

Simplified interpretation of complex protein ensemble data using dimensionality reduction techniques: From unifying quality assessment to data-tailored application

Rajeswari Appadurai Dr. Anand Srivastava's Lab, Molecular Biophysics Unit Indian Institute of Science, Bangalore

APS Satellite Meeting at ICTS, March 15, 2022

### Complexity in Protein structural ensemble

Proteins are inherently flexible and adopt a huge range of conformations - often explored using MD simulations as large trajectories.



Use of classical order parameters



Rg value (1.01 nm)

In order to visualize the full landscapes, need low-d order parameters that faithfully captures the high-d data.



# Dimensionality reduction techniques for extracting useful low-d information

• Dimensionality reduction (DR) techniques aim to identify the underlying latent features.



### Quality framework based on Ranking

• Ranking:

 $\begin{aligned} \rho_{\mathbf{ij}} &= |\{k : \delta_{ik} < \delta_{ij} \ OR \ \delta_{ik} = \delta_{ij} \ AND \ k < j\}| \\ \mathbf{r_{ij}} &= |\{k : d_{ik} < d_{ij} \ OR \ d_{ik} = d_{ij} \ AND \ k < j\}| \end{aligned}$ 

• Co-ranking Matrix **Q**:

 $q_{kl} = |\{(i,j): \rho_{ij} = k \text{ AND } r_{ij} = l\}|$ 

- Rank Error =  $\rho_{ij} r_{ij}$
- Evaluation Metrics Equations:  $\mathbf{T}(\mathbf{K}) = 1 - \frac{2}{G_K} \sum_{(k,l)\in LL_K} (k-K)q_{kl}$   $\mathbf{C}(\mathbf{K}) = 1 - \frac{2}{G_K} \sum_{(k,l)\in UR_K} (l-K)q_{kl}$   $\mathbf{LCMC}(\mathbf{K}) = \frac{K}{1-N} + \frac{1}{NK} \sum_{(k,l)\in UL_K} q_{kl}$







Continuity

CMC

Trustworthiness

c. Evaluation Metric Zones

Κ



### Quality framework based on distance ratio

1. Evaluates distance proportionality

2. Evaluates neighbourhood preservation

$$DRM(i,j) = \begin{cases} 1, & \text{for } d_R(i,j) \in (D_R(i,j) - \tau, D_R(i,j) + \tau) \\ 0, & \text{otherwise} \end{cases}$$

$$IOU(x,\delta) = \frac{|n_x(\delta) \cap N_x \delta|}{|n_x(\delta) \cup N_x \delta|}$$

 $\delta$  - Neighbourhood cut-off

$$DR_{\tau} = \frac{\left(\sum_{i}\sum_{j}DRM_{(i,j)} - N\right)}{N(N-1)}$$

 $\tau$  is the tolerance value

### Overview of the evaluation workflow



# Application on $\beta$ hairpin folding trajectory

nature

ARTICLE







tsnep100 for \_rmsd\_ptn1000nsRep0\_skip10



LLE



**TSNE** 

**ISOMAP** 

ExchangeWithHybridTempering

High resolution ensemble description of

metamorphic and intrinsically disordered proteins using an efficient hybrid parallel tempering scheme

https://github.com/codesrivastavalab/Replica



tsnep5000 for \_rmsd\_ptn1000nsRep0\_skip10



SE

tsnep15000 for \_rmsd\_ptn1000nsRep0\_skip10

P=15000

**P=100** 

**P=1000** 

tsnep1000 for rmsd ptn1000nsRep0 skip10

0 tsnep50000 P=5000







#### $\beta$ hairpin folding



#### Trp-cage folding





#### **<u>Clustering Intrinsically disordered protein ensemble</u>**



#### **Using tSNE for clustering conformations**



### Conformational Populations: Apo & G5-bound ABeta



# Summary and Conclusion

We have presented a unified framework for comparing different DR techniques.

This framework can assist in choosing appropriate DR method that faithfully represent the high-d data into Low-d.

Further we showed that TSNE can be utilized for faithfully clustering heterogeneous data such as that of an IDP ensemble.

**Acknowledgements** 

Upal Bhattarchaya, IISER Kolkata

#### Dr. Anand Srivastava's Lab, Indian Institute of Science



#### Funding

IndiaAlliance

#### **Computational Facility**

- Supercomputer Education and Research Centre, Indian Institute of Science
- Compute Canada

Thank you for your attention!

#### $A\beta$ - G5 interaction







#### **Using tSNE for clustering conformations of HNRNPA1**

#### **IDR ensemble of HnRNPA1-RGG domain**





Figure 1-3: End protection problem resolved by the Shelterin complex (A) and the formation of the higher order structures, t-loop and d-loop (B) as well as G-quadruplexes (C) formed at the ends of the telomere.



Ghosh and Singh, NAR 2018, 2020 Mittag and co-workers, Science 2020, NAR 2021

TSNE faithfully clusters conformations with specific topological features. And binding motifs are better identified with tsne.

#### **Using tSNE for clustering conformations of TREK-CTD**



Honoré, Nat Rev Neurosci. 2007

#### **IDR ensemble of TREK-1 C-terminal domain**





TSNE faithfully clusters conformations with specific topological features. And binding motifs are better identified with tsne.



## Kmeans clustering



Silhouette Score = (b-a)/max(a,b)

where a= average intra-cluster distance i.e the average distance between each point within a cluster. b= average inter-cluster distance i.e the average distance between all clusters.

1: Means clusters are well apart from each other and clearly distinguished.

0: Means clusters are indifferent, or we can say that the distance between clusters is not significant.

-1: Means clusters are assigned in the wrong way.

#### Method

T-distributed stochastic neighbour embedding (TSNE) for clustering IDPs

- TSNE reduces the high dimensional space into human readable low dimensional space (2d or 3d).
- While preserving original, highdimensional structure.
- Unlike PCA it's a non-linear technique.





Matten and Hinton, 2008, J. Machine Learning Research

20