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Qnderstanding quantum chaos through the prism of the classical butterfly eﬁeD

Roberts and Stanford, Phys. Rev. Lett. (2015) Shenker and Stanford, J. High Energy Phys. (2014)
Maldacena, Shenker, and Stanford, J. High Energy Phys. (2016) Roberts, Stanford and Susskind, J. High Energy Phys. (2016)
Aleiner, Faoro, and loffe, Ann. Phys. (2016) Kitaev (2014)

Dora and Moessner, Phys. Rev. Lett. (2017) Leichenhauer, Phys. Rev. D (2014)
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Qnderstanding quantum chaos through the prism of the classical butterfly eﬁeD

Consider Hermitian operators V and W: What is the effect on W of a perturbation on V?

Roberts and Stanford, Phys. Rev. Lett. (2015) Shenker and Stanford, J. High Energy Phys. (2014)
Maldacena, Shenker, and Stanford, J. High Energy Phys. (2016) Roberts, Stanford and Susskind, J. High Energy Phys. (2016)
Aleiner, Faoro, and loffe, Ann. Phys. (2016) Kitaev (2014)

Dora and Moessner, Phys. Rev. Lett. (2017) Leichenhauer, Phys. Rev. D (2014)
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Consider Hermitian operators V and W: What is the effect on W of a perturbation on V?

F(t) = —(V.W®)])s

Roberts and Stanford, Phys. Rev. Lett. (2015) Shenker and Stanford, J. High Energy Phys. (2014)
Maldacena, Shenker, and Stanford, J. High Energy Phys. (2016) Roberts, Stanford and Susskind, J. High Energy Phys. (2016)
Aleiner, Faoro, and loffe, Ann. Phys. (2016) Kitaev (2014)

Dora and Moessner, Phys. Rev. Lett. (2017) Leichenhauer, Phys. Rev. D (2014)
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Consider Hermitian operators V and W: What is the effect on W of a perturbation on V?

o ] 2
Ft) = —((V.W®)]")s

o 9

= £

o8

£8

Oa

\ 4
Large

Roberts and Stanford, Phys. Rev. Lett. (2015) Shenker and Stanford, J. High Energy Phys. (2014)
Maldacena, Shenker, and Stanford, J. High Energy Phys. (2016) Roberts, Stanford and Susskind, J. High Energy Phys. (2016)
Aleiner, Faoro, and loffe, Ann. Phys. (2016) Kitaev (2014)

Dora and Moessner, Phys. Rev. Lett. (2017) Leichenhauer, Phys. Rev. D (2014)
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Consider Hermitian operators V and W: What is the effect on W of a perturbation on V?

F(t) = —({(V.W®[")s

Chaotic
Systems

Large

F(t) » A and vp

Growth and spread of perturbations in a quantum many-body system

Roberts and Stanford, Phys. Rev. Lett. (2015) Shenker and Stanford, J. High Energy Phys. (2014)
Maldacena, Shenker, and Stanford, J. High Energy Phys. (2016) Roberts, Stanford and Susskind, J. High Energy Phys. (2016)
Aleiner, Faoro, and loffe, Ann. Phys. (2016) Kitaev (2014)

Dora and Moessner, Phys. Rev. Lett. (2017) Leichenhauer, Phys. Rev. D (2014)
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Consider Hermitian operators V and W: What is the effect on W of a perturbation on V?

F(t) = —({(V.W®[")s

Chaotic
Systems

Large

F(t) » X\ and vp
Growth and spread of perturbations in a quantum many-body system

Applications: Information scrambling, extremal black holes

Roberts and Stanford, Phys. Rev. Lett. (2015) Shenker and Stanford, J. High Energy Phys. (2014)
Maldacena, Shenker, and Stanford, J. High Energy Phys. (2016) Roberts, Stanford and Susskind, J. High Energy Phys. (2016)
Aleiner, Faoro, and loffe, Ann. Phys. (2016) Kitaev (2014)

Dora and Moessner, Phys. Rev. Lett. (2017) Leichenhauer, Phys. Rev. D (2014)
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Consider Hermitian operators V and W: What is the effect on W of a perturbation on V?

