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Applications: Information scrambling, extremal black holes
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For classical systems, what is this 
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Classical Analogue

How should we define the classical analogue?

{f, g} ! [1/(ı~)][f, g]
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We find that the effects of a localized perturbation in a chaotic classical many-body system—the
classical Heisenberg chain at infinite temperature–spread ballistically with a finite speed even when the
local spin dynamics is diffusive. We study two complementary aspects of this butterfly effect: the rapid
growth of the perturbation, and its simultaneous ballistic (light-cone) spread, as characterized by the
Lyapunov exponents and the butterfly speed, respectively. We connect this to recent studies of the out-of-
time-ordered commutators (OTOC), which have been proposed as an indicator of chaos in a quantum
system.We provide a straightforward identification of the OTOCwith a natural correlator in our system and
demonstrate that many of its interesting qualitative features are present in the classical system. Finally, by
analyzing the scaling forms, we relate the growth, spread, and propagation of the perturbation with the
growth of one-dimensional interfaces described by the Kardar-Parisi-Zhang equation.
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Introduction.—The butterfly effect [1–3] is a vivid picture
for the sensitivity of a spatially extended chaotic many-body
system to arbitrarily small changes to its initial conditions. In
this picture, this exquisite sensitivity—the proverbial butter-
fly wingbeat is enough to make the difference between the
presence or absence of a tornado—perhaps takes precedence
over the fact that these changes are global—tornado activity
is toggled in a place far away from the butterfly. While this
sensitivity to initial conditions is well studied and quantified
via the (positive) Lyapunov exponents, the spatial spreading
of the perturbation has received somewhat less attention.
This spreading, if ballistic, is characterized by a butterfly
speed. Lyapunov exponents and butterfly speed thus encode
two complementary aspects of the butterfly effect.
These issues have acquired additional interest in the

context of many recent studies of scrambling of informa-
tion in quantum many body systems [4–22]. In this setting,
the out-of-time-ordered commutator (OTOC) [23,24] has
emerged as a diagnostic [5–23]: for two Hermitian oper-
ators Ŵðx; tÞ and V̂ð0; 0Þ localized around x at time t and
x ¼ 0 at time t ¼ 0 respectively, the OTOC, defined as
FðtÞ ¼ −h½Ŵðx; tÞ; V̂ð0; 0Þ%2i, estimates the effect of the
operator, Vð0; 0Þ on the measurement of operator, Wðx; tÞ.
In a class of large N gauge theories it was found that, for a
given x and t, the OTOC is generically characterized by an
exponent λ̃, and a velocity ṽB, which are, respectively, the
measure of the exponential growth and the speed of
spreading of the initially localized perturbation.
Analogous to classical dynamical systems, the former is
often identified with the largest Lyapunov exponent, and
the latter with the butterfly speed.

Interestingly, these twin features are present evenwhen the
usual probes for relaxation and equilibration in a many-body
system, the two-point functions hŴðtÞV̂ð0Þi, are diffusive
and hence do not capture the above ballistic spread. This was
observed in a study of the OTOC in a system with diffusive
energy transport—the one-dimensional Bose-Hubbard chain
[18,25] and diffusive metals [26] at finite temperature and
also in the context of random unitary circuits [27,28], which
lend themselves to a considerable degree of analytical and
numerical insight [29–31].
In this Letter, we present a detailed analysis of the

spatiotemporal evolution of the divergence of the dynami-
cal trajectories of perturbed and unperturbed systems. Our
model is a well-known classical many-body system—the
Heisenberg spin chain at high temperatures, whose
classical Hamiltonian dynamics of the spins is diffusive.
We first identify a correlator which represents a natural
classical limit of an OTOC, and turns out to be a very
simple quantity: the decrease of the correlation between the
system and its perturbed copy under time evolution. In
particular, we find that the divergence of dynamical
trajectories spreads in space ballistically. We provide an
accurate extraction of the corresponding Lyapunov expo-
nent and butterfly speed, and provide a description of the
variations in the divergence between different initial states
in terms of a Kardar-Parisi-Zhang (KPZ)-based analysis,
which yields scaling forms for the distributions.
Our work connects to earlier studies of the propagation

of chaos on coupled map lattices with discrete time
evolution [32,33], partial differential equations [34–36],
and anharmonic coupled oscillator chains [37], where the

PHYSICAL REVIEW LETTERS 121, 024101 (2018)

0031-9007=18=121(2)=024101(6) 024101-1 © 2018 American Physical Society
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exponent λ̃, and a velocity ṽB, which are, respectively, the
measure of the exponential growth and the speed of
spreading of the initially localized perturbation.
Analogous to classical dynamical systems, the former is
often identified with the largest Lyapunov exponent, and
the latter with the butterfly speed.

Interestingly, these twin features are present evenwhen the
usual probes for relaxation and equilibration in a many-body
system, the two-point functions hŴðtÞV̂ð0Þi, are diffusive
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Diffusive and not ballistic
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• Generate a random spin configuration (infinite temperature: Gibbs ensemble)

• Make a copy but with the spin at x = 0 rotated infinitesimally

• Evolve the two systems independently and measure how fast they decorrelate

D(x, t) = (1� hSa
x(t) · Sb

x(t)i) =
1

2
h(Sa

x(t)� Sb
x(t))

2i
Rigorously shown to be the classical limit of the OTOC
D(x, t) ! �(✏2/~2)Tr[⇢T ([Sx(t), n̂ · S0(0)])

2] ! OTOC
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x(t) · Sb

x(t)i) =
1

2
h(Sa

x(t)� Sb
x(t))
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concept of a velocity-dependent Lyapunov exponent was
formulated [32,38,39] and related to the speed of spread of
correlations [37]. In parallel, the concrete classical limit of
the OTOC provides a natural platform to investigate the
existence and nature of intrinsic differences in spatiotem-
poral chaos between classical and quantum many-body
systems [40–42].
The Heisenberg spin chain.—We consider a one-dimen-

sional lattice of spins Sx; x ¼ 0;…; N − 1 described by the
Heisenberg Hamiltonian

