
Introduction to Dark Energy Spectroscopic Instrument

A. Raichoor (LBNL) on behalf of the DESI collaboration

Cosmic Revelations: A Joint DESI and eROSITA Symposium

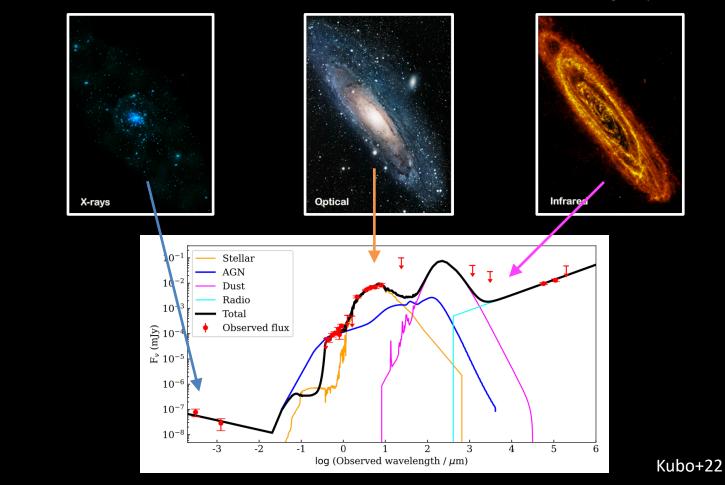
May 22nd, 2024

DARK ENERGY SPECTROSCOPIC INSTRUMENT

U.S. Department of Energy Office of Science

Thanks to our sponsors and 72 Participating Institutions!

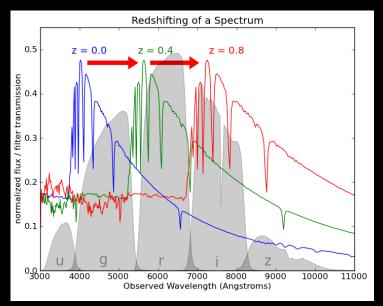
Outline


- Context:
 - Redshifts
 - Dark energy and cosmological probes
 - Large-Scale Structure (LSS) experiments
- DESI:
 - The instrument
 - The targets
 - The Survey Validation (SV1), the One Percent Survey (SV3), and the Main Survey
 - Data Releases
- Post-DESI:
 - Requested extension
 - DESI-2

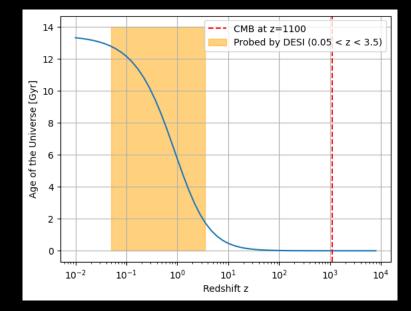
Foreword: astrophysical observations

• Typically: X-rays: AGN, optical: stars, infrared: dust

Andromeda galaxy (credits: NASA)


Images

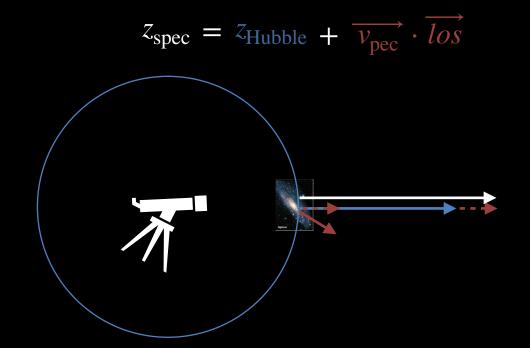
Spectra



Foreword: astrophysical observations

- Redshift:
 - cosmological effect (~Doppler-like): $\lambda_{\text{observed}} = (1 + z) \cdot \lambda_{\text{emission}}$

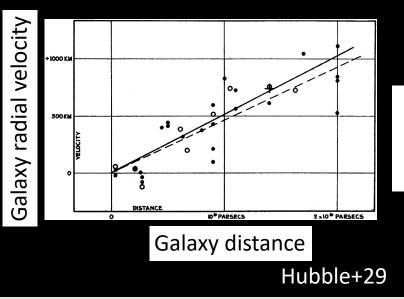
https://ogrisel.github.io/scikit-learn.org/sklearn-tutorial/tutorial/astronomy/regression.html



Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science

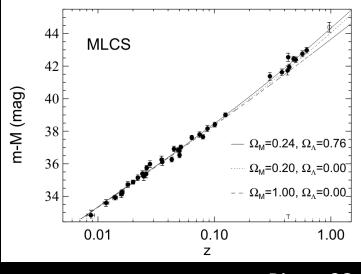
Lawrence Berkeley National Laboratory

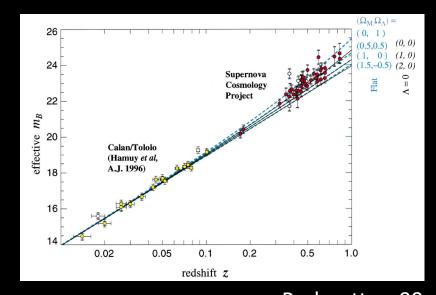
Foreword: astrophysical observations


- Redshift:
 - cosmological effect (~Doppler-like): $\lambda_{\text{observed}} = (1 + z) \cdot \lambda_{\text{emission}}$
 - measured redshifts: cosmological redshift + galaxy peculiar velocity along line of sight