F(t) = —({(V.W®[")s

Chaotic
Systems

Large

F(t) » A and vp

Growth and spread of perturbations in a quantum many-body system

Out-of-time-ordered-commutators (OTOCSs) are the diagnostic for quantum chaos

Roberts and Stanford, Phys. Rev. Lett. (2015) Shenker and Stanford, J. High Energy Phys. (2014)
Maldacena, Shenker, and Stanford, J. High Energy Phys. (2016) Roberts, Stanford and Susskind, J. High Energy Phys. (2016)
Aleiner, Faoro, and loffe, Ann. Phys. (2016) Kitaev (2014)

Dora and Moessner, Phys. Rev. Lett. (2017) Leichenhauer, Phys. Rev. D (2014)
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Out-of-time-ordered-commutators (OTOCSs) are the diagnostic for quantum chaos

A bound on chaos

Juan Maldacena,® Stephen H. Shenker’ and Douglas Stanford®
@School of Natural Sciences, Institute for Advanced Study,
1 FEinstein Drive, Princeton, NJ, U.S.A.

bStanford Institute for Theoretical Physics and Department of Physics, Stanford University,
382 Via Pueblo Mall, Stanford, CA, U.S.A.

For classical systems, what is this
bound?

E-mail: malda@ias.edu, sshenker@stanford.edu, stanford@ias.edu

ABSTRACT: We conjecture a sharp bound on the rate of growth of chaos in thermal quantum
systems with a large number of degrees of freedom. Chaos can be diagnosed using an out-of-
time-order correlation function closely related to the commutator of operators separated in

time. We conjecture that the influence of che®Son grelator can develop no faster than

exponentially, with Lyapunov exponent{\; < 27rk:BT/ h. JWe give a precise mathematical

argument, based on plausible physical ass setfiblishing this conjecture.

Roberts and Stanford, Phys. Rev. Lett. (2015) Shenker and Stanford, J. High Energy Phys. (2014)
Maldacena, Shenker, and Stanford, J. High Energy Phys. (2016) Roberts, Stanford and Susskind, J. High Energy Phys. (2016)
Aleiner, Faoro, and loffe, Ann. Phys. (2016) Kitaev (2014)

Dora and Moessner, Phys. Rev. Lett. (2017) Leichenhauer, Phys. Rev. D (2014)
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Out-of-time-ordered-commutators (OTOCSs) are the diagnostic for quantum chaos

A bound on chaos

Juan Maldacena,® Stephen H. Shenker’ and Douglas Stanford®
@School of Natural Sciences, Institute for Advanced Study,
1 FEinstein Drive, Princeton, NJ, U.S.A.

bStanford Institute for Theoretical Physics and Department of Physics, Stanford University,
382 Via Pueblo Mall, Stanford, CA, U.S.A.

For classical systems, what is this
bound?

E-mail: malda@ias.edu, sshenker@stanford.edu, stanford@ias.edu

ABSTRACT: We conjecture a sharp bound on the rate of growth of chaos in thermal quantum
systems with a large number of degrees of freedom. Chaos can be diagnosed using an out-of-
time-order correlation function closely related to the commutator of operators separated in

time. We conjecture that the influence of cheSon Qrelator can develop no faster than

exponentially, with Lyapunov exponent{\; < 27wkpT/h. JWe give a precise mathematical
i Aiblishing this conjecture.

What is the classical analogue of such OTOCs?

Roberts and Stanford, Phys. Rev. Lett. (2015) Shenker and Stanford, J. High Energy Phys. (2014)
Maldacena, Shenker, and Stanford, J. High Energy Phys. (2016) Roberts, Stanford and Susskind, J. High Energy Phys. (2016)
Aleiner, Faoro, and loffe, Ann. Phys. (2016) Kitaev (2014)

Dora and Moessner, Phys. Rev. Lett. (2017) Leichenhauer, Phys. Rev. D (2014)
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How should we define the classical analogue?