H ¼ −J
XN−1

x¼0

Sx · Sxþ1; ð1Þ

where J > 0 and Sx are unit three component classical
vectors and we take periodic boundary conditions
Sx ≡ SxþN . We consider a classical precessional dynamics

dSx

dt
¼ JSx × ðSx−1 þ Sxþ1Þ ¼ fSx; Hg; ð2Þ

where the spin-Poisson bracket is defined as ff; gg ¼
P

x
P

α;β;γ ϵ
αβγSγxð∂f=∂SαxÞð∂g=∂SβxÞ for arbitrary functions

f, g of the spin variables.
Classical OTOC analogue.—We consider two spin

configurations which, at t ¼ 0, differ only at site x ¼ 0
by a rotation, ε, that is either small or infinitesimal, about an
axis n̂ ¼ ðẑ × S0Þ=jẑ × S0j (where ẑ is the unit vector
along the global z axis) such that δS0 ¼ εðn̂ × S0Þ. We
study the spreading of such a localized perturbation.
For infinitesimal ε, the change at some point x is given
by δSαxðtÞ ≈ ½∂SαxðtÞ=∂Sβ0&δSβ0 ¼ εn γϵβγνSν0½∂SαxðtÞ=∂Sβ0& ¼
εn γfSαxðtÞ; Sγ0ð0Þg. To measure the evolution of the pertur-
bation we define

2Dðx; tÞ ≔ h½δSxðtÞ&2i ≈ ε2hfSxðtÞ; n̂ · S0g2i: ð3Þ

where, throughout this Letter, h' ' 'i denotes averaging over
spin configurations chosen from the equilibrium distrib-
uition PðfSxgÞ ¼ e−H=T=ZðTÞ and ZðTÞ is the partition
function. Denoting the two initial spin configurations
discussed above by fSa

xðt ¼ 0Þg and fSb
xðt ¼ 0Þg, we

can obtain a simpler expression as

Dðx; tÞ ¼ 1 − hSa
xðtÞ · Sb

xðtÞi; ð4Þ

where hSa
xðtÞ · Sb

xðtÞi is the cross-correlator between the
two copies. If the dynamics is chaotic, as is known to be in
this classical spin-chain at infinite temperatures [43,44], we
expect that for any x ≠0, the above quantity, as a function
of time t starts from the value 0 (when the spins of the two
copies at a given x are perfectly correlated) and asymptotes
to 1 (when they are completely decorrelated). Thus Dðx; tÞ
indeed measures the spatiotemporal evolution of

decorrelation throughout the system. Apart from Dðx; tÞ,
we also calculate the usual dynamic spin-correlation
function

Cðx; tÞ ¼ hSxðtÞ · S0ð0Þi: ð5Þ

At this point, it is useful to understand the connection
between Dðx; tÞ and the OTOC. On canonical quantization
of the theory obtained by replacing the Poisson bracket
with the commutator, i.e., ff; gg → ½1=ðiℏÞ&½f; g&, we get
Dðx; tÞ → −ðε2=ℏ2ÞTr½ρTð½SxðtÞ; n̂ · S0ð0Þ&Þ2&, where Sx
are now quantum operators. This is nothing but the finite
temperature generalization of the OTOC introduced earlier
with Ŵðx; tÞ ¼ SxðtÞ and V̂ð0; 0Þ ¼ εn̂ · S0ð0Þ.
Numerical results.—We now present representative

results of our numerical simulation of the Heisenberg spin
chain with periodic boundary conditions. The simulations
were performed using a fourth-order Runge-Kutta (RK4)
numerical integration scheme for the spin dynamics. For
the numerical simulations, energy is measured in units of J.
The time step in RK4 was taken to be Δt ¼ 0.001–0.005
such that the energy per site and magnetization per site
were conserved up to ∼10−12. The configuration averaging
was done over ∼105 equilibrated initial conditions for
Cðx; tÞ and ∼104 for Dðx; tÞ. Many of the simulations had
to be performed at quadruple level machine precision.
Our first main finding, namely, ballistic propagation of

the decorrelation, is summarized in Fig. 1 which shows that
the OTOC falls sharply outside a light cone. The light cone
is specified by the lines x ¼ ( vbt, where vb is the butterfly
speed. For the two systems whose decorrelation Dðx; tÞ
measures, the red region in Fig. 1 corresponds to complete
decorrelation with hSa

xðtÞ · Sb
xðtÞi ≅0. This also gives the

natural definition of the light-cone velocity in the sense of a
“classical Lieb-Robinson speed” [45–47] which is then
equal to the butterfly speed.

FIG. 1. Simultaneous growth and ballistic spread of a pertur-
bation in a classical Heisenberg spin chain whose spin dynamics
(Fig. 3) is diffusive at T ¼ ∞. The speed of spreading obtained
from the classical OTOC, Dðx; tÞ (see text), defines a “light
cone.” The results are shown for a perturbation at time t ¼ 0 of
size ε ¼ 10−3 at the center of a system of size L ¼ 2048.

PHYSICAL REVIEW LETTERS 121, 024101 (2018)

024101-2

D(x, t) ⇠ 0

D(x, t) ⇠ O(1)

Inside the light cone, spins are uncorrelated
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D(x, t) = (1� hSa
x(t) · Sb

x(t)i) =
1

2
h(Sa

x(t)� Sb
x(t))

2i

concept of a velocity-dependent Lyapunov exponent was
formulated [32,38,39] and related to the speed of spread of
correlations [37]. In parallel, the concrete classical limit of
the OTOC provides a natural platform to investigate the
existence and nature of intrinsic differences in spatiotem-
poral chaos between classical and quantum many-body
systems [40–42].
The Heisenberg spin chain.—We consider a one-dimen-

sional lattice of spins Sx; x ¼ 0;…; N − 1 described by the
Heisenberg Hamiltonian

H ¼ −J
XN−1

x¼0

Sx · Sxþ1; ð1Þ

where J > 0 and Sx are unit three component classical
vectors and we take periodic boundary conditions
Sx ≡ SxþN . We consider a classical precessional dynamics

dSx

dt
¼ JSx × ðSx−1 þ Sxþ1Þ ¼ fSx; Hg; ð2Þ

where the spin-Poisson bracket is defined as ff; gg ¼
P

x
P

α;β;γ ϵ
αβγSγxð∂f=∂SαxÞð∂g=∂SβxÞ for arbitrary functions

f, g of the spin variables.
Classical OTOC analogue.—We consider two spin

configurations which, at t ¼ 0, differ only at site x ¼ 0
by a rotation, ε, that is either small or infinitesimal, about an
axis n̂ ¼ ðẑ × S0Þ=jẑ × S0j (where ẑ is the unit vector
along the global z axis) such that δS0 ¼ εðn̂ × S0Þ. We
study the spreading of such a localized perturbation.
For infinitesimal ε, the change at some point x is given
by δSαxðtÞ ≈ ½∂SαxðtÞ=∂Sβ0&δSβ0 ¼ εn γϵβγνSν0½∂SαxðtÞ=∂Sβ0& ¼
εn γfSαxðtÞ; Sγ0ð0Þg. To measure the evolution of the pertur-
bation we define