Dark energy & cosmological probes

 1930 ~ 1960: Big-bang, universe in expansion, three observational pillars (Hubble's law, CMB, BBN)


Measurements of the effective zenith noise temperature of the 20-foot horn-reflector antenna (Crawford, Hogg, and Hunt 1961) at the Crawford Hill Laboratory, Holmdel, New Jersey, at 4080 Mc/s have yielded a value about 3.5° K higher than expected. This excess temperature is, within the limits of our observations, isotropic, unpolarized, and free from seasonal variations (July, 1964–April, 1965). A possible explanation for the observed excess noise temperature is the one given by Dicke, Peebles, Roll, and Wilkinson (1965) in a companion letter in this issue.

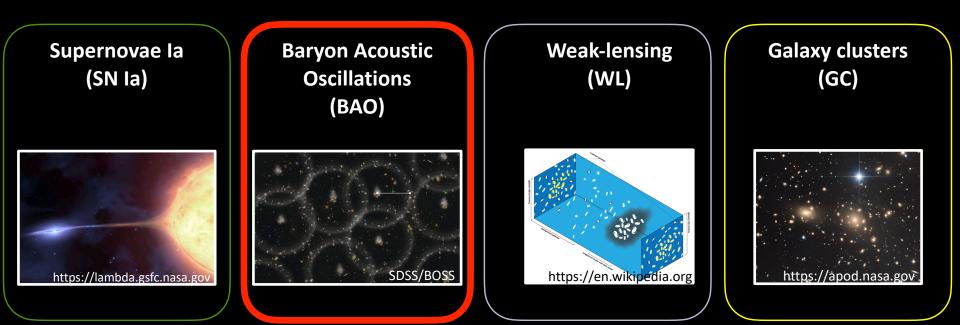

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory Penzias & Wilson+65

Dark energy & cosmological probes

- 1930 ~ 1960: Big-bang, universe in expansion, three observational pillars (Hubble's law, CMB, BBN)
- 1998: Supernovae Ia observations \rightarrow acceleration of the expansion of the universe

Riess+98

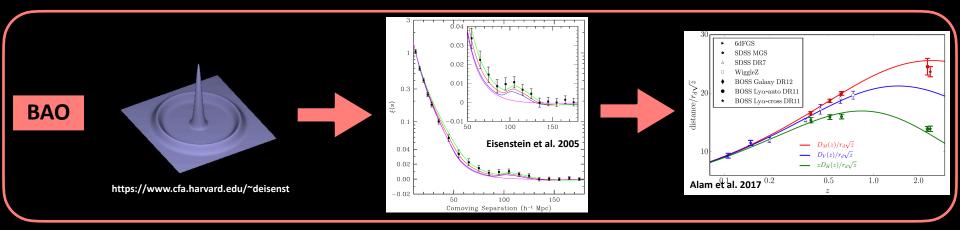
Perlmutter+99



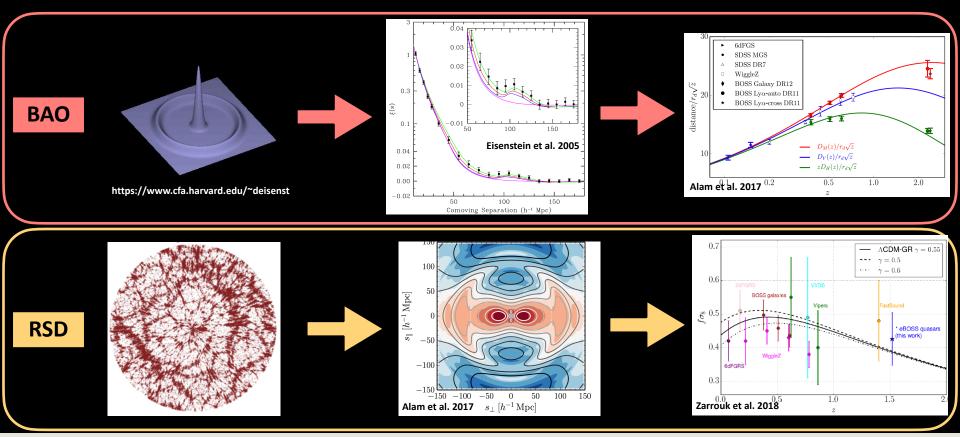
Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science

Lawrence Berkeley National Laboratory

Dark energy & cosmological probes

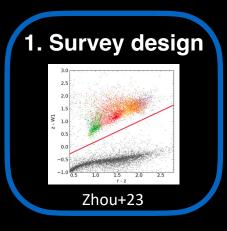

- 1930 ~ 1960: Big-bang, universe in expansion, three observational pillars (Hubble's law, CMB, BBN)
- 1998: Supernovae Ia observations \rightarrow acceleration of the expansion of the universe
- 2006: DETF (Dark Energy Task Force, Albrecht+06):
 - community should engage in large observational programs
 - four main cosmological probes

