Dark Matter in Neutrino Facilities

NIRMAL RAJ

Indian Institute of Science

@PhysicsNirmal

Understanding the Universe Through Neutrinos

Apr 25 2024

SM

χ

Dark matter

Dark reality

Scattering!

How to pinpoint the identity of dark matter

Determine dark matter-on-nucleon scattering cross section

Intrinsic quantity: helps identify dark matter

Reverse Rutherford scattering

Beam of ambient dark matter (unknown species) hits target of nuclei (well-understood species).

Energy and momentum transferred => study changes in target.

[inferred from star motion]

300 km/s

 0.3 GeV/cm^3

Preview: modern searches

Bird's-eye view

Past and present probes

— since 1985

 great swathes of cross section vs mass space already constrained

9

How it began

PHYSICAL REVIEW D

VOLUME 30, NUMBER 11

1 DECEMBER 1984

Principles and applications of a neutral-current detector for neutrino physics and astronomy

A. Drukier and L. Stodolsky Max-Planck-Institut für Physik und Astrophysik, Werner-Heisenberg-Institut für Physik, Munich, Federal Republic of Germany

PHYSICAL REVIEW D

VOLUME 31, NUMBER 12

15 JUNE 1985

Detectability of certain dark-matter candidates

Mark W. Goodman and Edward Witten Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544

Status: 1985

Status: until Aug 2021

All the Earth-based constraints

All the Earth-based constraints

fix: electronics, materials science

(cm²)

Hunting even rarer dark matter

Theoretical appeal

Super-heavy states appear in theories of grand unification of forces.

Can make them in early universe:

- * Hawking radiation from primordial black holes Hooper, Krnjaic, McDermott (2019)
- * Gravitationally @ final stages of inflation Chung, Crotty, Kolb, Riotto (2001), Harigaya, Lin, Lou (2016)
- * Pre-heating: parametric resonance —> rapid decay of inflaton Giudice, Peloso, Riotto, Tkachev (1999), Bai, Korwar, Orlofsky (2020)
- * Thermally! *Kim, Kuflik (2019)*

Heavy, strong, stable: recent wave

Electroweak symmetric monopoles Bai, Korwar, Orlofsky 2005.00503

Electroweak symmetric solitons Bai, Jain, Ponton 1906.10739

Asymmetric dark matter nuggets Coskuner, Grabowska, Knapen, Zurek 1812.07573 *Charged primordial black holes* Lehmann, Johnson, Profumo, Schwemberger 1906.06348

Dark blobs Grabowska, Melia, Rajendran 1807.03788

> *Colored relics* Gross, Mitridate, Redi, Smirnov, Strumia 1811.08418

Heavy dark baryons Davoudiasl, Mohlabeng 1809.07768

Heavy dark skyrmions Berezowski, Dick Sep 2019

Snowmass WP @ 2203.06508

TODAY

J. Kumar, R. Lang, M. Pospelov Phys.Rev.D. (2018) N. Raj, J. Bramante, J. Kumar Phys.Rev.D. (2019)

Today's dark matter detectors

DEAP-3600

Multiscatter signatures essential

N. Raj, B. Broerman, J. Bramante, R. Lang Phys. Rev. D. (2018)

(Q2) Are there **bigger detectors** that can join the hunt?

N. Raj, B. Broerman, J. Bramante, J. Kumar, R. Lang, M. Pospelov *Phys.Rev.D.* (2018)

DEAP-3600 XENON1T PICO-40L & LZ

multi-scatter results published

(Q2) Large volume neutrino detectors?

Organic liquid scintillator (SNO+, Borexino, etc.): well-suited for dark matter search! collect enough light in PMTs => in business

Water Cerenkov (Super-K, SNO, etc.) unsuitable: non-relativistic scattering

Liquid argon TPCs (DUNE, etc.): threshold too high

Liquid scintillator neutrino detectors

XENON1T, DEAP, PICO, ...

BOREXINO, SNO+, JUNO

Direct detection @ liq. scint. neutrino detectors

Mass sensitivity: dark matter fluxes at least 100 times greater Cross section sensitivity: Satisfy selection trigger

scale model @ SNOLAB

PMT selfie 2 km underground

SNO+ mass reach

"fiducial area" = 10^6 cm^2

DM transit = $10 \ \mu s$

Continuous deposition of photoelectrons over transit time

Collinearity

$$\Delta \theta \lesssim \frac{m_{\rm T}}{m_{\chi}} \simeq 10^{-16} \left(\frac{10^{17} \text{ GeV}}{m_{\chi}} \right) \left(\frac{m_{\rm T}}{11 \text{ GeV}} \right)$$

may be exploited with vertex reconstruction/ timing information

Signal vs background windows

BOREXINO, 10 µs windows

dark matter signal, $\sigma_{nx} = 10^{-28} \text{ cm}^2$ (spin-independent)

. . .