2Dðx; tÞ ≔ h½δSxðtÞ&2i ≈ ε2hfSxðtÞ; n̂ · S0g2i: ð3Þ

where, throughout this Letter, h' ' 'i denotes averaging over
spin configurations chosen from the equilibrium distrib-
uition PðfSxgÞ ¼ e−H=T=ZðTÞ and ZðTÞ is the partition
function. Denoting the two initial spin configurations
discussed above by fSa

xðt ¼ 0Þg and fSb
xðt ¼ 0Þg, we

can obtain a simpler expression as

Dðx; tÞ ¼ 1 − hSa
xðtÞ · Sb

xðtÞi; ð4Þ

where hSa
xðtÞ · Sb

xðtÞi is the cross-correlator between the
two copies. If the dynamics is chaotic, as is known to be in
this classical spin-chain at infinite temperatures [43,44], we
expect that for any x ≠0, the above quantity, as a function
of time t starts from the value 0 (when the spins of the two
copies at a given x are perfectly correlated) and asymptotes
to 1 (when they are completely decorrelated). Thus Dðx; tÞ
indeed measures the spatiotemporal evolution of

decorrelation throughout the system. Apart from Dðx; tÞ,
we also calculate the usual dynamic spin-correlation
function

Cðx; tÞ ¼ hSxðtÞ · S0ð0Þi: ð5Þ

At this point, it is useful to understand the connection
between Dðx; tÞ and the OTOC. On canonical quantization
of the theory obtained by replacing the Poisson bracket
with the commutator, i.e., ff; gg → ½1=ðiℏÞ&½f; g&, we get
Dðx; tÞ → −ðε2=ℏ2ÞTr½ρTð½SxðtÞ; n̂ · S0ð0Þ&Þ2&, where Sx
are now quantum operators. This is nothing but the finite
temperature generalization of the OTOC introduced earlier
with Ŵðx; tÞ ¼ SxðtÞ and V̂ð0; 0Þ ¼ εn̂ · S0ð0Þ.
Numerical results.—We now present representative

results of our numerical simulation of the Heisenberg spin
chain with periodic boundary conditions. The simulations
were performed using a fourth-order Runge-Kutta (RK4)
numerical integration scheme for the spin dynamics. For
the numerical simulations, energy is measured in units of J.
The time step in RK4 was taken to be Δt ¼ 0.001–0.005
such that the energy per site and magnetization per site
were conserved up to ∼10−12. The configuration averaging
was done over ∼105 equilibrated initial conditions for
Cðx; tÞ and ∼104 for Dðx; tÞ. Many of the simulations had
to be performed at quadruple level machine precision.
Our first main finding, namely, ballistic propagation of

the decorrelation, is summarized in Fig. 1 which shows that
the OTOC falls sharply outside a light cone. The light cone
is specified by the lines x ¼ ( vbt, where vb is the butterfly
speed. For the two systems whose decorrelation Dðx; tÞ
measures, the red region in Fig. 1 corresponds to complete
decorrelation with hSa

xðtÞ · Sb
xðtÞi ≅0. This also gives the

natural definition of the light-cone velocity in the sense of a
“classical Lieb-Robinson speed” [45–47] which is then
equal to the butterfly speed.

FIG. 1. Simultaneous growth and ballistic spread of a pertur-
bation in a classical Heisenberg spin chain whose spin dynamics
(Fig. 3) is diffusive at T ¼ ∞. The speed of spreading obtained
from the classical OTOC, Dðx; tÞ (see text), defines a “light
cone.” The results are shown for a perturbation at time t ¼ 0 of
size ε ¼ 10−3 at the center of a system of size L ¼ 2048.
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In Fig. 2 we plot the signal Dðx; tÞ at different times to
show the propagation of the front. As can be seen from the
scaling, the front (for x ∼ vbt) is fit well by

Dðx; tÞ ¼ ε2 exp ½2μtð1 − ðx=vbtÞ2Þ%; ð6Þ

with μ ≈ 0.494, vb ≈ 1.6417ð2Þ. The deviations in scaling
seen for x ∼ vbt arise from errors due to finite machine
precision (quadruple level precision in this case). Later [see
Fig. (5)] we shall see that working with a linearized
dynamics avoids these errors and we get a much better
collapse of data in the entire range. The scaling function is
quite accurate within the light cone but in general is only an
approximate fit for x≳ vbt. The finite butterfly speed is in
stark contrast with the entirely diffusive [48] spin dynamics
as recorded by the regular two point correlator Cðx; tÞ
[Eq. (5)] shown in Fig. 3. The characteristic signature of
diffusion—x=

ffiffi
t

p
collapse at long times—is clearly visible

in the insets of Fig. 3.
An alternate way of analyzing the data is to ask at what

time tD0
the signal attains a threshold value D0 at a given x

for a set of different realizations of random initial configu-
rations. In Fig. 4 we plot the resulting set of tD0

’s as a
function of x. Its mean grows as tD0

¼ x=vb, with vb ≈ 1.64
in accordance with Fig. 2. Importantly, there is a spread of
times for the arrival of the front leading to a distribution of
times tD0

for a given x. This distribution for different values
of x as well as its collapse indicating an x2=3 scaling of
variance of tD0

is shown in the inset of Fig. 4. Thus there are
variations between different initial states in the timing of
the front’s arrival that are of order ∼x1=3.
We next analyze the properties of the front in more detail,

starting with its exponential growth in the temporal regime

and then considering its fluctuations within a KPZ frame-
work. From the usual definition of the Lyapunov expo-
nents, we expect the quantity limϵ→0δSxðtÞ2=ϵ2 to grow
exponentially with time (at large, but finite times) as
∼e2λðS;tÞt, for any x, where the Lyapunov exponent at time
t, λðS; tÞ, may depend on the initial spin configuration fSg
of a given realization. In the limit ε → 0, it is possible to
write the linearized equation of motion for limϵ→0δSx ≔ zx,

_zx ¼ JSx × ðzx−1 þ zxþ 1Þ þ Jzx × ðSx−1 þ Sxþ 1Þ; ð7Þ

where S, obtained by solving the equation of motion Eq. (2)
for a given random initial configuration, acts as the
dynamic field for z. The linearized equation can then be

FIG. 2. The inset plots Dðx; tÞ as a function of x, at different
times (t ¼ 40; 50;…; 100), showing growth and ballistic propa-
gation of the perturbation front. The scaled data (main panel)
show that the front is fit well by Eq. (6) with μ ¼ 0.494 and
vb ¼ 1.642 near x ∼ vbt. Here ϵ ¼ 10−8 and averaging was done
over 2 × 104 realizations.