LSS experiments: cosmological probes

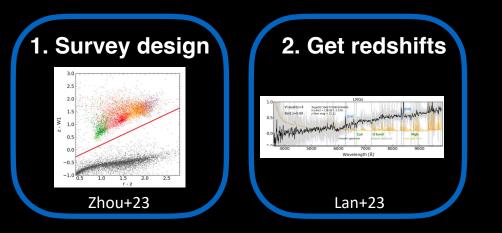

- LSS (Large-Scale Structures) experiment: BAO and RSD with spectroscopic redshifts
- BAO → Universe expansion [also SNIa]

LSS experiments: cosmological probes

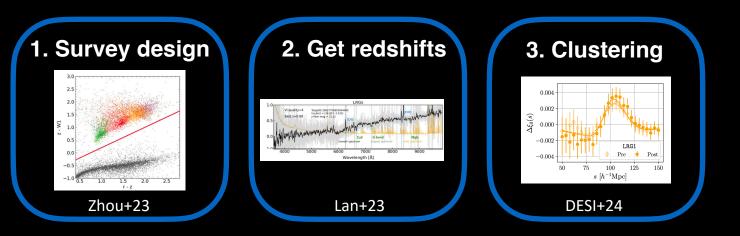
- LSS (Large-Scale Structures) experiment: BAO and RSD with spectroscopic redshifts
- BAO → Universe expansion [also SNIa]
- **RSD** (*Redshift Space Distortions*) → Growth of structure + test of General Relativity [also WL+GC]



Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science

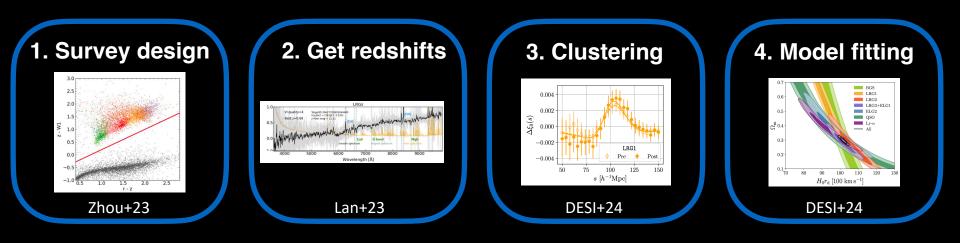

U.S. Department of Energy Office of Scien Lawrence Berkeley National Laboratory

• **Survey design**: sky footprint, imaging, target selection, tiling/fibre assignment



- **Survey design**: sky footprint, imaging, target selection, tiling/fibre assignment
- Get redshifts: spectroscopic observations, 1D-spectrum reduction, redshift fitting

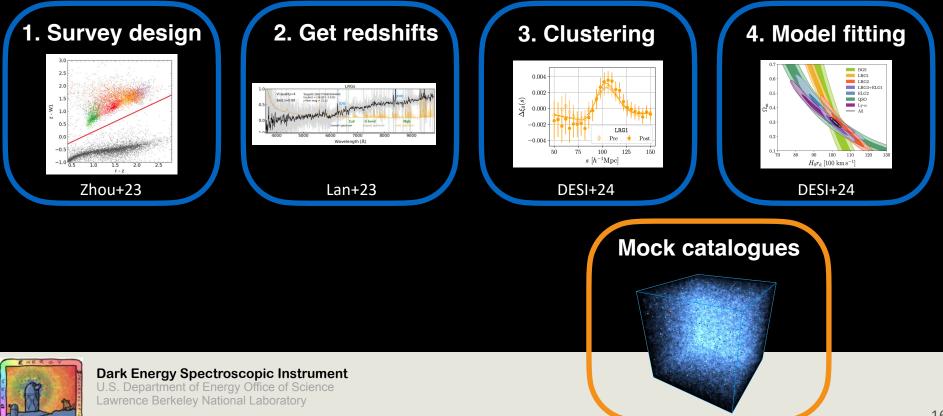
- Survey design: sky footprint, imaging, target selection, tiling/fibre assignment 0
- Get redshifts: spectroscopic observations, 1D-spectrum reduction, redshift fitting
- **Clustering:** LSS catalogues, correlation function / power spectrum 0



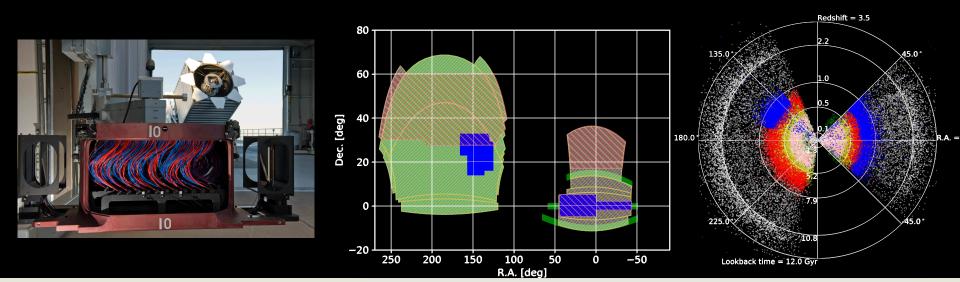
Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science

Lawrence Berkeley National Laboratory

- Survey design: sky footprint, imaging, target selection, tiling/fibre assignment
- Get redshifts: spectroscopic observations, 1D-spectrum reduction, redshift fitting
- **Clustering**: LSS catalogues, correlation function / power spectrum
- Model fitting: analysis validation, systematics estimation, cosmological parameters

