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I Applications of SCET

The formalism we have developed in this course

has widespread applications in collider physics

heavy flavor physics and other fields Some important
examples are shown below alongwith some key references

Collider physics

DIS for 1 DY production eté 2jets

MY Q 1Y Q soft additional eventshapes
radiation

BecherMN hep ph 0605050 BecherMNXu LeeStermanhepph0611061
BecherMNPecjak 0607228 hep ph0710.0680 BecherSchwartz 0803.0342

Flavor physics e
7

8
v

4B B E 6mmsittin a
nine

Inclusive decays B Xs8 and B Xult in the kinematic

region where 14 mj
Bauer Pirjol Stewart hepph0109045
BoschLange MN Paz hepph0402094
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In all of these processes the relevant modes are collinear
or ultra soft and there are at most two collinear
directions N and M Jet processes at hadron colliders
are more complicated since they require introducing
12thgets collinear directions nil where the first two
refer to the beams

In this lecture we discuss the process

eté 2 jets see 1803.04310byBecher

in more detail Rather than defining the jets through
some complicated jet algorithm non global logs

see 1508 06645 160502737 for a treatment in SCET

we consider an event shape which characterizes the

geometry of an event and measures how pencil like

it is The prototypical event shape is thrust

T
May I iii Fil thrustaxis

in CMS

Here Q 15 pit is the total CMS energy massless

particles The event shape thrust varies between

Tmax 1 perfect alignmentof two jets and Thin
completely spherical event
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T 0.998 5 0.002 7 0.65 T 0.35

One defines T 1 T to measure the departure from
the perfect 2 jet limit We are interested in the

region where Tal

Thrust is soft and collinear safe meaning that its

value does not change under exactly collinear splittings

F Pia Fib Fia 11 Fib

and infinitely soft emissions

F Pia Fib IF b 0

This property ensures that the cross section doldt
is free of IR divergences However in the 2 jet
limit T 1 the cross section receives largedouble

logarithmic corrections agent which need to be

L
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resummed to all orders of perturbation theory A
region analysis shows that the relevant modes are

hard Q integrate out

anti collinear TQ

ultra soft year
SCET with A 2 1

We choose the thrust axis to define the reference
vectors

n 1 Rt Ñ 1 nF

By definition thrust is additive and we can separate

the same over particles into sunes in the various sectors

of SCET
ii piso ii pico

TQ Ipil Int Fil rightneovers leftmovers
v

hPa.it Pait n.ps.it n.psi.i

collinear anti collinear softparticles
particles particles

n Pxe ñ Pxe n.pk ñ Pig
12 1 12 12 I
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The definition of the thrust axis ensures that the

total transverse momentum in each hemisphere vanishes

pit pie pit 0

L R pit PE pit 0

a i

p 0 pie
up to power corrections

It follows that at leading power

Mi Px pis pic ñ pxcn.pk

ñ Pxe n Px n p

Q n px.tn p
ÑQ X Q

ME Px pis n Pxe ñ Px ñ pis

Q ñ ñ R

Up to power corrections we thus obtain

I Q ME ME Pic PY Q n p ñ Py's

ÑQ ÑQ ÑQ ÑQ
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The fact that thrust is additive in the collinear and
ultra soft contributions is important to establishfactorizationThe differential cross section is givenby

E 2 1M eté 8 X 254 8 p q 8 T TX

LMHer thrustof
final state

Leptonictensor

Q q s
LM 0 Pip pipi prepgrew

Qq quarkelectriccharge
The hadronic tensor is vectorcurrent

Her If 4017110 X 1710710 254 8 px q 8 T T X

We wish to compute the differential cross section in the

angle of the thrust axis ñ with respect to the momentum

pi of the electron To do so we insert orthogonal to
215 thrustaxis

1 fd ñ 8 E ñ't fdlefdcoso 8 Et
n o

contains 8 1ñ1 1 IF

2T fdcoso 8 pi Exc up to
power cors

required by definition
of thrust axis

7
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Combining this 8 function with the 8 function from
momentum conservationgives