{f,9) = [1/@M)|LS, 9]
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PHYSICAL REVIEW LETTERS 121, 024101 (2018)

Light-Cone Spreading of Perturbations and the Butterfly Effect in a Classical Spin Chain

Avijit Das,"” Saurish Chakrabarty,l’T Abhishek Dhar,' Anupam Kundu,' David A. Huse,” Roderich Moessner,’
Samriddhi Sankar Ray,1 and Subhro Bhattacharjeel

Ynternational Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru 560089, India
2Physics Department, Princeton University, Princeton, New Jersey 08544, USA
‘Max-Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany

® (Received 30 March 2018; published 10 July 2018)
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Samriddhi Sankar Ray,1 and Subhro Bhattacharjee1
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Classical Heisenberg spin chain at infinite temperature

Hamiltonian Dynamics
Nearest-neighbour Ferromagnet Spin-precession dynamics

dS,

N-—1
H=-J Z Sx ) S:U—|—1 dt — JSCE X (SCB—l T Sﬂ?—l—l) — {SCIJ?H}
=0
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Nearest-neighbour Ferromagnet Spin-precession dynamics

dS

N-1
H=-J) S; Se = JS: X (Seo1 +Sup1) = {Sy, H}

2-point dynamical spin-correlator: C(x,t) =
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Das, Chakrabarty, Dhar, Kundu, Huse, Moessner, Ray, and Bhattacharjee, Phys. Rev. Lett. (2018)



INTERNATIONAL

- Ay 1cTs | SENTRE/or
Decorrelators: Heisenberg Model LIICTS Throrrmica

Hamiltonian Dynamics
Nearest-neighbour Ferromagnet Spin-precession dynamics

dS,

N-—1
H=—-J Z Sx . Sx_|_1 dt — JS.CC X (S:c—l + Sa:—l—l) — {SxaH}
x=0

Infinite Temperature

Strategy

e (Generate a random spin configuration (infinite temperature: Gibbs ensemble)

Das, Chakrabarty, Dhar, Kundu, Huse, Moessner, Ray, and Bhattacharjee, Phys. Rev. Lett. (2018)
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Hamiltonian Dynamics
Nearest-neighbour Ferromagnet Spin-precession dynamics

N—-1 dsm
H=-J) S; Sen o = 8 X (Se-1 4 Sei) = {Ss, H}
x=0

Infinite Temperature

Strategy

e (Generate a random spin configuration (infinite temperature: Gibbs ensemble)
e Make a copy but with the spin at x = 0 rotated infinitesimally

{S%(t=0)} —{S’(t =0)} = 6Sg 0S¢ = e[n X So

Das, Chakrabarty, Dhar, Kundu, Huse, Moessner, Ray, and Bhattacharjee, Phys. Rev. Lett. (2018)
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Hamiltonian Dynamics
Nearest-neighbour Ferromagnet Spin-precession dynamics

N—-1 dsaj
H=-J) S; Sen o = 8 X (Se-1 4 Sei) = {Ss, H}
=0

Infinite Temperature

Strategy

e (Generate a random spin configuration (infinite temperature: Gibbs ensemble)
e Make a copy but with the spin at x = 0 rotated infinitesimally
e Evolve the two systems independently and measure how fast they decorrelate

{Sa(t=10)} — {S;(t =0)} = dSo

Das, Chakrabarty, Dhar, Kundu, Huse, Moessner, Ray, and Bhattacharjee, Phys. Rev. Lett. (2018)
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* Generate a random spin configuration (infinite temperature: Gibbs ensemble)
* Make a copy but with the spin at x = 0 rotated infinitesimally
* Evolve the two systems independently and measure how fast they decorrelate

Rigorously shown to be the classical limit of the OTOC
D(z,t) = —(e2/h*)Tr[pr([S4(t), 1 - Sp(0)])?] = OTOC

Das, Chakrabarty, Dhar, Kundu, Huse, Moessner, Ray, and Bhattacharjee, Phys. Rev. Lett. (2018)
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Inside the light cone, spins are uncorrelated

Das, Chakrabarty, Dhar, Kundu, Huse, Moessner, Ray, and Bhattacharjee, Phys. Rev. Lett. (2018)
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Vastano and Swinney, Phys. Rev. Lett. (1988)
Lepri, Politi, and Torcini, J. Stat. Phys. (1996)
Gaspard et al., Nature (1998)