FIG. 3. The spatial profile ofCðx; tÞ [Eq. (5)] at different times t
for a system of size L ¼ 512 at T ¼ ∞ with averaging over 105

initial conditions. The left inset shows a collapse of the data after
a diffusive scaling of x=

ffiffi
t

p
while the right inset shows the

resultant t−1=2 scaling of the autocorrelation.

FIG. 4. The main panel shows tD0
(defined in the main text) as a

function of x, for D0 ¼ 100ϵ ¼ 0.1 and different initial spin
configurations (gray scatter). The mean (black connected data
points) over 104 configurations is also shown and has a slope
≈1=½1.6417ð2Þ%. The upper inset shows the distribution of tD0

at
space points x ¼ 100; 200;…; 700, while the lower inset shows
collapse of the distributions with a width scaling as ∼x1=3. The
dotted curve in the lower inset is the Gaussian fit to the
fluctuations at x ¼ 600.
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concept of a velocity-dependent Lyapunov exponent was
formulated [32,38,39] and related to the speed of spread of
correlations [37]. In parallel, the concrete classical limit of
the OTOC provides a natural platform to investigate the
existence and nature of intrinsic differences in spatiotem-
poral chaos between classical and quantum many-body
systems [40–42].
The Heisenberg spin chain.—We consider a one-dimen-

sional lattice of spins Sx; x ¼ 0;…; N − 1 described by the
Heisenberg Hamiltonian

H ¼ −J
XN−1

x¼0

Sx · Sxþ1; ð1Þ

where J > 0 and Sx are unit three component classical
vectors and we take periodic boundary conditions
Sx ≡ SxþN . We consider a classical precessional dynamics

dSx

dt
¼ JSx × ðSx−1 þ Sxþ1Þ ¼ fSx; Hg; ð2Þ

where the spin-Poisson bracket is defined as ff; gg ¼
P

x
P

α;β;γ ϵ
αβγSγxð∂f=∂SαxÞð∂g=∂SβxÞ for arbitrary functions

f, g of the spin variables.
Classical OTOC analogue.—We consider two spin

configurations which, at t ¼ 0, differ only at site x ¼ 0
by a rotation, ε, that is either small or infinitesimal, about an
axis n̂ ¼ ðẑ × S0Þ=jẑ × S0j (where ẑ is the unit vector
along the global z axis) such that δS0 ¼ εðn̂ × S0Þ. We
study the spreading of such a localized perturbation.
For infinitesimal ε, the change at some point x is given
by δSαxðtÞ ≈ ½∂SαxðtÞ=∂Sβ0&δSβ0 ¼ εn γϵβγνSν0½∂SαxðtÞ=∂Sβ0& ¼
εn γfSαxðtÞ; Sγ0ð0Þg. To measure the evolution of the pertur-
bation we define

2Dðx; tÞ ≔ h½δSxðtÞ&2i ≈ ε2hfSxðtÞ; n̂ · S0g2i: ð3Þ

where, throughout this Letter, h' ' 'i denotes averaging over
spin configurations chosen from the equilibrium distrib-
uition PðfSxgÞ ¼ e−H=T=ZðTÞ and ZðTÞ is the partition
function. Denoting the two initial spin configurations
discussed above by fSa

xðt ¼ 0Þg and fSb
xðt ¼ 0Þg, we

can obtain a simpler expression as

Dðx; tÞ ¼ 1 − hSa
xðtÞ · Sb

xðtÞi; ð4Þ

where hSa
xðtÞ · Sb

xðtÞi is the cross-correlator between the
two copies. If the dynamics is chaotic, as is known to be in
this classical spin-chain at infinite temperatures [43,44], we
expect that for any x ≠0, the above quantity, as a function
of time t starts from the value 0 (when the spins of the two
copies at a given x are perfectly correlated) and asymptotes
to 1 (when they are completely decorrelated). Thus Dðx; tÞ
indeed measures the spatiotemporal evolution of

decorrelation throughout the system. Apart from Dðx; tÞ,
we also calculate the usual dynamic spin-correlation
function

Cðx; tÞ ¼ hSxðtÞ · S0ð0Þi: ð5Þ

At this point, it is useful to understand the connection
between Dðx; tÞ and the OTOC. On canonical quantization
of the theory obtained by replacing the Poisson bracket
with the commutator, i.e., ff; gg → ½1=ðiℏÞ&½f; g&, we get
Dðx; tÞ → −ðε2=ℏ2ÞTr½ρTð½SxðtÞ; n̂ · S0ð0Þ&Þ2&, where Sx
are now quantum operators. This is nothing but the finite
temperature generalization of the OTOC introduced earlier
with Ŵðx; tÞ ¼ SxðtÞ and V̂ð0; 0Þ ¼ εn̂ · S0ð0Þ.
Numerical results.—We now present representative

results of our numerical simulation of the Heisenberg spin
chain with periodic boundary conditions. The simulations
were performed using a fourth-order Runge-Kutta (RK4)
numerical integration scheme for the spin dynamics. For
the numerical simulations, energy is measured in units of J.
The time step in RK4 was taken to be Δt ¼ 0.001–0.005
such that the energy per site and magnetization per site
were conserved up to ∼10−12. The configuration averaging
was done over ∼105 equilibrated initial conditions for
Cðx; tÞ and ∼104 for Dðx; tÞ. Many of the simulations had
to be performed at quadruple level machine precision.
Our first main finding, namely, ballistic propagation of

the decorrelation, is summarized in Fig. 1 which shows that
the OTOC falls sharply outside a light cone. The light cone
is specified by the lines x ¼ ( vbt, where vb is the butterfly
speed. For the two systems whose decorrelation Dðx; tÞ
measures, the red region in Fig. 1 corresponds to complete
decorrelation with hSa

xðtÞ · Sb
xðtÞi ≅0. This also gives the

natural definition of the light-cone velocity in the sense of a
“classical Lieb-Robinson speed” [45–47] which is then
equal to the butterfly speed.

