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Introducing random tensor models...



Random tensor models and tensor field theories

o Consider a field theory defined by a “field" ¢ : G¢ — C,R, etc, where G is a

compact Lie group admitting Peter-Weyl decomposition.
1




Random tensor models and tensor field theories
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@ The “Fourier" transform of ¢ yields an order-d tensor? ¢p, with
P = (p1,p2,...,Ppd) @ multi-index, where p1, pa,...,pq € I, where | is a
discrete set.

2Considering ¢p as a tensor is a slight abuse because the modes p; range up to infinity. We
cut off at N, then ¢p is a tensor.
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Random tensor models and tensor field theories

e Consider a field theory defined by a “field" ¢ : G¢ — C, R, etc, where G is a
compact Lie group admitting Peter-Weyl decomposition.

@ The “Fourier" transform of ¢ yields an order-d tensor # ¢p, with
P =(p1,p2,...,pq) @ multi-index, where py, pa, ..., pg € I, where [ is a

discrete set.
@ e.g., take ¢ : U(l)d — C, ¢p an order-d complex tensor, and qT)p its complex
conjugate, where p1, p2,...,psd € Z.

The partition function is Z = /’D(;SDJ) e—(ski"e"c[tl_%dﬂ+5i““’“’”°"°"[tz_ﬁ,dﬂ)7

where the action S*[¢, ¢] is given by convolutions of tensors, e.g.,

Skinetic[(g’ ¢] — Z Q_SP K(P' P/) ¢P’ = Trz(q_ﬁ K- ¢) ,
P, P’ _
where Try,,, represents sums over all indices ps of P on np tensors ¢ and ¢.

4 Considering ¢p as a tensor is a slight abuse because the modes p; range up to infinity. We
cut off at NV, then ¢p is a tensor.



Random tensor models and tensor field theories

e Consider a field theory defined by a “field" ¢ : G¢ — C, R, etc, where G is a
compact Lie group admitting Peter-Weyl decomposition.

@ The “Fourier" transform of ¢ yields an order-d tensor > ¢p, with
P = (p1,p2,...,pd) a multi-index, where p1, pa,...,pqg € I, where | is a
discrete set.

@ c.g. take ¢ : U(1)? — C, ¢p an order-d complex tensor, and ¢p its complex
conjugate, where p1, p2,...,psd € Z.

The partition function is Z = /DODCS e*(skme«as[5_¢]+5amemm;OYI[&Lb])’

where the action S°*[¢, ¢] is given by convolutions of tensors, e.g.,

Skinetic[ﬁg,@] _ Z¢P P P/ Op/ = Tr2(¢ K- d’)

P,P/
where Try,,, represents sums over all indices ps of P on ng tensors ¢ and ¢.

We are studying the space of tensors ¢ = ¢, ... p,, €quipped with the measure

(B, 6) = du(B,¢) e ST and z = / dp(é, ),

where duvk (¢, ¢) is a Gaussian measure with covariance K.

5 Considering ¢p as a tensor is a slight abuse because the modes p; range up to infinity. We
cut off at N, then ¢p is a tensor.



Random tensor models and tensor field theories
Skinetic[yy 3] = Tra(¢- K - ¢)

Ginteraction [¢7 (E] — Z A5 Tr2n5((gn8 Vg - (b”B) , np €z,

B bubbles
(tensor invariants)

d=3 3 3) = 3) = 3 C ;
= 00 o 40P @4-)\(6‘2 ©+>\é,§ @+Aé§%+
= W et lgtalgt o+ e+ 8 e+
//@ ‘\\o
//0 \\
After Wick contraction, it generates (d +1)-edge- | - |
colored Feynman graphs, e.g., @(6)

Remark

o If K(P; P’) = dp.p: (trivial delta function), then this model is a statistical
model i.e., a random tensor model.

o Otherwise, if the propagator is nontrivial, e.g., K(P;P’) = p.p/P?®, this is a
QFT, i.e., tensor field theories (generalisation of Grosse-Wulkenhaar model).




Random tensor models and tensor field theories

@ After Wick contraction, random tensor models (with d indices) generates
(d + 1)-edge-colored Feynman graphs.

@ (d + 1)-edge-colored graphs (also, called graph encoding manifolds (GEM))
are dual to simplicial triangulations of piecewise linear (PL) d-dimensional
pseudo-manifolds.