Grassberger, Nature (1999)
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Velocity-dependent Lyapunov exponent

Deissler and Kaneko, Phys. Lett. (1987)
Lepri, Politi, and Torcini, J. Stat. Phys. (1997)

Das, Chakrabarty, Dhar, Kundu, Huse, Moessner, Ray, and Bhattacharjee, Phys. Rev. Lett. (2018)
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500 Summary
4001 e Exponential growth and ballistic spread
| of an initially localised perturbation
_ 500 e Characterised by a Lyapunov exponent
2005— and butterfly speed
1005 * Connection of the growth, spread and

propagation of the perturbation to the

Kardar-Parisi-Zhang equation

0 !
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Other Examples

Quantum Phase Transitions: Banerjee and Altman, Phys. Rev. B (2017)
Bose-Hubbard Chain: Shen, Zhang, Fan, and Zhai, Phys. Rev. B (2017)
Diffusive Metals: Patel, Chowdhury, Sachdev, and Swingle, Phys. Rev. X (2017)
Scrambling: Khemani, Vishwanath, and Huse, Phys. Rev. X (2018)

Das, Chakrabarty, Dhar, Kundu, Huse, Moessner, Ray, and Bhattacharjee, Phys. Rev. Lett. (2018)
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Why bother?

4 )
Nature of intrinsic differences/universality between classical and quantum many-body systems

Connection between thermodynamic variables with the time scales of chaos
Connection between chaos and transport in strongly correlated systems
A unified mechanism at the heart of thermalisation, ergodicity and equilibration

Significance of these chaotic length and time scales in dynamics

kCan capture ballistic spread even when two-point functions are diffusive
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Why bother?
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~
Nature of intrinsic differences/universality between classical and quantum many-body systems

Connection between thermodynamic variables with the time scales of chaos
Connection between chaos and transport in strongly correlated systems

A unified mechanism at the heart of thermalisation, ergodicity and equilibration

Significance of these chaotic length and time scales in dynamics

kCan capture ballistic spread even when two-point functions are diffusive

Recent Studies

Spin Liquids: Bilitewski, Bhattacharjee, and Moessner, Phys. Rev. Lett. (2018)

Duffing Chain: Chatterjee, Kundu and Kulkarni, Phys. Rev. E (2020)

Butterfly effect/Spontaneous Stochasticity: Thalabard, Bec, and Mailybaev, Comm. Phys. (2020)
Heissenberg Magnets: Bilitewski, Bhattacharjee, and Moessner, ArXiv: 2011.04700

2D Anisotropic XXZ model: Ruidas and Banerjee, ArXiv: 2007.12708
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Why bother?

4 )
The nature of intrinsic differences between classical and quantum many-body systems

Connection between thermodynamic variables with the time scales of chaos
Connection between chaos and transport in strongly correlated systems
A unified mechanism at the heart of thermalisation and equilibration

Significance of these chaotic length and time scales in dynamics

kCan capture ballistic spread even when two-point functions are diffusive

Can we adapt these ideas within the framework of equations of hydrodynamics?
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The Temptation
Put these ideas to the test in the most natural and well-known example of chaotic systems:

Turbulent flows
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The Temptation
Put these ideas to the test in the most natural and well-known example of chaotic systems:

Turbulent flows

The Problem

Driven-dissipative systems lacking a Hamiltonian structure or a statistical description in terms of
thermodynamic variables
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The Temptation

Put these ideas to the test in the most natural and well-known example of chaotic systems:

Turbulent flows

The Problem

Driven-dissipative systems lacking a Hamiltonian structure or a statistical description in terms of
thermodynamic variables

Redemption

Look for variations (while being nonlinear and chaotic) which retains a Hamiltonian structure
(energy conservation) and allows a statistical equilibria
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Inviscid, three-dimensional Euler or the one-dimensional Burgers equation with a finite number of

Fourier modes through Galerkin truncation

[Finite Truncation Wavenumber Ko —— Finite Number of Modes N
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Inviscid, three-dimensional Euler or the one-dimensional Burgers equation with a finite number of

