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Why study macroscopics of integrable systems

▶ Universal laws emerge at the macroscopic level
e.g. Entropy always increases

▶ These universal laws depend only on the symmetries and
conservation laws and not on the microscopic details

▶ Necessary to study systems with different number of
conservation laws to explore the richness in macroscopic
behaviour



Entropy maximization

ρ ∝ e−(β1I1+β2I2+....) (1)

This is called Generalized Gibbs ensemble for integrable system.



Model

Figure 1: Hard rods, each of length a



Point particle vs hard rods: interacting vs non-interacting



Aim

▶ To see the sign of dissipation in a hard rod gas
▶ To compare predictions of hydrodynamics with those of

Newtonian dynamics



Conserved quantities for hard rods

In =
N∑
i=1

pni (2)

Thus, if f (x , p, t) is the single particle phase space distribution, the
GGE is given by:

f (x , p, t) ∝ e−(β1p+β2p2+...) (3)

Thus in GGE, f (x , p, t) for a given p does not depend on x



Euler equation for hard rods

f (x , v , t) is the density of a conserved quantity for a given v .

∂t f (x , v , t) + ∂x(veff f ) = 0 (4)

where,
veff =

v − aρu

1 − aρ
(5)

and,

ρ =

∫
f (x , v , t)dv (6)

u =
1
ρ

∫
vf (x , v , t)dv (7)



Checking thermalization to GGE

Figure 2: Initial condition.



Euler vs Molecular Dynamics



Euler vs Molecular Dynamics



Euler vs Molecular Dynamics



Diffusive scaling from central limit theorem

xi = x ′i + aN<xi (8)

N<xi ∝ t before saturation.
Thus according to central limit theorem, fluctuations are
proportional to

√
t.



Euler vs Newtonian dynamics for the free expansion problem

Figure 3: Plot comparing Euler vs MD for ρ(x , t).



Euler vs Newtonian dynamics

Figure 4: Plot comparing Euler vs MD for p(x , t).



Lebowitz, Percus, Syke (LPS) initial condition

LPS like initial condition: f (x , v , t = 0) = δ(x)δ(v − 1) + ρ0h(v),

where h(v) = e−v2/2
√

2π
.

Solution at other times is of the form
f (x , v , t) = δρ(x , t)δ(v − 1) + ρ0h(v).



LPS initial condition

Figure 5: We have taken N = 2 × 106, L = 2.5 × 106, a = 1.0. For MD,
ensemble averaging has been done over 10000 realizations. Note that the
times are much before the pulse hits the walls of the box, and thus the
system is effectively infinite for the times considered.



Navier-Stokes vs Newtonian dynamics

∂t f + ∂x(veff f ) = ∂xN (9)

where

N =
a2

2(1 − aρ)

∫
dw |v − w |(f (w)∂x f (v)− f (v)∂x f (w)) (10)

(Spohn and Doyon)
We again consider LPS-like initial condition:

f (x , v , t) = δρ(x , t)δ(v − 1) + ρ0h(v) (11)



Navier-Stokes

In the long time limit, δρ(x , t) << ρ0. ρ ≈ ρ0 and u ≈ 0. We use
this in the Navier-Stokes equation to get:

∂t(δρ) + ve∂x(δρ) =
nµ(v ′)a2

2
∂2
x (δρ), (12)

where ve = v ′

1−aρ0
, n = ρ0

1−aρ0
, µ(v ′) =

∫
dv |v − v ′|h(v). Can be

solved exactly:

δρ(x , t) =
1√

2πna2µ(v ′)t
e
− (x−ve t)

2

2a2nµ(v′)t (13)

Central limiting arguments can be used to explain the diffusive
scaling.



Navier-Stokes vs Newtonian dynamics

Figure 6: N = 2 × 106, L = 2.5 × 106.



Conclusion

▶ Good agreement between GHD and simulation.
▶ GGE not observed for some initial conditions.
▶ Central limiting arguments can be used to explain diffusive

scaling.



The end