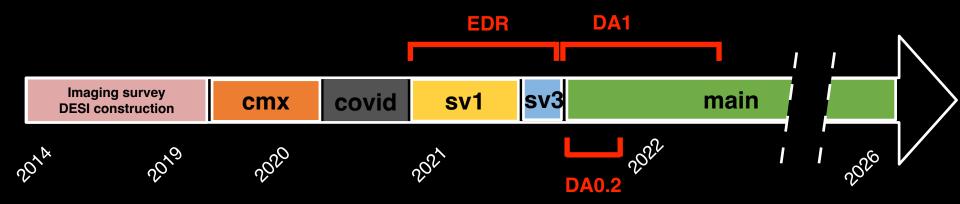


Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory


15

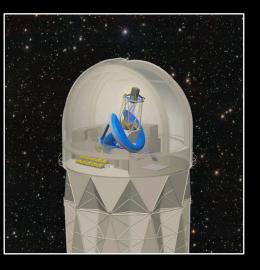
- Survey design: sky footprint, imaging, target selection, tiling/fibre assignment
- Get redshifts: spectroscopic observations, 1D-spectrum reduction, redshift fitting
- **Clustering**: LSS catalogues, correlation function / power spectrum
- **Model fitting**: analysis validation, systematics estimation, cosmological parameters
- Mock catalogues: covariance matrix, analysis validation

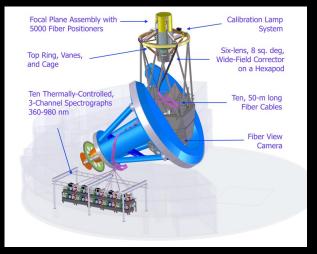
LSS experiments: SDSS


- New Mexico, USA, 2.5-meters, field-of-view 7 deg² ("28x Moons"), 1000 fibres
- SDSS, BOSS, eBOSS: two decades of LSS (2000 2019), 5M redshifts
- SDSS+21 : <u>Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey:</u> <u>Cosmological implications from two decades of spectroscopic surveys at the Apache Point</u> <u>Observatory</u>

DESI: timeline & releases

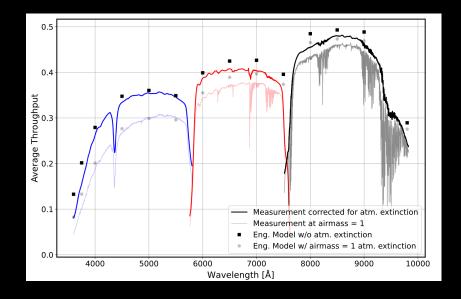
• A decade-long effort!




Release	Internal	Public	Content
EDR	2022 Feb.	2023 May	mostly sv1 + sv3
DA0.2	2022 Feb.	along DA1	main: first 2 months
DA1	2023 Feb.	when science analyses done	main: first 13 months

DESI: the instrument

- Mayall telescope in Arizona, USA
- 4m primary mirror, 8 deg² field-of-view, 5000 fiber positioners, 10 optical spectrographs



DESI+22

DESI: the instrument

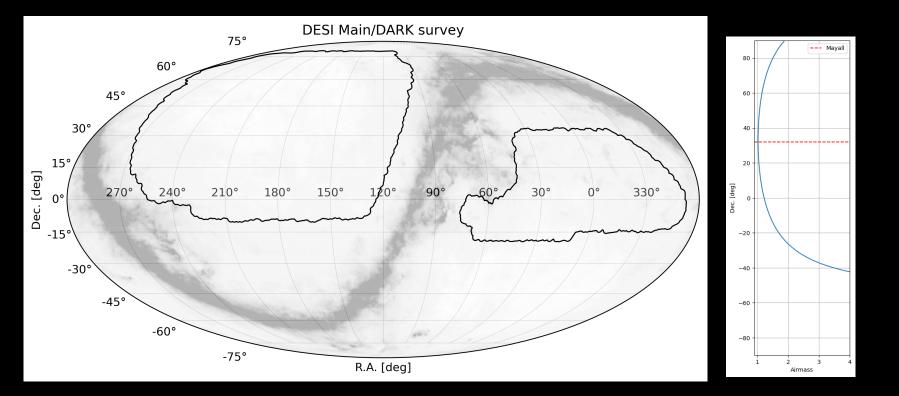
- Mayall telescope in Arizona, USA ٠
- 4m primary mirror, 8 deg² field-of-view, 5000 fiber positioners, 10 optical spectrographs •
- high throughput (optics, spectrographs, fibers, CCDs) •

DESI+22

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science

Lawrence Berkeley National Laboratory

DESI: the instrument

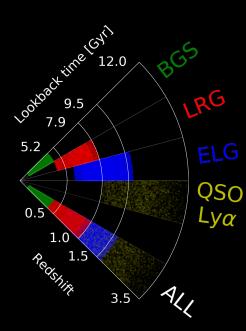

- Mayall telescope in Arizona, USA
- 4m primary mirror, 8 deg² field-of-view, 5000 fiber positioners, 10 optical spectrographs
- high throughput (optics, spectrographs, fibers, CCDs)
- redshift factory!

