Self-trapping and interfaces in active granular matter

Raushan Kant¹, Rahul Gupta², Harsh Soni³, A K Sood¹, Sriram Ramaswamy¹

¹Indian Institute of Science, Bangalore

²Heinrich-Heine-Universität Düsseldorf

³Indian Institute of Technology, Mandi

Motivation

- Active-passive mixtures: e.g. living + dead bacteria
- Nitin Kumar et al. 2014
 - Motile minority mobilizes inert majority
 - Flocking at small motile fraction
 - Can they drive other kinds of organisation?
- Active-passive segregation*

No alignment: core-halo condensation

Core-halo condensation Stenhammar et al. PRL 2015

Large passive particles, condensed by smaller active particles: Dolai et al. Soft Matter 2018

Kumar et al. Nat Comm 2014

Aligning: lane formation

Active-passive rod mixtures: transient lanes (red = active) McCandlish et al, Soft Matter 2011

This work: active-passive vibrated granular mixtures

Experimental set up and working principle

Fig 2. Active polar particle

- Amplitude 0.04 mm
- Frequency200 Hz
- $\Gamma = A(2\Pi f)^2/g$

This Work

- Motile aligning rods + non-motile non-aligning beads
 - Experiments, simulations, simple theory
- Results:

- D=2: travelling segregated bands
- Alignment opposes core-halo in 2D
- Quasi-1D: self-trapping segregation ~ core-halo

Results: Experiments

- Phase transition as function of bead fraction in 2 D.
- Very small fraction of motile rods drive such transitions.
 Disordered Flock

$$\phi_b$$
 = 0.55, ϕ_r =0.06

 ϕ_b = 0.70, ϕ_r = 0.06

 ϕ_b = 0.77, ϕ_r = 0.06

Interface state

- Rod's affinity for dense region.
- Why we are calling it interface state ?
- Related to moving segregated phase ?

 $\phi_b = 0.77, \phi_r = 0.06$

• Region A is less mobile and more denser than region B.

Quasi 1-D

 $\phi_b = 0.20, \phi_r = 0.05$

 $\phi_b = 0.50, \phi_r = 0.05$

 $\phi_b = 0.55, \phi_r = 0.05$

• Self-trapping in 2D?

- Self trapping ~ **Core-halo**
- Role of alignment.

Immobile Segregated phase $\phi_b = 0.50, \phi_r = 0.05$

Core-halo condensation

Stenhammer et al., 2014

Kinetics of self-trapping

- $\mathbf{P} = \langle p_i \rangle$, Order parameter $p_i = \langle \hat{n}_i \times \hat{r}_i \rangle$
- |**P**(**t**)| can be used as to distinguish between ordered, disordered and self-jammed Phase

Phase diagram : Quasi 1-D

Phase diagram : 2-D

Results: Simulation

Simulation detail

- Random angular velocity after each collision with base and lid.

- Impulse-Based collision model to calculate post collision velocities.

- PBC, box size: 628 R (R = radius of the bead)

Steady state

- Moving segregated phase

Core-halo ruled out in 2D -aligning rods enforce flat interface

 $\phi_b = 0.77; \phi_r = 0.06$ (Experiment)

 $\phi_{b} = 0.75$ and $\phi_{r} = 0.07$ (Simulation, periodic boundary condition)

Results: Simulation

• Channel geometry

Disordered $\phi_b = 0.05, \phi_r = 0.15$

Ordered
$$\phi_b = 0$$
.

$$\phi_b$$
 = 0.50, ϕ_r = 0.15

Segregated
$$\phi_b = 0.60, \phi_r = 0.15$$

- Simulation box size Lx = 628 R; Ly = 78 R;
- PBC in xy-direction
- Moving segregated phase

Simulation: Quasi 1-D

 $\phi_b = 0.60, \phi_r = 0.15$

Coarse-grained theory

- Rod density field and bead density field
 - Velocity of beads \propto polar order parameter
- Aligning interaction of rods: work in polarised state
- Rods orientation drives bead motion
- Rods point from low to high bead density
- Results: linear instability to bead-rod segregation

Summary

- Experiment and simulation: Segregation in active rods and passive non-motile beads.
 - Very small fraction of rods can drive segregation
 - Interface state
 - Travelling segregating band in 2-D
 - Self trapping in quasi 1-D
 - Phase diagram

- Aligning interaction rules out core-halo condensation
- Coarse grained theory predicts segregation