[Pezzana 1974; Bandieri, Gagliardi 1982; Ferri, Gagliardi, Grasselli 1986]

@ In other words, tensor models generate discrete (pseudo-)manifolds, and the
path integral formulation provides us a way to sum over all of them.

Relevant for random geometric (path integral) approach to quantum gravity in
dimensions d > 3.

e Encouragingly, the lower dimensional counterpart (d = 2), matrix models
yield the Brownian sphere at criticality and are rigorously proven to be
equivalent to 2-dimensional Liouville quantum gravity.

[Le Gall, Miermont 2011; Miller, Sheffield 2015]

Promising for random geometric (path integral) approach to quantum gravity
in dimensions d > 3 |




Random tensor models

Melons (graphs G with w(G) = 0, i.e., a subclass of the
sphere) dominate in the large N (dimension of tensors)
limit. [Gurau Rivasseau 2011]

Z= Z N (d—zl)‘wa, where Gurau degree w(G) = Z 87(6) =0

w>0 jackets, J(G)
(regular embeddings)

The melonic 2-point function admits the following expansion
1 (d+1)n+1
mc omc t FC (d+1) FC(dJrl .
: Z (d+1)n—+1 n

Fuss-Catalan numbers FCioy (d =1 is Catalan) correspond to
@ the numbers of planar (d + 1)-ary trees with n vertices and with dn+ 1 leaves.

@ the numbers of non-crossing partitions of the set {1,2,--- , dn} that contain
only subsets of size d.
@ etc.
(d=2,n=2)

A ala)






Enumeration of U(N)®" ® O(D)®? tensor invariants

(with Rémi Cocou Avohou, Joseph Ben Geloun)
Eur. Phys. J. C 84, 839 (2024) [arXiv:2404.16404 [hep-th]]



U(N)®" @ O(D)®9 tensor invariants

Consider

@ A tensor T transforms under the action of the fundamental representation of
the Lie group (®Q);_; U(N;)) @ (Q7_, O(D;)).

Jj=1
1 2 ) 1) A2 (q)
T81732 ----- ar,b1,b2,....bg 7 U.glg:l ngzg'z s Ué(ryt):r Ob1d1 Obzdz ce Oquq TC1-,C2 11111 Cryd1,dz,...,dg +

o A(®_, UN))®( ;7:1 O(D;)) invariant (UO-invariant) is constructed by
contractions of complex tensors of order r 4+ g (of a given number, n, of
tensors T and the same number of complex conjugate T.)

— Therefore, UO invariants are tensor model invariants/bubbles .

@ An UO-invariant is algebraically denoted

n
TI‘Kn(T’ T) :ZK,,({QL, bL}' {a;(l’ Z}) HTaQ,aé,...,aﬁ,b;,b;,...,bg Ta’li,ag,“.,a;",bi",bg,...,b{7" :
aj bl ,a)l, b} i=1
K, is a kernel composed of a product of Kronecker delta functions that
match the indices of n copies of T's and those of n copies of T's. A given
tensor contraction dictates the pattern of an edge-colored graph, which can,

in turn, be used to label the invariant.




U(N)®" @ O(D)®9 tensor invariants

Diagram of contraction of
n tensors T and n tensors
T. For a given color i =
1,2,...,r, o represents the
contraction in the unitary
sector and, for any color j =
1,2,...,q, 7; represents the
contraction in the orthogonal
sector.

(72 S Sn)

Consider (r, q) = (3,3). An UO-invariant is defined by a (3 + 3)-tuple of
permutations (01, 02, 03,71, T2, 73) from the product space (S,)*3 x (S2,)*3.

We will remove the vertex labeling (two configurations are equivalent if their
resulting unlabeled graphs coincide), which introduces more permutations
V1,72 € Sp, and g1, 02, 03 € S,[S2] the so-called wreath product subgroup of Sy,,.

The equivalence relation is
(0170270377'177'2,73) ~ (7101’72, V10272, Y1032, V1727101, V1727202, 71W27'303)




Counting UO tensor invariants

Idea:

We work with the equivalence relation to count the graphs, i.e., tensor invariants

(01,027037717T27T3) ~ (7101727 V10272, Y10372, V1727101, V1727202, 71’)’273@3)

e GxX—X.