SDSS/BOSS-eBOSS: 1k spectra in ~1 hr DESI: 5k spectra in ~15min → 20x faster

DESI: the Main Survey

• Five years over 14,000 deg² (1/3 of the sky), started on May, 14th 2021

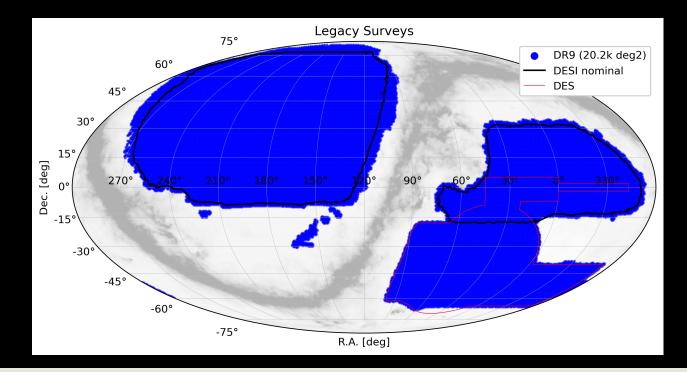
Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science


Lawrence Berkeley National Laboratory

DESI: the Main Survey

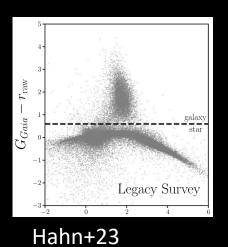
- Five years over 14,000 deg² (1/3 of the sky), started on May, 14th 2021
- 40M redshifts (~10x the whole SDSS over 20 years)
- One tracer optimal for each redshift range

	N	Redshift	Comments	
MWS	6M	-	stars	
BGS	13.5M	0.05 < z < 0.4	bright galaxies	
LRG	8M	0.4 < z < 1.1	luminous red galaxies	
ELG	16M	0.6 < z < 1.6	emission line galaxies	
QSO + Lya	3M	0.8 < z < 3.5	quasars	

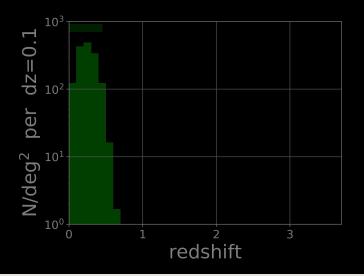


DESI: the imaging

- Legacy Surveys DR9 (<u>https://www.legacysurvey.org/dr9/;</u> Dey, Schelgel +19)
- 20k deg² imaged in *grz*-bands + forced-photometry in near-infrared (*WISE*) + *Gaia* info.
- Data coming from three telescopes
- Largest cosmological imaging survey

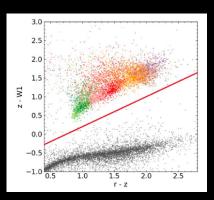

Dark Energy Spectroscopic Instrument

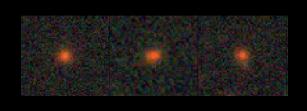

U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

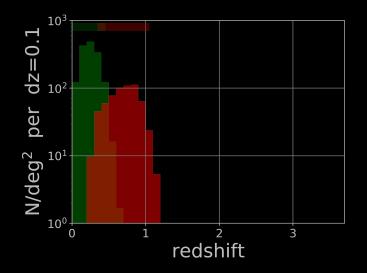

DESI: BGS targets

- Same spirit as the SDSS Main Galaxy Sample, all types of galaxies at z<0.4 \bullet
- Selection: r < 19.5-20 + morphology cut with Gaia •

	N	Redshift	Density [deg-2]	Obs. cond.	Comments
BGS	13.5M	0.05 < z < 0.4	700	Bright	bright galaxies


Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science

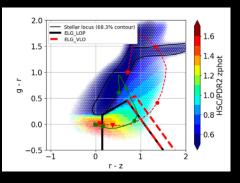

Lawrence Berkeley National Laboratory

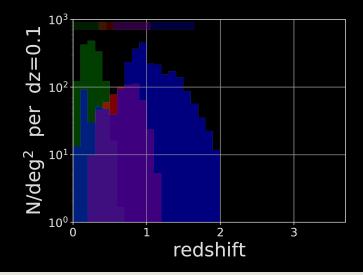

DESI: LRG targets

- Massive galaxies, with strong clustering bias
- Selection: z_fiber < 21.6 + grzW1 cuts

	N	Redshift	Density [deg-2]	Obs. cond.	Comments
LRG	8M	0.4 < z < 1.0	350	Dark	luminous red galaxies

Zhou+23

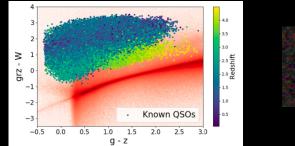

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

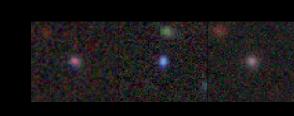

26

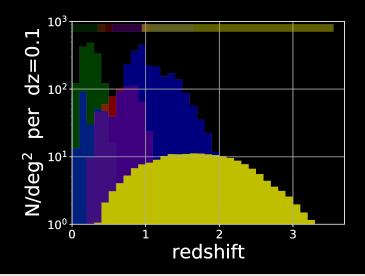
DESI: ELG targets

- « Faint » star-forming galaxies, with strong emission lines ([OII] doublet)
- Selection: g_fiber < 24.1 + grz box

