A Tale of Twisting Columns

S J Kole¹, Gareth Alexander², Ananyo Maitra³, Sriram Ramaswamy¹

¹CCMT, Department of Physics, Indian Institute of Science, Bangalore

²Department of Physics and Centre for Complexity Science, University of Warwick

³LPTM, CY Cergy Paris Université

March 17, 2022

A Tale of Twisting Columns

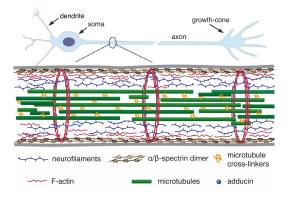
Active systems with translational order

- Active matter: collections of self-driven particles
- Particles carry intrinsic stresses e.g. swimmers
- Orientationally ordered states: dramatic instabilities
- Translational elasticity resists active instability
- Liquid and solid directions: the best of both worlds



Active systems with translational order

• Motor-microtubule bundle as active chiral columnar phase?



Dubey et al., eLife 2020

(人間) トイヨト イヨト

Columnar phase

• 2D solid, fluid-like along column direction \hat{z} , displacement \mathbf{u}_{\perp}

Figure: Chandrasekhar, Sadashiva & Suresh, Pramana 1977

• Statics at equilibrium: 2D Lamé elasticity + column bending

$$F = \int \left[\frac{\lambda}{2} (\mathrm{Tr}\mathbf{E})^2 + \mu \mathrm{Tr}(\mathbf{E}^2) + \frac{\kappa}{2} \nabla^2 u_k \nabla^2 u_k\right]$$

where the strain tensor ${\boldsymbol{\mathsf E}}$ has components

$$E_{ij} = \frac{1}{2} \left(\partial_i u_j + \partial_j u_i - \partial_k u_i \partial_k u_j \right)$$

Chiral active matter

• Chirality: can't superpose on mirror image

• chirality + activity + broken trans inv: odd and odder elasticity

chiral active solid: Scheibner et al. NPhys 2020; active cholesteric: Kole et al. PRL 2021

Framework: active model H*

- Pseudoscalar ψ coupled to velocity field
- Columnar phase = two-dimensional modulation of ψ

$$\psi = \psi_0 + \sum_j \psi_j e^{i\mathbf{q}_j \cdot (\mathbf{x} - \mathbf{u}_\perp)}$$

 $\mathbf{q}_j \in 2\mathsf{D}$ reciprocal lattice; displacement field \mathbf{u}_\perp

- 3D chiral active stress $\zeta_c \nabla \psi \times \nabla \nabla \psi$
- achiral active stress $\pmb{\zeta} \nabla \psi \nabla \psi$

Active hydrodynamics: apolar chiral columnar phase

- z and -z equivalent
- Displacement field kinematics

$$\partial_t \mathbf{u}_\perp = \mathbf{v}_\perp$$

 $\bullet\,$ Stokes hydrodynamics for velocity field v

$$\begin{split} \eta \nabla^2 \mathbf{v} &= \nabla P - (\lambda + \boldsymbol{\zeta}) \nabla_{\perp}^2 \mathbf{u}_{\perp} - (\mu + \boldsymbol{\zeta}) \nabla_{\perp} \nabla_{\perp} \cdot \mathbf{u}_{\perp} - \boldsymbol{\zeta} \partial_z^2 \mathbf{u}_{\perp} \\ &- \boldsymbol{\zeta} \partial_z (\nabla_{\perp} \cdot \mathbf{u}_{\perp}) \hat{z} - \boldsymbol{\zeta}_c \nabla^2 \partial_z \boldsymbol{\epsilon} \cdot \mathbf{u}_{\perp} + \boldsymbol{\zeta}_c \nabla^2 \nabla_{\perp} \times \mathbf{u}_{\perp} \end{split}$$

Achiral activity:
 C breaks time reversal symmetry (TRS)
 Chiral activity:
 C breaks TRS & inversion symmetry

Spontaneous chiral-symmetry breaking

- $\bullet\,$ Extensile active achiral stress $\rightarrow\,$ helical instability of columns
- cf. Helfrich-Hurault

Threshold activity
$$\zeta_{th} = B \frac{\pi \ell}{L}$$
 for $L \times L \times H$ system $\ell = \sqrt{\kappa/B}$; 2D bulk modulus $B = \lambda + \mu$

$$q^2 = \frac{\pi}{\ell L}$$
; Handedness selected spontaneously
Column curvature sources flow

Spontaneous chiral flows

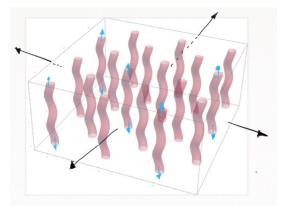
• Chiral active stress (ζ_c) contributes to

$$\eta \nabla^2 \mathbf{v} = \zeta_c \nabla^2 (-\partial_z \epsilon \cdot \mathbf{u}_\perp + \nabla_\perp \times \mathbf{u}_\perp)$$

 $z \rightarrow -z$ invariant: ϵ and ∂_z both odd Forcing perpendicular to column tilt and along local rotation

Mapping: External imposed stress and active stress

• Extensile active stress along $\hat{z} \leftrightarrow$ in-plane dilational external stress



• Correspondence \rightarrow quantitative measurement and control of activity.

Active hydrodynamics: *polar* chiral columnar phases

• z and -z inequivalent; natural 2D antisym tensor ϵ_{ijz}

 $\partial_t \mathbf{u}_\perp = \mathbf{v}_\perp$

$$\begin{split} \eta \nabla^2 \mathbf{v} &= \nabla P - (\lambda + \boldsymbol{\zeta}) \nabla_{\perp}^2 \mathbf{u}_{\perp} - (\mu + \boldsymbol{\zeta}) \nabla_{\perp} \nabla_{\perp} \cdot \mathbf{u}_{\perp} - \boldsymbol{\zeta} \partial_z^2 \mathbf{u}_{\perp} \\ &- \boldsymbol{\zeta} \partial_z (\nabla_{\perp} \cdot \mathbf{u}_{\perp}) \hat{z} - \boldsymbol{\zeta}_c \nabla^2 \boldsymbol{\epsilon} \cdot \mathbf{u}_{\perp} + \boldsymbol{\zeta}_c \partial_z \nabla_{\perp} \cdot \boldsymbol{\epsilon} \cdot \mathbf{u}_{\perp} \hat{z} \end{split}$$

- Active chiral effects¹ realise 2D odd elasticity
- In-plane velocity field due to odd elastic stress (schematically):

$$\mathbf{v}_{\perp} = \zeta_{c} \boldsymbol{\epsilon} \cdot \mathbf{u}_{\perp}$$

¹which enter at same order as equilibrium elasticity

Flows

• Archimedean screw: Helices post the HH instability \rightarrow spinning about the ideal column axis \rightarrow material transport along the polar axis.

Conclusion

- Surprisingly rich active hydrodynamics of columnar phases
- Spontaneous chiral-symmetry breaking, helical instability, odd flows
- The active-imposed connection
 - generic for active translationally-ordered systems
 - allows estimate and control of active stress
- Polar columns
 - projected 2D elasticity is odd
 - viscous Archimedean screw
- Future directions: flows, defects