@ Recall: an orbit of an element x in X: the set of elements in X to which x
can be moved by an element of G. G-x={g-x: g€ G}.

a point (€ X) on an orbit — another point on the orbit.

number of equivalence classes of graphs = number of orbits

Burnside's lemma

forb = ﬁ >gec [Fix(g)[, where Fix(g) = {x € X : gx = x}.

Therefore the counting of UO invariants of order (r, q) is

1
Zeal®) = Gty

Z Z Z “L[(S(%U"wai_l)} {H(S(VﬂzTiQiTi_l) :

V1,72€S50 01,...,04€5n[S2] 015+, o.€S, i=1 i=1
T1,..,TqES2n

[Avohou, Ben Geloun, Toriumi, Eur. Phys. J. C 84, 839 (2024) [arXiv:2404.16404]]



example: U(N)®® @ O(D)®3 tensor invariants
[Avohou, Ben Geloun, Toriumi, Eur. Phys. J. C 84, 839 (2024) [arXiv:2404.16404]]

U(N)®3 ® O(D)®3 tensor invariants are enumerated in the increasing number of
tensors: 1,108, 20385, 27911497, 101270263373, 808737763302769, ...

@@@@
@@@@
@@@@@@

Figure: UO-invariant graphs at order (r, q) = (3, 3) with 4 tensors (n = 2). The
integer below each graph enumerates various possibilities based on index colors,

summing to 108 for all configurations. Black edges are in the U-sector, and red
are in the O-sector.



TQFT (lattice gauge theories)

@ On a cellular complex of a manifold X, we can define a partition function
for a finite group G by assigning a group element g, to each edge (1-cell)

and to each plaquette (2-cell) P a weight 5(Heepge)- The partition
function of this lattice gauge theory is

Z[X; G] = lez:l;[d(llge),

with V' the number of vertices (0-cell) in the cell decomposition.
o Moreover [Dijkgraaf, Witten]
1

Z[X; G] = G

|[Hom(7m1(X), G)].

@ The theory is topological because it is invariant under refinement of the
cellular decomposition.

@ The partition function for a topological space X counts homomorphisms from

m1(X) to G = S, (permutation group), i.e., counts covering spaces of X of
degree n counted with a certain weight.




permutation TQFT for UO tensor invariants

[Avohou, Ben Geloun, Toriumi, Eur. Phys. J. C 84, 839 (2024) [arXiv:2404.16404]]
Recall the counting of UO invariants of order (r, q)

1
Z(r,q)(n) = W

r q
Z Z Z [H(S(%Ui’YzU;_l)} [H5(71727/QIT;_1) .
Y1,72€50 015-++,04€ESn[S2] 01,...,00€S, i=1 i=1

T1,--,TqE€S2n

TQFT reformulates our enumeration as a lattice gauge theory.

2-cellular complex associated with the
TQFT> of Z34) made of 3+4 cylin-
ders sharing boundaries.




permutation TQFT for UO tensor invariants

The counting of UO invariants of order (r > 2, g) can be massaged:

Zemrg) =232 % [H(S(W10/'70,-_1)]5(71007061)5(0’0_1_!0/),

YES, 00,02,03...,0,€S, =2

with 727 =

I
CDICIEEE

We are counting equivalence classes of r permutations o; under the conjugation
oi ~ yoiy"!, and the group generated by r generators subject to one relation by
the last constraint oo []'_, 0; = id, i.e., the fundamental group of the 2-sphere
with r-punctures.

Therefore, Z(,>2 4)(n) enumerates 7 -weighted equivalence classes of branched

ny

covers of the sphere with r branched points.

On the other hand, Z,_; 4)(n) counts the number of covers of the sphere with
(g + 3)-punctures.



Summary of results

[Avohou, Ben Geloun, Toriumi, Eur. Phys. J. C 84, 839 (2024) [arXiv:2404.16404]]

@ The sequences of numbers corresponding to our enumerations ® 7 are new

and unknown before in OEIS (Online Encyclopedia of Integer Sequences).

@ So far, regardless of whether the tensor invariants are unitary [Ben Geloun,
Ramgoolam 2013], orthogonal [Avohou, Ben Geloun, Dub 2019], or UO
symmetric, we consistently find a correspondence with covers of various
cellular complexes via permutation TQFT, but also with (branched) covers of
the sphere (possibly with punctures).

The counting of tensor invariants, in addition to their essential role in the analysis
of tensor models in theoretical physics, reveals connections between combina-
torics, algebra, and topology.