FIG. 1. Simultaneous growth and ballistic spread of a pertur-
bation in a classical Heisenberg spin chain whose spin dynamics
(Fig. 3) is diffusive at T ¼ ∞. The speed of spreading obtained
from the classical OTOC, Dðx; tÞ (see text), defines a “light
cone.” The results are shown for a perturbation at time t ¼ 0 of
size ε ¼ 10−3 at the center of a system of size L ¼ 2048.
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• Exponential growth and ballistic spread 
of an initially localised perturbation

•Characterised by a Lyapunov exponent 

and butterfly speed

•Connection of the growth, spread and 

propagation of the perturbation to the 
Kardar-Parisi-Zhang equation

Summary

Other Examples
Quantum Phase Transitions: Banerjee and Altman, Phys. Rev. B (2017)

Bose-Hubbard Chain: Shen, Zhang, Fan, and Zhai, Phys. Rev. B (2017)

Diffusive Metals: Patel, Chowdhury, Sachdev, and Swingle, Phys. Rev. X (2017)

Scrambling: Khemani, Vishwanath, and Huse, Phys. Rev. X (2018)
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Classical Analogue to OTOC

Why bother?

The nature of intrinsic differences between classical and quantum many-body systems 

Connection between thermodynamic variables with the time scales of chaos

A unified mechanism at the heart of thermalisation and equilibration

Connection between chaos and transport in strongly correlated systems

Can we adapt these ideas within the framework of equations of hydrodynamics?

Significance of these chaotic length and time scales in dynamics

Can capture ballistic spread even when two-point functions are diffusive
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Finding the Right Model

The Temptation

The Problem

Put these ideas to the test in the most natural and well-known example of chaotic systems: 
Turbulent flows

Driven-dissipative systems lacking a Hamiltonian structure or a statistical description in terms of 
thermodynamic variables

Redemption

Look for variations (while being nonlinear and chaotic) which retains a Hamiltonian structure 
(energy conservation) and allows a statistical equilibria
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Chaotic, thermalised solutions within a finite time

Statistical Equilibria

Energy equipartition

Gibbs distributions


Strict notion of temperature



An Ideal Model: Thermalised Fluid

Thermalised Solutions

Remarkable statistical behavior for truncated
Burgers–Hopf dynamics
Andrew J. Majda* and Ilya Timofeyev

Courant Institute of Mathematical Sciences, New York University, New York, NY 10012

Contributed by Andrew J. Majda, September 11, 2000

A simplified one-dimensional model system is introduced and
studied here that exhibits intrinsic chaos with many degrees of
freedom as well as increased predictability and slower decay of
correlations for the large-scale features of the system. These are
important features in common with vastly more complex problems
involving climate modeling or molecular biological systems. This
model is a suitable approximation of the Burgers–Hopf equation
involving Galerkin projection on Fourier modes. The model has a
detailed mathematical structure that leads to a well-defined equi-
librium statistical theory as well as a simple scaling theory for
correlations. The numerical evidence presented here strongly sup-
ports the behavior predicted from these statistical theories. Unlike
the celebrated dissipative and dispersive approximations of the
Burgers–Hopf equation, which exhibit exactly solvable and!or
completely integrable behavior, these model approximations have
strong intrinsic chaos with ergodic behavior.

One challenging common feature of several important prob-
lems in contemporary science, ranging from short-term

climate prediction for coupled atmosphere–ocean systems (1–3)
to simulating protein folding through molecular dynamics (4, 5),
is the important fact that larger-scale features have longer
correlation times and are more predictable than the general
smaller-scale and shorter time-scale features of these systems
with a huge number of degrees of freedom. For these intuitive
reasons, for example, many features of climate are much more
predictable than the weather at a fixed location. Such circum-
stances naturally suggest the development of suitable stochastic
modeling procedures for reduced systems involving only degrees
of freedom with longer correlation times. Systematic mathemat-
ical strategies to treat such issues have been developed very
recently in different contexts (refs. 4 and 6; A.M., I.T. & E.
Vanden Eijnden, unpublished work). The goal of this paper is to
introduce and study the simplest one-dimensional system of
equations with such features as a highly simplified model for such
behavior. Straightforward numerical experiments with this de-
terministic system, presented below, establish that it has intrinsic
stochastic dynamics with many degrees of freedom and longer
correlation times on larger scales, with general features that can
be predicted a priori through simple mathematical arguments
and scaling theories. Thus, this model provides a simple unam-
biguous test problem for stochastic modeling strategies for
treating unresolved degrees of freedom.

The model introduced and studied here is the Galerkin
truncated spectral approximation to the Hopf or inviscid Burgers
equation,

ut !
1
2 !u2"x " 0 . [1]

Various approximations to the Eq. 1 have a long history. With
various dissipative terms added to the right-hand side, this
equation becomes a model for both shock dynamics (7) and
turbulence theory (8) that can be solved exactly (9) with ex-
tremely predictable behavior associated with shock formation
and propagation. For suitable dispersive terms added to Eq. 1,
the equations become completely integrable once again with

highly predictable and recurrent behavior (7, 10). Goodman and
Lax (11) have shown that the simplest naive dispersive difference
approximation to Eq. 1 has completely integrable behavior for
suitable initial data. In contrast, the approximation to Eq. 1
introduced here has intrinsic stochastic dynamics with strong
numerical evidence for ergodicity and mixing as well as scaling
behavior, so that the larger scales are more predictable with
longer correlation times.

The Model
To develop the approximation to Eq. 1 that defines this model,
let P# f $ f# denote the finite Fourier series truncation of f,

P# f " f# " "
#k## #

f̂keikx . [2]

Here and elsewhere in the paper, it is tacitly assumed that f is 2$
periodic and real valued so that complex Fourier coefficients f̂k
satisfy f̂% k $ f̂ *k. The positive integer, #, from Eq. 2 defines the
number of complex valued degrees of freedom in the approxi-
mation. With these preliminaries, the model introduced and
studied here is the approximation to Eq. 1,

!u#"t !
1
2 P#!u#

2 "x " 0 . [3]

This is a Galerkin truncated approximation to Eq. 1. With the
expansion

u#!t" " "
#k## #

uk!t"eikx , u % k " u*k , [4]

Eq. 3 can be written equivalently as the following system of
nonlinear ordinary differential equations for amplitudes uk(t)
with #k# # #,

d
dt uk $ %

ik
2 "

k ! p ! q " 0
#p#,#q## #

u*pu*q . [5]

