) dimension
less than m, the dimension of M . Let α be an element of Hq(M ; Q)
with q an even integer greater than or equal to zero. We need to prove
that a(α) = t(α). If q = 0, this is the Hirzebruch signature theo-
rem (as is shown by an explicit computation of the topological index
- the analytic index, it is easy to show, is the signature of the man-
ifold). Assume then that q ≥ 2. Let l be an even integer such that
m + q < 2(q + l). Let β be a generator of H l(Sl; Q) and let γ be the
class in Hq+l(M×Sl; Q) which corresponds to α⊗β under the Kunneth
isomorphism. It suffices to show that a(γ) = t(γ) since the theorem
holds for spheres, a(β) = t(β) is non-zero and one has a(γ) = a(α).a(β)
and t(γ) = t(α).t(β).

Now, in view of Serre’s thoerem there is a smooth map f : M×Sl →
Sq+l such that γ is the pull back of a q + l cohomology class η of Sq+l

under f . Now M × Sl is the boundary of W = M ×Dl+1 and we can
extend f to a smooth map F of W into the disc Dq+l+1. Let Z be an
interior point of the q+ l+1 disc which is not a critical value of F . Let
U be an open disc containing Z such that the closure of U is disjoint
with the set of critical values. Then the inverse image of Dq+l+1 \ U
under F gives a cobordism W ′ between M × Sl and the inverse image
N of the boundary of U in Dq+l+1. This last manifold is diffeomrphic
to the product of a manifold M ′ of dimension m+ l+ 1− (q+ l+ 1) =
m− q < m and a sphere of dimension q+ l. If γ̂ (resp. γ′) denotes the
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inverse image of η in the cohomology of W ′ (resp. N), by the bordism
invariance theorem a(γ) = a(γ′) and t(γ) = t(γ′). On the other hand
since dim.M ′ < dim.M ′, the theorem holds for M ′ and hence also for
its product N with Sl. Hence a(γ) = t(γ). Hence the theorem.

8. Appendix

LeX be a finte C-W complex of dimension N and W a real vector
bundle on X of rank m equipped with an inner product. Let B (resp.
S) be the unit disc (resp. sphere) bundle in W . Let ε denote the an-
tipodal map along the fibres of S. Let P denote the real projective
space bundle associated to W : P is the same as the quotient of S ob-
tained by identifying each point s of S with ε(s). Let p (resp. q) be
the projection of S (resp. P ) on M and u the natural map of S on P
so that q ·u = p. Let E and F be complex vector bundles on X of rank
n and ES and FS (resp. EP and FP ), their pull-backs to S (resp. P ).
Let σt, t in [0,1], be a homtopy of sections of the bundle Iso(ES, FS) of
isomorphisms betwee fibres of ES and FS over S. With this notation
we have the folowing.

Proposition 10. Assume that σ0 and σ1 are lifts of sections τ0 and
τ 1 of Iso(EP , FP ). In other words σ0 and σ1 are invariant under the
antipodal map ε of S. Let ν(n) = 2(m−1).n. Then there is a family
θ(t,s), (t, s) in [0, 1]× [0, 1] of sections of Iso(ν(n).ES, ν(n).FS) depend-
ing continuously on (t, s) such that θ(t,0) = ν.σt, θ(0,s) and θ(1,s) are
independent of s, and θ(t,1) is ε invariant.

We argue by induction on dimension of X: when dim. X = 0, the
assertion is obvious. Asume then that it is proved for all finite com-
plexes of dimension less than n = dim.(X). Let Y denote the n − 1
skeleton of X; then X is obtained by attaching the disjoint union A =∐

1≤i≤rDi of n-discs through a map φ of its boundary ∂A =
∐

1≤i≤r ∂Di

in Y . Fix trivialisations of the pull-backs of W , E and F to A. We
may then regard the pull-backs of σt (resp. τ0, τ1) to A as GL(N,C)-
valued functions on A × Sm−1 (resp. ∂A × Pm−1) which we denote
by ft (resp. g0, g1)(here Pm−1 is the (m − 1)-dimensional real pro-
jective space). By induction hypothesis, there is a family ′σ(t, s) of
sections of Iso(ES, FS) over the inverse image SY of Y in S with ′σ(t,0)

= ν(n − 1).σt,
′σ(0,s) = ν(n − 1).σ0 , ′σ(1,s) = ν(n − 1).σ1. and ′σ(t,1)

invariant under ε. This means that there is a family ′f(t,s) of maps of
∂A × S in GL(ν(n − 1)N,C) such that ′f(t,0) = ν(n − 1).ft,

′f(t,1) is
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ε-invariant, ′f(0,s) = g0 and ′f(1,s) = g1. Now using the homotopy ex-
tension property, one sees that there is a family F(t,s) of maps of A×S
in GL(ν(n − 1)N,C) such that F(t,s) =′ f(t,s) on ∂A × S, F(0,s) = f0

and F(1,s) = f1. Let ht = F(t,1). Then for each i with 1 ≤ i ≤ r, ht,
t in [0,1], defines a map of the boundary of Di × Pm−1 × [0, 1] (which
can be identified with Sn+1 × Pm−1) in GL(ν(n − 1)N,C). Equiva-
lently we have a map H of Pm−1 in Ωp(GL(ν(n − 1)N,C), the p-th
free loop space of GL(ν(n − 1)N,C) which when composed with the
projection u of Sm−1 on Pm−1 factors through the space of all maps of
Dn+1 in GL(ν(n− 1)N,C). Now homotopy classes of maps of Pm−1 in
Ωp(GL(ν(n− 1)N,C)) can be identified with the group K−p−1(Pm−1)
so that H defines an element [H] in that group. Moreover the image of
[H] in K−p−1(Sm−1) under the map u∗ induced by u is trivial. Since the
kernel of the map u∗ : K−p−1(Pm−1)→ K−p−1(Sm−1) is annihilated by
2m−1 ( this is seen easily as a consequence of the Atiyah-Hirzebruch
spectral sequence for K-theory [AH] and the fact that the kernel of the
cohomolgy map from Pm−1 to Sm−1 is a direct sum of m− 2 copies of
Z/2), the proposition follows.
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