What is intriguing is the connection between tensor models and branched cov-
ers of the 2-sphere suggests that 2-dimensional holomorphic maps know about
higher dimensional (d > 3) combinatorial topology.

6except purely U case (r, g = 0) was reported before [Ben Geloun, Ramgoolam 2013] and

also (r =2,q = 1) case was reported in [Bulycheva, Klebanov, Milekhin Tarnopolsky 2017].
“Remark that our formulation cannot be reduced to purely O case which was studied before
[Avohou, Ben Geloun,Dub 2022].






Characteristic polynomials of tensors
via Grassmann integrals
and
distributions of roots for random Gaussian tensors

(with Nicolas Delporte, Giacomo La Scala, Naoki Sasakura)
[arXiv:2510.04068 [math-ph]]



Gurau's “resolvent" of tensors

Gurau [arXiv:2004.02660[math-ph]] defined a resolvent of tensors, T € ®PRN a
real symmetric tensor of order p, via the 2-point function of a field theory,

, ,_ 1 ¢ 1T
QwiT) = wZ(w; T) Jr D(bi P ( 2 * w p )
1 1
= N Z 7W"+1 Z Trb(T
n>0 beB,
Wl Y
= NTT( w— T) (resolvent)

where ¢ is a (bosonic) vector in RV, D¢ = (27r)~N/2 vazl do;, w is a complex
variable, T - ¢P = Z"a\iap .ay®ay - - - @a,, and the partition function is
Gaussian p-spin model, Z(w; T) = [pn Dpe (), S(¢) =% — %%

At saddle points,
oS

9
The number of eigenpairs of a tensor is proportional to the exponential of its
dimension (N).  [Cartwright, Sturmfels. (2013)] [Auffinger, Ben Arous, Cerny, (2013) |

=0 & T-¢Plt=wo.




Resolvent for random matrices
If p=2 (a matrix M),
1 1
(Qwim))y = fim (),

where pp()\) is the asymptotic spectral density, and X are eigenvalues of matrices
— Wigner's semicircle law (for specific random matrices. See the next slide).
o lllustrates a clear relation between the resolvent and eigenvalues of matrices.
@ Suggests that the tensor resolvent (in the way Gurau has defined earlier)
should have a relation to eigenvalues of tensors.

Understanding the resolvent of tensors may help develop eigenvalue decom-
position techniques for tensor models. (Eigenvalue decomposition techniques

are widely used and developed in matrix models.)




Wigner's semicircle law for matrices

Theorem (Wigner 1955)

Consider N x N real symmetric, Hermitian, or Hermitian quaternionic random
matrices with independent identically distributed entries, where the probability
distribution of each matrix element gives zero mean. Each spectrum of the
Gaussian Orthogonal Ensemble (GOE), the Gaussian Unitary Ensemble (GUE),
and the Gaussian Symplectic Ensemble (GSE) for a matrix M /+/N converges at
large N to the Wigner's semicircle law: pwigner(\) = %\/4 — A2, )\ e [-2,2].

2 -1 [ 1 2

Figure: Histograms showing the empirical eigenvalue distribution of N x N real
symmetric Gaussian random matrices of different sizes. (credit: Nicolas Delporte)



Resolvent for random matrices

If p =2 (so that tensor is a matrix M),

@M, = Jim (e (Z)),,
- Nllamx/:t/<|}vgovi”TI(Mn)>M

where p(\)y is the asymptotic spectral density, and \ are eigenvalues of matrices
— Wigner's semicircle law (for specific random matrices. See the previous slide).

o lllustrates a clear relation between the resolvent and eigenvalues of matrices.
@ Suggests that the tensor resolvent (in the way Gurau has defined earlier)
should have a relation to eigenvalues of tensors.

Understanding the resolvent of tensors may help develop eigenvalue decom-
position techniques for tensor models. (Eigenvalue decomposition techniques

are widely used and developed in matrix models.)




Gurau's generalised Wigner's semicircle law for tensors
[Gurau, arXiv:2004.02660[math-ph]]

Further, taking the Gaussian average over random tensors

—NPZE s Topon)
dV( T) = N (Halg“'gap dTa1---ap) e 2p Eal'm 2p=1 ( 1 p)
and saddle point approximation, Gurau derived the resolvent of tensors to be

g S ), @ = L () o,
n>0

where the Fuss-Catalan numbers FC,(n) appear.