	N	Redshift	Density [deg-2]	Obs. cond.	Comments
ELG	16M	0.6 < z < 1.6	2400	Dark	emission line galaxies

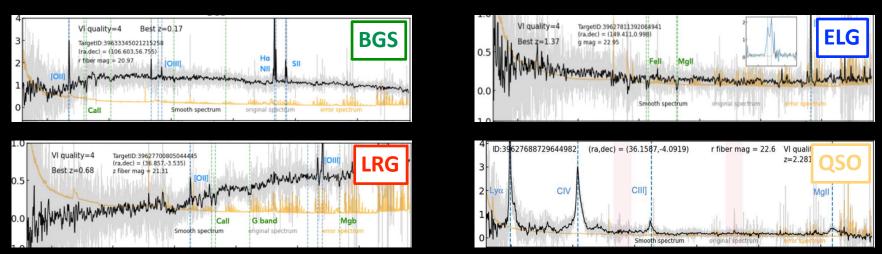

Raichoor+23




DESI: QSO targets

- Point-source, luminous, high-redshift objects with AGN activity
- Ly- α forest for z > 2.1 QSOs
- Selection: r < 23.0, point-source morphology + Random Forest with grzW1W2

	N	Redshift	Density [deg-2]	Obs. cond.	Comments
QSO + Lyα	3M	0.8 < z < 3.5	260	Dark	quasars



Chaussidon+23

DESI: Survey Validation (SV1)

- Dec. 2020 Apr. 2021
- DESI observations of extended target selections
- Goals:
 - Validate target selections properties
 - Build truth table from very deep observations (via Visual Inspections)
 - Validate DESI performances for nominal exposure times

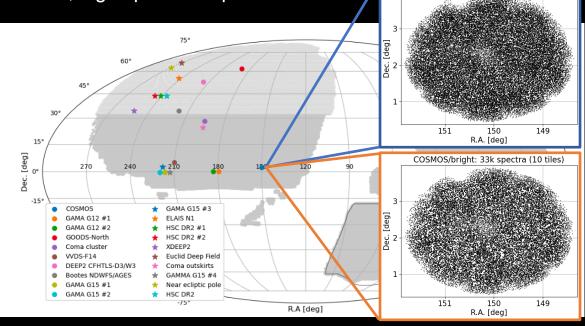
Alexander+23, Lan+23

DESI: Survey Validation (SV1)

- Dec. 2020 Apr. 2021
- DESI observations of extended target selections
- Goals:
 - Validate target selections properties
 - Build truth table from very deep observations (via Visual Inspections)
 - Validate DESI performances for nominal exposure times

	$\cdot \mathbf{T}$	
No.	Requirement	Performance
L2	Survey Data Set Requirements	
L2.2	Luminous Red Galaxies	
L2.2.1	The average density with redshift $0.4 < z < 1.0$ shall be at least 300 deg ⁻² .	The average density with redshift $0.4 < z < 1.1$ is 478 deg ⁻² .
L2.2.2	The random redshift error shall be less than $\sigma_z = 0.0005(1 + z)$.	The typical random redshift error is $\sigma_z = 0.00014(1 + z)$.
L2.2.3	The systematic in the mean redshift shall be less than $\Delta z = 0.0002(1 + z)$.	The systematic error in the mean redshift is $\Delta z = 0.00001(1 + z)$.
L2.2.4	The catastrophic redshift failures exceeding 1000 km s ⁻¹ shall be $<5\%$.	The rate of catastrophic redshift failures exceeding 1000 km s ^{-1} is 0.2%.
L2.2.5	The redshift completeness shall be $>95\%$ for each pointing averaged over all fibers with targets.	The fraction of targets confirmed as galaxies is 96% over all fibers that receive targets.

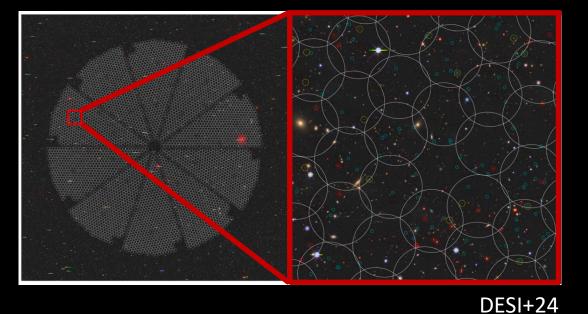
LRG requirements (see for all tracers: DESI+24)

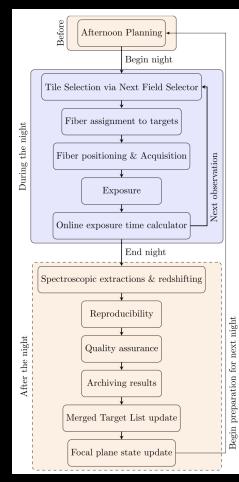

DESI: Survey Validation (SV1)