Fourier modes through Galerkin truncation

Inviscid equation

o

| -

()

(@)

| -

: . »

(a0 Galerkin Truncation

Q —

A Pgou(x) = Z "M iy,
|k|<Kg

-
9

-
LLl
o
™

[Finite Truncation Wavenumber Ko —— Finite Number of Modes N
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Inviscid, three-dimensional Euler or the one-dimensional Burgers equation with a finite number of
Fourier modes through Galerkin truncation

Inviscid equation

Galerkin Truncated Inviscid equation

o
S
(]
o
L
>

m

o

F

-
9

-
LLl
o
™

[Finite Truncation Wavenumber Ko —— Finite Number of Modes N
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Inviscid, three-dimensional Euler or the one-dimensional Burgers equation with a finite number of

Fourier modes through Galerkin truncation

Chaotic, thermalised solutions within a finite time
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Inviscid, three-dimensional Euler or the one-dimensional Burgers equation with a finite number of

Fourier modes through Galerkin truncation

Chaotic, thermalised solutions within a finite time

v

Statistical Equilibria

Energy equipartition
Gibbs distributions
Strict notion of temperature
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Thermalised Solutions

PHYSICAL REVIEW LETTERS week ending

PRL 95, 264502 (2005) 31 DECEMBER 2005

Remarkable statistical behavior for truncated
Burgers—Hopf dynamics PNAS (2000)

Andrew J. Majda” and llya Timofeyev Cyril Cichowlas,' Pauline Bonaiti,' Fabrice Debbasch,” and Marc Brachet'

Courant Institute of Mathematical Sciences, New York University, New York, NY 10012 'Laboratoire de Physique Statistique de I’Ecole Normale Supérieure, associé au CNRS et aux Universités,
Paris VI et VII, 24 Rue Lhomond, 75231 Paris, France
2ERGA, CNRS UMR 8112, 4 Place Jussieu, F-75231 Paris Cedex 05, France
(Received 21 October 2004; published 22 December 2005)

Effective Dissipation and Turbulence in Spectrally Truncated Euler Flows

Contributed by Andrew J. Majda, September 11, 2000

PHYSICAL REVIEW E 84, 016301 (2011) PROCEEDINGS A The Onset Oftherma|izati0n in

Resonance phenomenon for the Galerkin-truncated Burgers and Euler equations rspa.royalsocietypublishing.org finite-dimensional equations
of hydrodynamics: insights

Samriddhi Sankar Ray,"" Uriel Frisch,! Sergei Nazarenko,” and Takeshi Matsumoto®

YUNS, CNRS, OCA, Laboratoire Cassiopée, B.P. 4229, F-06304 Nice Cedex 4, France '.) from the Bu rgers eq uatlon
2University of Warwick, Mathematics Institute, Coventry CV4 7AL, United Kingdom Research Check for
3Department of Physics, Kyoto University, Kitashirakawa Oiwakecho Sakyoku, Kyoto 606-8502, Japan Divya Venkataraman™ and Samriddhi Sankar Ray
(Received 6 November 2010; published 5 July 2011) Cite this article: Venkataraman D, Ray 5.
2017 The onset of thermalization in International Centre for Theoretical Sciences, Tata Institute of
finite-dimensional equations of Fundamental Research, Bangalore, Karnataka 560089, India

hydrodynamics: insights from the Burgers

equation. Proc. R. Soc. A 473: 20160585. 2 35R, 0000-0001-3407-0007

Hopf, Comm. Pure App. Math. (1950) Banerjee and Ray, Phys. Rev. E (R) (2014)
Lee, Q. App. Math. (1952) Pereira, Nguyen van yen, Farge, and Schneider, Phys. Rev. E (2013)
Ray, Pramana (2015) Clark Di Leoni, Mininni, and Brachet, Phys. Rev. Fluids (2018)

Krstulovic and Brachet, Physica D (2008) Frisch, Pomvalov, Procaccia, and Ray, Phys. Rev. Lett. (2012)
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PHYSICAL REVIEW E 84, 016301 (2011) Murugan and Ray, ongoing work