8 p g 8 pic 8 PactPxe Pxs 9 8 PE

2 8 ñ.pe Q d n Pxe Q d ptc 8 pig

We finally introduce new variables

Mi pi M P w n pi ñ pis

TQ ME ME Qw

by multiplying the hadronictensor with thedummy integral

1 fam 8 Mi Pi fdm 8 ME px dwdlw n.pts n.pxs

This leads to TX
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Here X WE't and Xo WE't are the gauge
invariant collinear building blocks after decouplingof
the ultra soft gluons and Sn So are the soft Wilson

lines

c 7 wife i

were well
w̅

us

At this stage one defines jet and soft functions via
the matrix elements in the different sectors of SCET

Jet functions

H

C

color
conservationt

since 34

Note that this is the spectral representation of a collinear
quark propagator c f Section 7.1 in Peskin Schroeder
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At lowest order Xc are singlequark states and we find

f dp

Effigy
Cat 812ps a

ñ p

212 p load Mi

It follows that

M 8 M O s

This jet function is known to 3 loop order in QCD
Becher MN hep ph 0603140 2 Loop

Briiser Liu Stahlhofen 1804.09722 3 Loop

At 1 loop order one finds hep ph 0402094

J MY 81m 4 17 E 81M 4 L 3 if
065

generalized plus
distributions

The jet function in the anti collinear sector is defined as

I
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At this point we obtain the following trace over Dirac
matrices

tr 81 I ri grin.ñ 291

Also the four color indices in the ultra soft matrix
element get contracted in pairs

Soft function

The prefactor Nc has been introduced such that at

leading order

S w 8 w O as shapefunction
hepph 3calculableonly

if W AQCD

This function is known at 2 loop order in perturbationtheory

Becker Schwartz 0803.0342 Note that for W Aacd i e

I the shape function is a genuinely nonperturbativeobject which must be extracted from data
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Cross section

combining all pieces we obtain the cross section

do
didcoso 28 1 0050 Cul s io µ

0

fdm Fdm Idw 8 t Mi ME 15w
s

O O O

Mi µ J ME µ S wipe

7

c 7 wife i

were well
us

ñ

This is a paradigmatic example of the derivation of
a QCD factorization formula using SCET The scale
dependence of the various functions arises after
renormalization of the SCET current operator see the
last lecture
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Resummation of large logarithms

The theoretical prediction for the cross section is

independent of the renormalization scale µ However

for each fixed choice of µ there are large logs
it at least some of the component functions Cr
and S The strategy is therefore to calculate these

functions at their natural scales and then

evolve run them to a common and arbitrary
scale µ by solving their RG equations

Q Xs Cul s io µ j Mh

M EQ Mc J Miµ MEµV

µ
V V

Wn TQ µs S w µ

For the hard watching coefficient we havediscussed

the solution of the RG equation in lecture 8 see

pages 3 5 The RG equations for the jet and soft
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functions are more complicated c g
BecherMNhepph0603140

M J pipe 2cusp as lu 28g as pipe

2Pcusp as fdp
2 Pim Jpipe
p p1

and similarly for the soft function

The form of the cross section on p 11 and the RG

equations simplify in Laplace space where one

defines
a

8 v fat e
t do
It

0

4504 I cul s.io e 12 jan e
I
j Miµ

fdME e TIMEµ Idw e s win

Qi I crl s io.mil J r J s r 51 mS
TS EE

In Laplace space we obtain a product rather than a
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convolution Also the RG equations take on a local

form Becher MN hep ph 0605050 and one obtains

M J s p Licusplas In Ye 28gas J s p

µ 5 µ Licuspas In
p

28E 28s as 5 f p

They can be solved using the same techniques as for
the hard function The fact that the cross section is
RG invariant M f F v1 0 implies

2Fcasp Xs In µs 28 as 1612

IT45cuspas In 2 Ye 48g as

Licuspas In 28E 28s as 0 5

8s as 28g as Yu as

This consistency condition is satisfied to all orders in as
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regionwhere nonperturbativeComparison with data effectscanbeimportant

L

E ALEPH 5 91.2GeV

BecherSchwartz 0803.0342

The watching of a resummed SCET prediction valid for
Tae onto a prediction obtained using fixed orderperturbationtheory valid for I 06 is performed as follows

do
SCET

optimal prediction for TatE matched di resummed
SCET

E fixedorder E resummed reexpanded
inpowersofas

subtraction to avoid doublecounting

optimal prediction for T 011 vanishes for T s o