It is elementary to show that solutions of the either Eq. 3 or
Eq. 5 have conservation of both momentum and energy, i.e.,

M "
1

2$ $
0

2$

u#!t" " u0!t" [6]

and
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Resonance phenomenon for the Galerkin-truncated Burgers and Euler equations
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It is shown that the solutions of inviscid hydrodynamical equations with suppression of all spatial Fourier
modes having wave numbers in excess of a threshold KG exhibit unexpected features. The study is carried out for
both the one-dimensional Burgers equation and the two-dimensional incompressible Euler equation. For large KG

and smooth initial conditions, the first symptom of truncation, a localized short-wavelength oscillation which we
call a “tyger,” is caused by a resonant interaction between fluid particle motion and truncation waves generated by
small-scale features (shocks, layers with strong vorticity gradients, etc.). These tygers appear when complex-space
singularities come within one Galerkin wavelength λG = 2π/KG from the real domain and typically arise far
away from preexisting small-scale structures at locations whose velocities match that of such structures. Tygers
are weak and strongly localized at first—in the Burgers case at the time of appearance of the first shock their
amplitudes and widths are proportional to KG

−2/3 and KG
−1/3, respectively—but grow and eventually invade the

whole flow. They are thus the first manifestations of the thermalization predicted by T. D. Lee [Q. J. Appl. Math.
10, 69 (1952)]. The sudden dissipative anomaly—the presence of a finite dissipation in the limit of vanishing
viscosity after a finite time t⋆—which is well known for the Burgers equation and sometimes conjectured for the
three-dimensional Euler equation, has as counterpart, in the truncated case, the ability of tygers to store a finite
amount of energy in the limit KG → ∞. This leads to Reynolds stresses acting on scales larger than the Galerkin
wavelength and thus prevents the flow from converging to the inviscid-limit solution. There are indications that
it may eventually be possible to purge the tygers and thereby to recover the correct inviscid-limit behavior.

DOI: 10.1103/PhysRevE.84.016301 PACS number(s): 47.27.Jv, 05.20.Jj, 05.45.−a

I. INTRODUCTION AND FORMULATION

When the motion of a fluid is described at the microscopic
level, a conservative Hamiltonian formulation is appropriate
and statistical steady states can be described using Gibbs
ensembles. At the macroscopic level, however, one obtains a
dissipative hydrodynamical description because macroscopic
motion can be irreversibly degraded into thermal molecular
motion. Curiously, T. D. Lee observed that, starting from
the hydrodynamical or magnetohydrodynamical equations
for an ideal fluid, one can obtain a conservative dynamical
system to which Gibbsian statistical mechanics becomes
applicable [1]. For this he used a Galerkin truncation of the
equations, a procedure that keeps only a finite number of spatial
Fourier harmonics. For the case of the Galerkin-truncated
three-dimensional (3D) incompressible Euler equation, Lee
obtained thermalized equilibrium statistical states having
an equipartition of kinetic energy among all the Fourier
harmonics and thus a k2 energy spectrum. This is very far
from the spectrum of fully developed turbulence, as observed
experimentally, which could lead one to believe that Galerkin
truncation applied to the Euler equation cannot tell us anything
about the dissipative states of turbulence.

Kraichnan was the first to think otherwise. Considerations
of the Galerkin-truncated equilibria of the 2D Euler equation
played an important role in his conjecture about an inverse
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energy cascade [2,3]. In 1989 he and S. Chen went much
further and wrote ( [4], p. 162)

the truncated Euler system can imitate NS [Navier-Stokes]
fluid: the high-wavenumber degrees of freedom act like a
thermal sink into which the energy of low-wave-number
modes excited above equilibrium is dissipated. In the limit
where the sink wavenumbers are very large compared
with the anomalously excited wavenumbers, this dynamical
damping acts precisely like a molecular viscosity.

Supporting evidence was found in 2005 with very-high-
resolution spectral simulations of the 3D Galerkin-truncated
Euler equation that showed the following: When initial
conditions are used that have mostly low-wave-number modes,
the solutions have long-lasting transients in which only the
high-wave-number modes are thermalized, while the lower-
wave-number modes behave in a way similar to that for viscous
high-Reynolds-number flow [5]. This seems to hold not only
when the low-wave-number modes are weak (as implicitly
assumed by Kraichnan who invoked the fluctuation-dissipation
relations) but also in the strong turbulence regime that displays
a K41-type inertial range. One possible interpretation is that
the thermalized modes act as a kind of artificial molecular
world, thereby allowing dissipative (Navier-Stokes) dynamics
for the lower-wave-number modes.

We understand far too little about the mathematics of
the 3D Euler and Navier-Stokes equations to start a serious
analytical investigation of what happens to solutions of
the Galerkin-truncated 3D Euler equation when KG → ∞.
However, such matters may be within reach for the 1D inviscid
Burgers equation, a well-understood problem in the absence of
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Solutions to finite-dimensional (all spatial Fourier
modes set to zero beyond a finite wavenumber
KG), inviscid equations of hydrodynamics at long
times are known to be at variance with those
obtained for the original infinite dimensional partial
differential equations or their viscous counterparts.
Surprisingly, the solutions to such Galerkin-truncated
equations develop sharp localized structures, called
tygers (Ray et al. 2011 Phys. Rev. E 84, 016301
(doi:10.1103/PhysRevE.84.016301)), which eventually
lead to completely thermalized states associated
with an equipartition energy spectrum. We now
obtain, by using the analytically tractable Burgers
equation, precise estimates, theoretically and via
direct numerical simulations, of the time τc at
which thermalization is triggered and show that
τc ∼ KξG, with ξ = − 4

9 . Our results have several
implications, including for the analyticity strip
method, to numerically obtain evidence for or against
blow-ups of the three-dimensional incompressible
Euler equations.