-						
	•	 	 	 	 	

SNO+ cross section reach

Bird's eye

Reconstructing dark matter velocity vector

34

J. Bramante, J. Kumar, N. Raj Phys Rev D (2019)

Testing velocity anisotropies

angular distribution:

J. Bramante, J. Kumar, N. Raj Phys Rev D (2019)

Testing velocity anisotropies

dipole coefficient monopole coefficient 200 $N_{\rm DM} = 10^4$ $N_{\rm DM} = 10^4$ *δψ* = 0.01 150 *δψ* = 0.01 150 good Trials Trials $N_{\rm DM} = 5 \, {\rm x10^2}$ angular 100 *δψ* = 0.01 resolution $N_{\rm DM} = 10^2$ $N_{\rm DM} = 5 \times 10^2$ 50 **δψ** = 0.01 50 *δψ* = 0.01 (smearing $N_{\rm DM} = 10^2$ *δψ* = 0.01 negligible) 0 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 -0.10.0 0.1 0.2 Reconstructed C₀₀ Reconstructed C₁₁ 300 $N_{\rm DM} = 10^4$ $N_{\rm DM} = 10^4$ 200 δψ = $\delta \psi = 1$ 250 poor 150 200 Trials Trials Trials angular 100 $N_{\rm DM} = 5 \, {\rm x10^2}$ resolution **δψ** = 1 100 $N_{\rm DM} = 10^2$ $N_{\rm DM} = 5 \times 10^2$ 50 (smearing δψ = 50 **δ***w* = 1 $N_{\rm DM} = 10^2$ significant) 0 0.70 0.85 0.90 0.95 0.0 0.75 0.80 1.00 -0.10.2 0.65 0.1 **Reconstructed C₀₀** Reconstructed C₁₁ **LESSONS:** good statistics => accuracy & precision,

smearing => anisotropies wash out.

J. Bramante, J. Kumar, N. Raj Phys Rev D (2019)

Introduction to dark neutrons

hypothesis:	a new part
its character:	0 : charg 1/2 : spin 1 : bary

ticle "χ"

ge under all fundamental forces

on number

Introduction to dark neutrons

hypothesis:	a new part
its character:	0 : charg 1/2 : spin 1 : bary

m X

N

 m_n

939.5654 MeV/ c^2 ?

"dark" neutron

Hamiltonian

 $\epsilon_{n\chi}$

nothing forbids it: compulsory!

=> quantum mixing

magnetic "transition" dipole moment

the *dark matter* of the universe

From where?

from *mirror sector*

very early idea of "dark sector", can address:

+ Why is $v_{\rm H} \ll M_{\rm Planck}$? (Twin Higgs realization)

+ dark matter

+ baryogenesis

composite

Kobzarev, Okun, Pomeranchuk 1966

Nuclear absorption

of halo dark matter

$$\Box^{\text{DM flux}}$$

 $R_{n'/p} = \Phi_{\chi} \times \theta^2 \sigma_{np} = \theta^2 \times 3.5 \times 10^{-17} \text{ s}^{-17}$
neutrons at SNO (solar neutrino data):
 $\nu D \rightarrow \nu np$

$$R_{\nu/D} = 2.2 \times 10^{-36} \text{ s}^{-1}$$

neutrons at Borexino

("Pauli exclusion principle violation" search):

$${}^{12}\mathrm{C} \to {}^{11}\widetilde{\mathrm{C}} + n$$

90% C.L.: < 57 events in 128 ton-years

Neutrons shining through a wall

Neutrons shining through a wall

$$H = \begin{pmatrix} m_n + \Delta E & \epsilon_{nn'} \\ \epsilon_{nn'} & m_n + \delta m \end{pmatrix}$$

$$\Delta E = \mu_n \cdot B + V_F + \dots \quad V_F = \sum_i \frac{2\pi}{m_n} n_i f_{\text{scat},i}$$

$$P_{nn'} \rightarrow \frac{t_s}{t_f} \frac{2\epsilon_{nn'}^2}{4\epsilon_{nn'}^2 + (\delta m - \Delta E)^2}$$

$$2201.02603, \text{PRD 2}$$

Neutron disappearance

$$P_{nn'} \rightarrow \frac{t_s}{t_f} \frac{2\epsilon_{nn'}^2}{4\epsilon_{nn'}^2 + (\delta m - \Delta E)^2}$$
 : "fast" oscilla

