Effect of receptor clustering on chemotactic performance of E.coli: sensing versus adaptation

Sakuntala Chatterjee

S. N. Bose National Centre for Basic Sciences, Kolkata

December 10, 2020

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In collaboration with

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Shobhan Dev Mandal
- Subrata Dev (presently at INRAE Paris)

Introduction

- The behavior of a cell is controlled by the biochemical reaction network
- Noisy reaction pathway: fluctuating protein levels
- How pathway noise affects the cell response?
- E.coli chemotaxis: one of the best characterized systems in biology

[http://2016.igem.org/Team:Technion_Israel/Chemotaxis]

Run and tumble motion

[https://www.ebi.ac.uk/biomodels/content/ model-of-the-month?year=2009&month=09]

- Typical size of E.coli cell $\sim 2\mu m$ and 10-12 flagella
- Rotational bias of flagellar motors controls run and tumble motion
- Run: directional motion of the cell with speed $\sim 20 \mu m/s$
- Tumble: random rotation without net displacement
- Typical run duration $\sim 1s$ and tumble duration $\sim 0.2s$

- Direct sensing of spatial gradient not possible due to small cell size
- Has to rely on temporal integration
- Switching rates between the modes depend on recent history
- Runs are elongated in the favorable direction and shortened in the opposite direction
- A net chemotactic drift in presence of a chemical gradient Bacterial Movement

[http://2016.igem.org/Team:Technion_Israel/Chemotaxis]

Chemotactic network: sensing and adaptation modules

. nac

Power law distribution of run durations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Large fluctuations in CCW lifetime makes long runs possible
- Chemotactic response or robust adaptation at the population level do not get impaired due to pathway noise
- Emonet and Cluzel, PNAS 2008
- Park et al. Nature 2010
- Sneddon et al. PNAS 2012
- Large variability in a population beneficial for generic nutrient environment

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Each type of behavior may be suitable for a specific environment [Frankel et al. eLife 2014]

Slow noise from methylation

- What is the effect of noise on single-cell response?
- Most important noise source is methylation
- Methylation of receptors slowest reaction step $\sim 0.01 s^{-1}$
- Low abundance of CheR \sim 140 molecules per cell
- Slow noise is not averaged out in the downstream processes
- Noise induced enhancement of chemotactic drift [Flores et al. PRL 2012]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Long runs control the drift and they are more probable at large noise
- Not the complete story! [Dev and Chatterjee PRE 2018]

Detrimental response at low CheY-P level

- Detailed analysis of CheY-P level statistics
- Average displacement in a run that starts with y_P: negative peak at small y_P followed by a positive peak at large y_P

 Zero-crossing of Δ(y_P) shifts leftward as noise increases

(日) (日) (日) (日) (日) (日) (日) (日)

Noise dependent threshold

Noise in absence of methylation

 Receptor clustering is an independent and equally important noise source in the pathway [Colin et al. eLife 2018]

(日)

э

Cooperativity of chemoreceptors

[www.embopress.org/doi/ full/10.1038/msb.2008.49]

- Receptors form clusters or 'signaling teams'
- Synchronous switching of activity
- Amplification of input signal from ligand binding \Rightarrow sensitive response to weak concentration gradient
- For large *n* fewer signaling teams ⇒ large fluctuations in total activity

Chemotactic performance

- How this newly found noise source affects single-cell chemotactic performance?
- How fast the cell is able to climb up the gradient?
- How strongly it localizes in the nutrient-rich region?
- Ability of the cell to distinguish between regions of high and low nutrient levels
- An optimum size of the receptor cluster for best chemotactic performance

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Model of signaling pathway

- Chemoreceptors form trimers of dimers
- Free energy difference between active and inactive states

$$F = 3n\left(1 + \log\frac{1 + c(x)/K_{min}}{1 + c(x)/K_{max}}\right) - \sum_{i=1}^{3n} m_i$$

• Monod-Wyman-Changeux model [Monod et al. *J. Mol. Biol.* 1965]

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- All receptors within a cluster switch their activity state simultaneously
- Switching rate depends on F

Assistance neighborhood and brachiation

- Number of enzyme molecules far too low compared to the number of receptor dimers
- It takes a long time for a dimer to bind to an unbound enzyme molecule in the cell cytoplasm
- How to reconcile low abundance with perfect adaptation?
- Assistance neighborhood: a bound enzyme can modify methylation level of the neighboring dimers
- Brachiation: a bound enzyme can perform random walk on the receptor array before it unbinds

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- We include a flavor of these mechanisms in our model
- Pontius et al. PLoS Comp Biol 2013

Peak in localization and drift velocity

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

- Differential behavior of the cell when the nutrient level in its environment goes up or down
- Time till the first tumble during an uphill run and downhill run
- Even works for a tethered cell

- Ramp up (down) the nutrient level in CCW mode and measure time till transition to CW mode
- Nutrient level changed at the same rate as that experienced by a swimming cell during a run

Competition between sensing and adaptation

- Activity controls the tumbling rate
- Probability to find a receptor cluster in the active state is $[1 + \exp(F_L F_m)]^{-1}$
- As the cell swims uphill or downhill, the change in *F_L* is proportional to *n*
- As n increases, the activity of a receptor cluster decreases (increases) quickly during an uphill (downhill) run, thereby elongating (shortening) the run ⇒ better performance
- But for large *n* activity fluctuations increase and adaptation kicks in
- Variation in cluster free energy is now controlled by F_m
- A shorter uphill run and longer downhill run become increasingly likely: less sensitive to *F*_L
- Performance goes down

Typical time series for n = 200

Sac

æ

Average change in F_m during first few steps of an uphill run

JAC.

Conclusions

- Competition between sensing and adaptation gives rise to a performance peak
- Hexagonal geometry of receptor array and membrane curvature energy not considered in our model
- Interplay between ligand free energy and methylation free energy can be investigated as the receptor cooperativity is varied
- A stronger cooperativity among the receptors has been experimentally shown to induce larger activity fluctuations in a tethered cell [Colin et al. eLife 2017, Keegstra et al. eLife 2017]
- Whether the variation of methylation free energy increases for stronger receptor cooperativity and its effect on the chemotactic efficiency, $(\tau_{\uparrow} \tau_{\downarrow})$ can be investigated in experiments
- In a wide variety of biological systems sensing-adaptation competition can be relevant