- Coordinated analysis and release of eight papers in 2023:
 - Myers+23: The Target-selection Pipeline for the Dark Energy Spectroscopic Instrument
 - Cooper+23: Overview of the DESI Milky Way Survey
 - Hahn+23: The DESI Bright Galaxy Survey: Final Target Selection, Design, and Validation
 - Zhou+23: Target Selection and Validation of DESI Luminous Red Galaxies
 - Raichoor+23: Target Selection and Validation of DESI Emission Line Galaxies
 - Chaussidon+23: Target Selection and Validation of DESI Quasars
 - Lan+23: The DESI Survey Validation: Results from Visual Inspection of BGSs, LRGs, ELGs
 - Alexander+23: The DESI Survey Validation: Results from Visual Inspection of the QSO Spectra

DESI: One Percent Survey (SV3)

- Apr. 2021
- Goal: •
 - observations to calibrate halo-galaxy models
 - refine operations procedure
- DESI Main-like targets, 20 reference fields, observed in dark + bright •
- Each field: dense tiling of ~12 tiles ("rosette"), 30k+ spectra •
- Very high-fiber assignment completeness, high spectroscopic success rate/ •

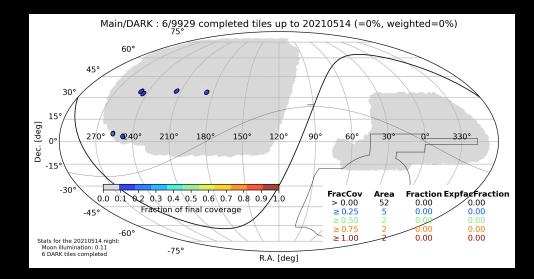

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science

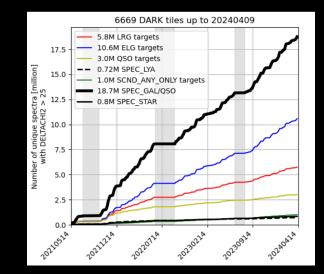

Lawrence Berkeley National Laboratory

COSMOS/dark: 43k spectra (12 tiles)

DESI: Main Survey

- Started on May, 14th 2021
 - Optimized operations, very efficient (record night: 20211103, 39 dark tiles, ~200k spectra)

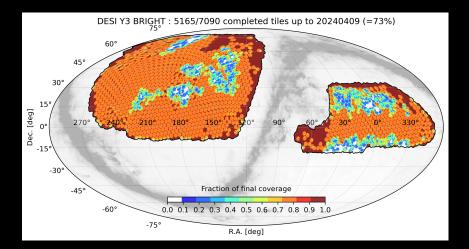

Schlafly+23

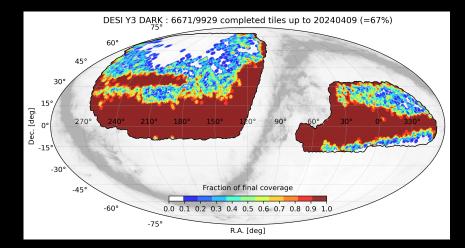


•

DESI: Main Survey

- Started on May, 14th 2021
- Optimized operations, very efficient
 - (record night: 20211103, 39 dark tiles, ~200k spectra)
- Shutdowns: 2021 (maintenance), 2022 (Contreras fire), 2023.. but still ahead of schedule!

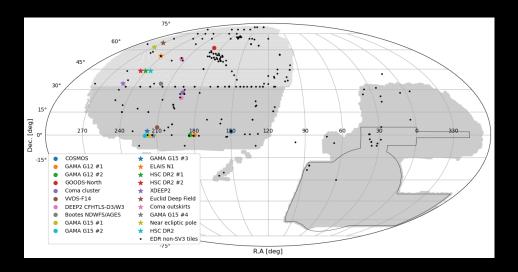


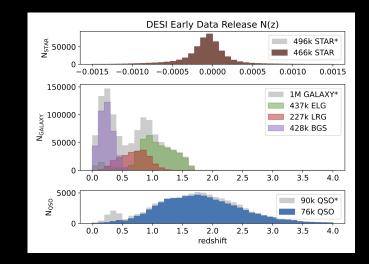

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science

U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

DESI: Main Survey

- Started on May, 14th 2021
- Optimized operations, very efficient
 - (record night: 20211103, 39 dark tiles, ~200k spectra)
- Shutdowns: 2021 (maintenance), 2022 (Contreras fire), 2023.. but still ahead of schedule!
- Y3 coverage

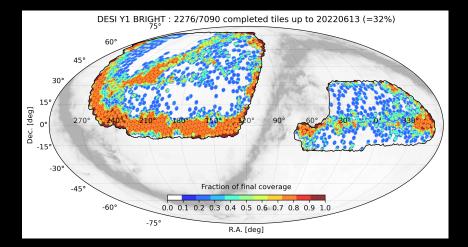


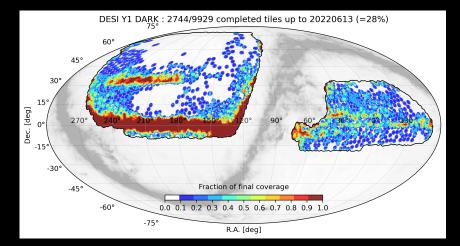

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science

U.S. Department of Energy Office of Scien Lawrence Berkeley National Laboratory

DESI: EDR release

- 2023, May, Survey Validation (SV1) + One percent Survey (SV3)
- Lots more than just redshifts! <u>https://data.desi.lbl.gov/doc/</u>
- Various data products:
 - raw data, sky-subtracted flux-calibrated spectra, redshifts measurements (+classification)
 - value added catalogs (more will come after, not tied to the EDR)
 - documentation, datamodel, tutorials
 - papers (overview, data release, spectro. pipeline) + supporting papers (target selection, visual inspection, imaging)