1. Introduction
A microscopic understanding of turbulent flows has
been among the most challenging problems in statistical
physics for many years. Central to this challenge is
adapting well-developed tools of statistical mechanics
for dissipative and out-of-equilibrium turbulent flows.
The early efforts in this direction, due to Hopf [1]
and Lee [2], treated the ideal (inviscid) equations
of hydrodynamics as a finite-dimensional, Galerkin-
truncated system and obtained equipartition solutions

2017 The Author(s) Published by the Royal Society. All rights reserved.
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A new transient regime in the relaxation towards absolute equilibrium of the conservative and time-
reversible 3D Euler equation with a high-wave-number spectral truncation is characterized. Large-scale
dissipative effects, caused by the thermalized modes that spontaneously appear between a transition wave
number and the maximum wave number, are calculated using fluctuation dissipation relations. The large-
scale dynamics is found to be similar to that of high-Reynolds number Navier-Stokes equations and thus
obeys (at least approximately) Kolmogorov scaling.
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Turbulence has been observed in inviscid and conserva-
tive systems, in the context of (compressible) low-
temperature superfluid turbulence [1–3]. This behavior
has also been reproduced using simple (incompressible)
Biot-Savart vortex methods, which amount to Eulerian
dynamics with ad hoc vortex reconnection [4]. The pur-
pose of this Letter is to study the dynamics of spectrally
truncated 3D incompressible Euler flows. Our main result
is that the inviscid and conservative Euler equation, with a
high-wave number spectral truncation, has long-lasting
transients that behave just as those of the dissipative
(with generalized dissipation) Navier-Stokes equation.
This is so because the thermalized modes between some
transition wave number and the maximum wave number
can act as a fictitious microworld providing an effective
viscosity to the modes with wave numbers below the
transition wave number.

We thus study general solutions to the finite system of
ordinary differential equations for the complex variables
v̂!k" [k is a 3D vector of relative integers !k1; k2; k3"
satisfying sup !jk!j # kmax ]

@tv̂!!k; t" $ %
i
2
P!"#!k"

X
p
v̂"!p; t"v̂#!k % p; t"; (1)

where P !"#$k"P!#&k#P!" with P!"$$!" % k!k"=
k2 and the convolution in (1) is truncated to sup !jk!j #
kmax , sup !jp!j # kmax , and sup !jk! % p!j # kmax .

This system is time reversible and exactly conserves the
kinetic energy E $ P

kE!k; t", where the energy spectrum
E!k; t" is defined by averaging v on spherical shells of
width !k $ 1,

E!k; t" $ 1

2

X

k% !k=2<jk0j<k&!k=2

jv̂!k0; t"j2: (2)

The discrete Eq. (1) is classically obtained [5] by per-
forming a Galerkin truncation [v̂!k" $ 0 for sup !jk!j #
kmax ] on the Fourier transform v!x; t" $ P

v̂!k; t"eik'x of a
spatially periodic velocity field obeying the (unit density)

three-dimensional incompressible Euler equations,

@tv& !v 'r"v $ % rp; r ' v $ 0: (3)

The short-time, spectrally converged truncated Eulerian
dynamics (1) has been studied [6,7] to obtain numerical
evidence for or against blowup of the original (un-
truncated) Euler Eq. (3). We study here the behavior of
solutions of (1) when spectral convergence to solutions of
(3) is lost. Long-time truncated Eulerian dynamics is rele-
vant to the limitations of standard simulations of high-
Reynolds number (small viscosity) turbulence that are
performed using Galerkin truncations of the Navier-
Stokes equation [8].

Equation (1) is solved numerically using standard [9]
pseudospectral methods with resolution N. The solutions
are dealiased by spectrally truncating the modes for which
at least one wave-vector component exceeds N=3 (thus a
16003 run is truncated at kmax $ 534). This method allows
the exact evaluation of the Galerkin convolution in (1) in
only N3 logN operations. Time marching is done with a
second-order leapfrog finite-difference scheme, even and
odd time steps are periodically recoupled using fourth-
order Runge-Kutta.

To study the dynamics of (1), we use the so-called
Taylor-Green [10] single-mode initial condition of (3)
uTG $ sin x cosy cosz, vTG $ % uTG!y; % x; z", wTG $ 0.
Symmetries are employed in a standard way [11] to reduce
memory storage and speed up computations. Runs were
made with N $ 256, 512, 1024, and 1600.

Figure 1 displays the time evolution (top) and resolution
dependence (bottom) of the energy spectra. Each energy
spectrum E!k; t" admits a minimum at k $ kth !t"< kmax , in
sharp contrast with the short-time (t # 4) spectrally con-
verged Eulerian dynamics (data not shown, see [7,11]). For
k > kth !t" the energy spectrum obeys the scaling law
E!k; t" $ c!t"k2 (see the dashed line at the bottom of the
figure). The dynamics thus spontaneously generates a scale
separation at wave number kth !t". Figure 1 also shows that
kth slowly decreases with time. For fixed k inside the k2
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It is shown that the solutions of inviscid hydrodynamical equations with suppression of all spatial Fourier
modes having wave numbers in excess of a threshold KG exhibit unexpected features. The study is carried out for
both the one-dimensional Burgers equation and the two-dimensional incompressible Euler equation. For large KG

and smooth initial conditions, the first symptom of truncation, a localized short-wavelength oscillation which we
call a “tyger,” is caused by a resonant interaction between fluid particle motion and truncation waves generated by
small-scale features (shocks, layers with strong vorticity gradients, etc.). These tygers appear when complex-space
singularities come within one Galerkin wavelength λG = 2π/KG from the real domain and typically arise far
away from preexisting small-scale structures at locations whose velocities match that of such structures. Tygers
are weak and strongly localized at first—in the Burgers case at the time of appearance of the first shock their
amplitudes and widths are proportional to KG

−2/3 and KG
−1/3, respectively—but grow and eventually invade the

whole flow. They are thus the first manifestations of the thermalization predicted by T. D. Lee [Q. J. Appl. Math.
10, 69 (1952)]. The sudden dissipative anomaly—the presence of a finite dissipation in the limit of vanishing
viscosity after a finite time t⋆—which is well known for the Burgers equation and sometimes conjectured for the
three-dimensional Euler equation, has as counterpart, in the truncated case, the ability of tygers to store a finite
amount of energy in the limit KG → ∞. This leads to Reynolds stresses acting on scales larger than the Galerkin
wavelength and thus prevents the flow from converging to the inviscid-limit solution. There are indications that
it may eventually be possible to purge the tygers and thereby to recover the correct inviscid-limit behavior.
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I. INTRODUCTION AND FORMULATION

When the motion of a fluid is described at the microscopic
level, a conservative Hamiltonian formulation is appropriate
and statistical steady states can be described using Gibbs
ensembles. At the macroscopic level, however, one obtains a
dissipative hydrodynamical description because macroscopic
motion can be irreversibly degraded into thermal molecular
motion. Curiously, T. D. Lee observed that, starting from
the hydrodynamical or magnetohydrodynamical equations
for an ideal fluid, one can obtain a conservative dynamical
system to which Gibbsian statistical mechanics becomes
applicable [1]. For this he used a Galerkin truncation of the
equations, a procedure that keeps only a finite number of spatial
Fourier harmonics. For the case of the Galerkin-truncated
three-dimensional (3D) incompressible Euler equation, Lee
obtained thermalized equilibrium statistical states having
an equipartition of kinetic energy among all the Fourier
harmonics and thus a k2 energy spectrum. This is very far
from the spectrum of fully developed turbulence, as observed
experimentally, which could lead one to believe that Galerkin
truncation applied to the Euler equation cannot tell us anything
about the dissipative states of turbulence.