Then, obtained the spectral density pGurau(W):—%limeﬁo (Q(W—He)—Q(W—ie)).

— generalises the Wigner’s semicircular law.

1 2

Figure: pgurau(w) for p =3



Our proposition



Characteristic polynomial for a matrix

Recall that the eigenvalues A of a given matrix M can be obtained from solving
for the zeros of the characteristic polynomial,

det(Al — M) =0.

Characteristic polynomial can be computed via Grassmann integral of two species
of Grassmann variables ) and 1),

N
det(>‘]1 - M) = /D(d}a J}) exp{ Z &a(Aaab - Mab)wb}7

a,b=1

N
D(y, §) = [ [ dvadda,

a=1

where we assume the standard anti-commutation relations and the normalisation,

(st} = (B ek = (B0} =0, [ D(w,0) [[duia =1.



Sketch of our proposal

In analogy with matrices,

@ We define a characteristic polynomial of a tensor via a Grassmann integral
(as a partition function).

@ Its zeros/roots remind us of “eigenvalues" of a tensor.

o Consider an average over tensors and see the distribution of these roots/zeros.
(— obtain a “spectral density" of tensors)



A new definition of characteristic polynomials of tensors

Consider a certain partition function of two species of Grassmann variables ¢ and 1,
order-p tensor T, and X\, {g}, and {g} are complex parameters. (for a tensor with odd
p, or for a complex tensor, we introduce T respectively as another species of Grassmann
odd tensor, or the complex conjugate)

ZOT T (g A8)) = [ D(u, 97T 0 016030,
where the action &  with 1/1(0) =), w.(al) =,

P
]_AZwawaJr Z Z (8" Topoay + 8P T ) [T 08, with
a1,...,ap=1by,...,b,=0 i=1

1

3 Hw&i’” = (ay + ay)

by,...,bp=0i=1
+ (iaﬂpazwas e wap) + (waﬂz}azwas e ¢ap) +oeet (¢817p82 e wapfl’l)[_}ap)
+ (iaﬂﬂazwas e wap) + (7;817!)321;33 e ¢ap) +ooet (123171132 e "l’apfﬂr/_)ap)
o (e ta,).

Because of the Grassmann properties of the variables v, 1), the partition function
Z(\, T,{g}) is a polynomial of degree N in \. There are N roots in contrast
with the common exponential in N number of eigenvalues!

8To keep the action Grassmann even. for p odd. the tensor is Grassmann odd.



A new definition of spectrum of an ensemble of tensors
Let's take an Gaussian average over real tensors T, with the measure

N
dl/(T):N|: H dTa1...ap eXP{*NP_l Z (T31-<»3p)2}7
a1, ,ap

a1, ap=1

or, over complex or Grassmann tensors T, T with the measure

N

du(T,'T')_N{ 11 dTal,,_apd?al,_,ap}exp{_Np1 > TaayTora}-
a1 hap

ay, - ,ap=1
The tensor averaged partition function

2= (ZOST, T g} (D) .7 = D D) o0 Bt (3 )"

a=1
LN/p]
_ 1 TN NI
=" nz::o nl (_ﬁ) (N — pn)!”’

where p = ji/NP~! with ji = O(1). ® We identify the tensor averaged partition
function above to be a degree-/N polynomial in A\.  We solve for its roots.

91 depends on the original action is a combination of the 2-point function of the tensor and
combinatorial factors coming from the contraction of the Grassmann variables in a way that

. - P
results into the term (22’:1 w‘,,q/)a)



Zeros of the tensor averaged partition function

N

2O\ u) = (20T, Todg) 8D =] DD ep(h S Bt — 1 (D2 3.0.))

a=1
N/p
~— 1 nA" N!
SR
Z n! A/ (N — pn)!

n=0
- Its zeros are located in p-fold symmetry on the complex A plane: (for N = 50
and i =1)

] | 7

Figure: p = 2.

Figure: p = 3. Figure: p = 4. Figure: p =5.

- In analogy with the matrices, whose characteristic polynomial is given by a
similar integral and its ensemble average of matrices gives a polynomial

(der(xt M)y, = ([ D, D w500 = Ma)ish), = MHen(N/o).

one can see those zeros as the average Iocatlon of the “eigenvalues" of the tensors.