$$P_{nn'} \to \epsilon_{nn'}^2 t_s t_f$$
 : "slow" ditto

recast this limit by equating probabilities:

$$\epsilon_{nn'}^{95\%,\delta m=0} < 1.9 \times 10^{-18} \text{ eV}$$

Neutron regeneration search

Summarizing terrestrial experiments

Туре	Experiment	$\Delta E \ (eV)$	Limit on $\theta_{\rm vac} \equiv \theta(\Delta E = 0)$	
	MARS @ SNS [73]	$\sim 10^{-8}$	$6.3 imes 10^{-5}$	
	MURMUR [74]	$\sim 10^{-8} - 10^{-7}$	1.4×10^{-5}	
shining-through-a-wall	STEREO [42] $\sim 10^{-8} - 10^{-7}$		3.9×10^{-6}	
	IsoDAR@VemiLAB [40 41]	$\sim 10^{-8}$	$1.3\times 10^{-6}~({\rm capture~on~H})$	
			$4.0\times10^{-7}~({\rm capture~on~C})$	
ultra cold neutron disappearance	nEDM [38]	$\sim \pm 10^{-12}$	1.8×10^{-6}	
resonant neutron regeneration	SNS Broussard et al [39]	_	$[1, 10] \times 10^{-5}$ a	
resonant neutron regeneration	HFIR [75, 76]	_	$\epsilon_{nn'} < 4.4 \times 10^{-17} \ {\rm eV}^{\rm b}$	
atmospheric neutrops	SNO [77]		5.9×10^{-4}	
atmospheric neutrons	Borexino [71]	10^{-12}	$6.0 imes 10^{-4}$	
dark neutron dark matter	SNO [77]	1.7×10^{-7}	2.7×10^{-10}	
(nuclear absorption)	Borexino [71]	1.7×10^{-8}	3.3×10^{-10}	

- ^a Valid in the range $\delta m = [50, 400]$ neV.
- ^b No information available for the $\delta m \gg \Delta E$ regime.

non-luminous

ubiquitous

plentiful

THANK YOU!

QUESTIONS?

Back-up slides

DEAP-3600 @ SNOLAB

← 130 cm →

largest dark matter detector in operation
=>

greatest flux of dark matter admitted =>

back-of-the-envelope (2019):

deposition in liquid argon

DEAP-3600 @ SNOLAB

FIG. 3. Probability of DM with $m_{\chi}=10^{18} \text{ GeV}/c^2$ populating each ROI and surviving all cuts at varying $\sigma_{T\chi}$.

ROI	PE range	Energy [MeV]	$\rm N_{peaks}^{min}$	$\mathrm{F}_{\mathrm{prompt}}^{\mathrm{max}}$	μ_b	$\mathrm{N}_{\mathrm{obs.}}$
1	$4000 - 20\ 000$	0.5 - 2.9	7	0.10	$(4 \pm 3) \times 10^{-2}$	0
2	20000 – 30000	2.9 - 4.4	5	0.10	$(6 \pm 1) \times 10^{-4}$	0
3	30000 - 70000	4.4 - 10.4	4	0.10	$(6 \pm 2) \times 10^{-4}$	0
4	$70000 - 4 \times 10^8$	10.4 – 60000	0	0.05	$(10 \pm 3) \times 10^{-3}$	0

FIG. 2. Simulated F_{prompt} and N_{peaks} distributions for DM with $m_{\chi} = 10^{18} \text{ GeV}/c^2$ for various $\sigma_{T\chi}$.

(Q1) Identifying multiscatterers

PICO-60

- Background ~ 0 (from daughter neutrons of surrounding material & coincident electron recoils) 44

DM transit = $10 \ \mu s$

 Existing @ BOREXINO

 50 PE
 /100 ns, or

 5000 PE/ 10 μs.

Proposed improvement

42 PE/ 10 µs.

Dark count rate reported by Borexino (1308.0443): $N_{bg} = 10 \text{ PE}/10 \text{ }\mu\text{s.}$

Get required trigger from <u>trial factors</u> (solve for N_c)

$$\sum_{N_{\rm c}}^{\infty} \frac{(N_{\rm bg})^{N_{\rm c}}}{N_{\rm c}!} e^{-N_{\rm bg}} = \frac{10 \ \mu \rm s}{t_{\rm life}} (10 \ \rm yr)$$

— Enhance cross section sensitivity by ~100.

2012.09865 McKeen, Pospelov, Raj Constraints: χ all the dark matter

Constraints: χ percent-level dark matter

 $m_{\chi} - m_n \,(\text{MeV})$