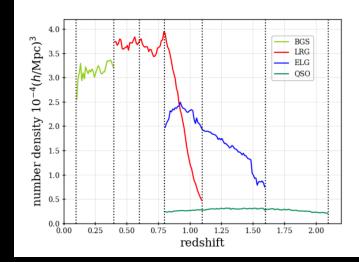



Dark Energy Spectroscopic Instrument

U.S. Department of Energy Office of Science Lawrence Berkeley National Laboratory

DESI: DR1 sample

- Internal only for now, first 13 months of the Main Survey
- Sample used for the DESI 2024 results released last month

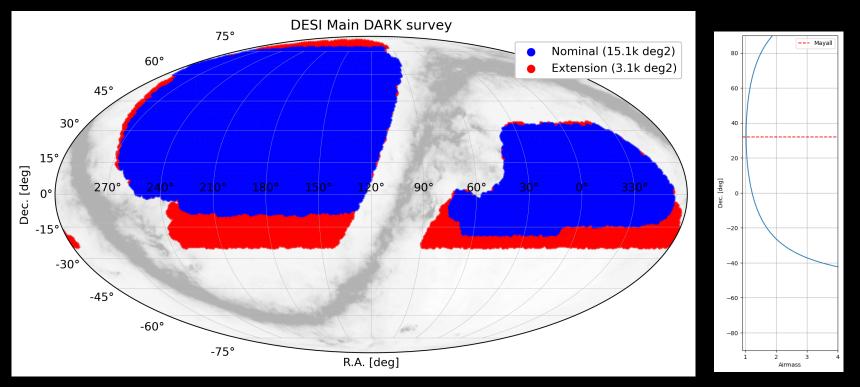

Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science

U.S. Department of Energy Office of Scient Lawrence Berkeley National Laboratory

DESI: DR1 sample

- Internal only for now, first 13 months of the Main Survey
- Sample used for the DESI 2024 results released last month
- 5.7M redshifts used for BAO measurements (x3 SDSS/DR16)

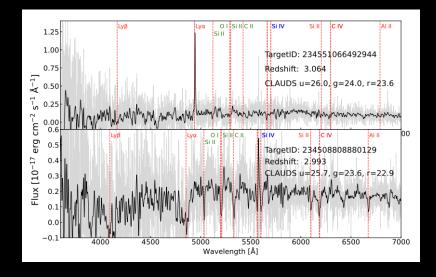
Tracer	redshift range	$N_{ m tracer}$	$z_{ m eff}$	$P_0(k = 0.14)$	$V_{\rm eff}~({ m Gpc}^3)$
BGS	0.1 - 0.4	300,017	0.30	$\sim 9.2 imes 10^3$	1.7
LRG1	0.4 - 0.6	$506,\!905$	0.51	$\sim 8.9 imes 10^3$	2.6
LRG2	0.6-0.8	$771,\!875$	0.71	$\sim 8.9 imes 10^3$	4.0
LRG3	0.8 - 1.1	$859,\!824$	0.92	$\sim 8.4 imes 10^3$	5.0
ELG1	0.8 - 1.1	1,016,340	0.95	$\sim 2.6 imes 10^3$	2.0
LRG3+ELG1	0.8 - 1.1	$1,\!876,\!164$	0.93	$\sim 5.9 imes 10^3$	6.5
ELG2	1.1 - 1.6	$1,\!415,\!687$	1.32	$\sim 2.9 imes 10^3$	2.7
QSO	0.8-2.1	$856,\!652$	1.49	$\sim 5.0 imes 10^3$	1.5



DESI+24

DESI: possible extension

- Main Survey observations ahead of schedule, DR1 results very encouraging
- Request to extend the survey:
 - add two more passes, with new, additional LRG targets
 - extend the footprint South (will use Legacy Surveys DR11)



Dark Energy Spectroscopic Instrument U.S. Department of Energy Office of Science

Lawrence Berkeley National Laboratory

DESI-2

- Principle:
 - No major instruments upgrade
 - Core program: probe the 2 < z < 4.5 Universe with LAEs (Lyman Alpha Emitters) and LBGs (Lyman Break Galaxies)
- Several pilot observations done with DESI since Survey Validation:
 - Test various target selections (from broad-band, medium-band, narrow-band photometry)
 - Very successful, DESI can get redshifts for LAEs/LBGs in a reasonable amount of time
 - Results from LBG selected with broad-band photometry in Ruhlmann-Kleider+24

Ruhlmann-Kleider+24

Conclusions

- DESI:
 - Decade-long efforts now fruitful
 - EDR data public since one year
 - State-of-the-art results with DR1 data, which already has 3x more redshifts than SDSS/ DR16
 - Y3 sample data in the can
- Futures:
 - DESI is ahead of schedule
 - Requested extension (denser coverage, more footprint)
 - DESI-2: probing the 2 < z < 4.5 Universe, pilot studies promising!