Large N analysis

To obtain the large N limit we first have the equality at any N using a “radial"
coordinate Q,

ZOup) = (ZO\ T, {g}) /Dw ) eXp{/\(zN:?Zawa) —u(ﬁj&awa)p}

a=1 a=1

! . it
= — R — p e
N’V i 74(: d@ QN+1 exp(NAQ — NiQP), u =S

At large N, Z ~ ?{ dQexp(NS[Q]), S[Rl=2Q — iQP —log Q.
c

=0 in the new variables . = AQ. and z = &,

. . . as
Obtain the saddle point equation £2 oL

oQ |Q:Q*
4.(2) = 1+ zq.(2)"

which is the Fuss-Catalan equation.



Existence of the zeros of the large N partition function
Zn 3 ep(NSIQU).

Q. saddles

@ We observe that the partition function Z has zeros when two saddles Q.s
have the same real part and opposite imaginary parts.

7~ el Re([s(Q.1] cos(N Im[S[Q.]]) .

Z=0 <& cos(NIm[S[QJ]])=0 < ImS[Q*]:(%Jrk)%, keZ.

@ Focus on the radial component, r, of the zeros s.t. A = r e27k/p,
0<k<p-1.
@ The distance between neighboring zeros is given by Ar dlmdisr[Q*] = and

their normalised® spectral density in large N limit is obtained

d Im[S[Q.]] ‘ _ p|2Im[S[Q.] N 8Im§[,Q]"'O dQ.

P 1 p
p(r):= -

N|Ar| — dr or 0Q le=q. dr
p
= 5 [Im[@-(n]]-

10recall that we have N zeros, and also p-fold symmetry.
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(a) 20 =0.03< z.. p=3. (b) 20 =023 > z.. p=3.

Figure: We represent in the complex g-plane, the Lefschetz thimbles ending in the light
blue regions and their duals ending in the brown regions, for each saddle point of the
Fuss-Catalan equation. The light blue (respectively brown) regions indicate where the
real part of the large N action appearing in Z ~ fc dgexp(N S[q]) with

Slgl = g — zq”/p — log(q/z"/P) is negative (respectively positive). The black circle
around the origin is the original curve C. The black points correspond to the p saddle
points given by the p solutions of the Fuss-Catalan equation. For (a) z < z, the saddle
point of the green thimble and dual thimble, contributes at leading order. For (b)

z > z, the two saddles of the right (green and blue thimbles and dual thimbles)
contribute at leading order in N. We have taken z = ze'%, 6, = 0.02, with
ze=(p—1)"1/pP =2/ ~015for p=3. q=AQand z= 2L



Our generalised Wigner's semicircle law for random tensors

We have
@ the equivalence of two probability distributions p(r)dr = pgurau(w)®(w)dw,

@ the scaling between Gurau’s and ours by comparing the respective 2-point functions
which are both the generating function of the Fuss-Catalan numbers w? = -

L P
pi
/2
_ P p/2—1) r
p\r)= = r PGurau =) -
0=(/7 =)

08

and hence

06

0.0+ ’ [
Figure: p(r) vs. r. The distribution of the radius r of A superimposed with the histogram
absolute value of the roots of the polynomial Z(X) = AV SOMV/el L (_uey” Wy for

nl AP N—pn)!
N =2000 and p =4 and p = ji/NP~1 = 1/(pNP~1).




Conclusions

@ We proposed a new notion of characteristic polynomials of tensors (of size N)
via Grassmann integrals.

(Tensors are general (complex, real, Grassmann) including totally
antisymmetric, but cannot be totally symmetric.)

There are N zeros/roots (as opposed to ~ etV nymber for the standard
existing definitions of eigenvalues of tensors.

@ We provide an associated new notion of “spectral density", i.e., distributions
of zeros of characteristic polynomials of random Gaussian tensors.

This is again Fuss-Catalan!

Actually, the eigenvalues of a product of complex Ginibre random matrices
(Y;;k—l Yp,1 with Yp,1 =Xi-- 'Xp,1 where {X,'}lg,'gpfl are complex Ginibre
matrices) follow Fuss-Catalan distributions [K. A. Penson, K. Zyczkowski,
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 83(6):061118, 2011].
The polynomials associated with the zeros of characteristic polynomials of the
product of Ginibre random matrices also is shown to be Fuss-Catalan. [T.
Neuschel, Random Matrices: Theory and Applications Vol. 03, No. 01, 1450003 (2014)]




the end