Resonance phenomenon for the Galerkin-truncated Burgers and Euler equations

Hamlington, Schumacher, and Dahm, Phys. Rev. E (2008)

Samriddhi Sankar Ray,!"" Uriel Frisch,' Sergei Nazarenko,? and Takeshi Matsumoto®
YUNS, CNRS, OCA, Laboratoire Cassiopée, B.P. 4229, F-06304 Nice Cedex 4, France
2University of Warwick, Mathematics Institute, Coventry CV4 7AL, United Kingdom
3Department of Physics, Kyoto University, Kitashirakawa Oiwakecho Sakyoku, Kyoto 606-8502, Japan
(Received 6 November 2010; published 5 July 2011)

Banerjee and Ray, Phys. Rev. E (R) (2014)

Pereira, Nguyen van yen, Farge, and Schneider, Phys. Rev. E (2013)
Clark Di Leoni, Mininni, and Brachet, Phys. Rev. Fluids (2018)
Cichowlas, Bonaiti, Debbash, and Brachet, Phys. Rev. Lett. (2005)
Venkataraman and Ray, Proc. Roy. Soc. (2017)

Hopf, Comm. Pure App. Math. (1950)
Lee, Q. App. Math. (1952)

Majda and Tomofeyev, PNAS (2000)
Ray, Pramana (2015)
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Understanding many-body chaos in such thermalised fluids
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Sugan D. Murugan Dheeraj Kumar Subhro Bhattacharjee

Murugan, Kumar, Bhattacharjee, and Ray, in preparation (see also: ArXiv: 1906.00016)
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Many-body Chaos: The Burgers Equation

Strategy Theory
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Many-body Chaos: The Burgers Equation
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Recall the Quantum bound: A\ < T/ﬁ

Maldacena, Shenker, and Stanford, JHEP (2016)
Kurchan, ArXiv: 1612.01278

Murugan, Kumar, Bhattacharjee, and Ray, in preparation (see also: ArXiv: 1906.00016) Bilitewski, Bhattacharjee, and Moessner, Phys. Rev. Lett. (2018)
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Independent evolution of systems a and b
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Ongoing Work

* Spin Systems: Long-range interactions [Murugan, Ray, and Bhattacharjee]
Hydrodynamics: Gross-Pitaevskii equation [Shukla, Bhattacharjee, and Ray]

* Dynamical Systems: Shell models [Bhattacharjee and Ray]

* Driven-Dissipative Systems: Active Turbulence [Singh, Mukherjee, James, and Ray]
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Suppressing thermalization and constructing weak solutions in truncated inviscid equations

of hydrodynamics: Lessons from the Burgers equation
Sugan D. Murugan®,!>" Uriel Frisch®,?" Sergey Nazarenko,>** Nicolas Besse,>® and Samriddhi Sankar Ray ® !
International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bangalore 560089, India
2Université Cote d’Azur, CNRS, OCA, Laboratoire J.-L. Lagrange, Nice, France
3Université Cote d’Azur, CNRS, Institut de Physique de Nice, Nice, France

M (Received 14 February 2020; accepted 16 July 2020; published 5 August 2020)

Finite-dimensional, inviscid equations of hydrodynamics, obtained through a Fourier-Galerkin projection,
thermalize with an energy equipartition. Hence, numerical solutions of such inviscid equations, which typically
must be Galerkin-truncated, show a behavior at odds with the parent equation. An important consequence of this
is an uncertainty in the measurement of the temporal evolution of the distance of the complex singularity from
the real domain leading to a lack of a firm conjecture on the finite-time blow-up problem in the incompressible,
three-dimensional Euler equation. We now propose, by using the one-dimensional Burgers equation as a testing
ground, a numerical recipe, named tyger purging, to arrest the onset of thermalization and hence recover the
true dissipative solution. Our method, easily adapted for higher dimensions, provides a tool to not only tackle
the celebrated blow-up problem but also to obtain weak and dissipative solutions—conjectured by Onsager and
numerically elusive thus far—of the Euler equation.

Numerically obtaining weak (dissipative) solutions from Galerkin-truncated inviscid equations