Kraichnan was the first to think otherwise. Considerations
of the Galerkin-truncated equilibria of the 2D Euler equation
played an important role in his conjecture about an inverse
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energy cascade [2,3]. In 1989 he and S. Chen went much
further and wrote ( [4], p. 162)

the truncated Euler system can imitate NS [Navier-Stokes]
fluid: the high-wavenumber degrees of freedom act like a
thermal sink into which the energy of low-wave-number
modes excited above equilibrium is dissipated. In the limit
where the sink wavenumbers are very large compared
with the anomalously excited wavenumbers, this dynamical
damping acts precisely like a molecular viscosity.

Supporting evidence was found in 2005 with very-high-
resolution spectral simulations of the 3D Galerkin-truncated
Euler equation that showed the following: When initial
conditions are used that have mostly low-wave-number modes,
the solutions have long-lasting transients in which only the
high-wave-number modes are thermalized, while the lower-
wave-number modes behave in a way similar to that for viscous
high-Reynolds-number flow [5]. This seems to hold not only
when the low-wave-number modes are weak (as implicitly
assumed by Kraichnan who invoked the fluctuation-dissipation
relations) but also in the strong turbulence regime that displays
a K41-type inertial range. One possible interpretation is that
the thermalized modes act as a kind of artificial molecular
world, thereby allowing dissipative (Navier-Stokes) dynamics
for the lower-wave-number modes.

We understand far too little about the mathematics of
the 3D Euler and Navier-Stokes equations to start a serious
analytical investigation of what happens to solutions of
the Galerkin-truncated 3D Euler equation when KG → ∞.
However, such matters may be within reach for the 1D inviscid
Burgers equation, a well-understood problem in the absence of
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A new transient regime in the relaxation towards absolute equilibrium of the conservative and time-
reversible 3D Euler equation with a high-wave-number spectral truncation is characterized. Large-scale
dissipative effects, caused by the thermalized modes that spontaneously appear between a transition wave
number and the maximum wave number, are calculated using fluctuation dissipation relations. The large-
scale dynamics is found to be similar to that of high-Reynolds number Navier-Stokes equations and thus
obeys (at least approximately) Kolmogorov scaling.
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Turbulence has been observed in inviscid and conserva-
tive systems, in the context of (compressible) low-
temperature superfluid turbulence [1–3]. This behavior
has also been reproduced using simple (incompressible)
Biot-Savart vortex methods, which amount to Eulerian
dynamics with ad hoc vortex reconnection [4]. The pur-
pose of this Letter is to study the dynamics of spectrally
truncated 3D incompressible Euler flows. Our main result
is that the inviscid and conservative Euler equation, with a
high-wave number spectral truncation, has long-lasting
transients that behave just as those of the dissipative
(with generalized dissipation) Navier-Stokes equation.
This is so because the thermalized modes between some
transition wave number and the maximum wave number
can act as a fictitious microworld providing an effective
viscosity to the modes with wave numbers below the
transition wave number.

We thus study general solutions to the finite system of
ordinary differential equations for the complex variables
v̂!k" [k is a 3D vector of relative integers !k1; k2; k3"
satisfying sup !jk!j # kmax ]

@tv̂!!k; t" $ %
i
2
P!"#!k"

X
p
v̂"!p; t"v̂#!k % p; t"; (1)

where P !"#$k"P!#&k#P!" with P!"$$!" % k!k"=
k2 and the convolution in (1) is truncated to sup !jk!j #
kmax , sup !jp!j # kmax , and sup !jk! % p!j # kmax .

This system is time reversible and exactly conserves the
kinetic energy E $ P

kE!k; t", where the energy spectrum
E!k; t" is defined by averaging v on spherical shells of
width !k $ 1,

E!k; t" $ 1

2

X

k% !k=2<jk0j<k&!k=2

jv̂!k0; t"j2: (2)

The discrete Eq. (1) is classically obtained [5] by per-
forming a Galerkin truncation [v̂!k" $ 0 for sup !jk!j #
kmax ] on the Fourier transform v!x; t" $ P

v̂!k; t"eik'x of a
spatially periodic velocity field obeying the (unit density)

three-dimensional incompressible Euler equations,

@tv& !v 'r"v $ % rp; r ' v $ 0: (3)

The short-time, spectrally converged truncated Eulerian
dynamics (1) has been studied [6,7] to obtain numerical
evidence for or against blowup of the original (un-
truncated) Euler Eq. (3). We study here the behavior of
solutions of (1) when spectral convergence to solutions of
(3) is lost. Long-time truncated Eulerian dynamics is rele-
vant to the limitations of standard simulations of high-
Reynolds number (small viscosity) turbulence that are
performed using Galerkin truncations of the Navier-
Stokes equation [8].

Equation (1) is solved numerically using standard [9]
pseudospectral methods with resolution N. The solutions
are dealiased by spectrally truncating the modes for which
at least one wave-vector component exceeds N=3 (thus a
16003 run is truncated at kmax $ 534). This method allows
the exact evaluation of the Galerkin convolution in (1) in
only N3 logN operations. Time marching is done with a
second-order leapfrog finite-difference scheme, even and
odd time steps are periodically recoupled using fourth-
order Runge-Kutta.

To study the dynamics of (1), we use the so-called
Taylor-Green [10] single-mode initial condition of (3)
uTG $ sin x cosy cosz, vTG $ % uTG!y; % x; z", wTG $ 0.
Symmetries are employed in a standard way [11] to reduce
memory storage and speed up computations. Runs were
made with N $ 256, 512, 1024, and 1600.

Figure 1 displays the time evolution (top) and resolution
dependence (bottom) of the energy spectra. Each energy
spectrum E!k; t" admits a minimum at k $ kth !t"< kmax , in
sharp contrast with the short-time (t # 4) spectrally con-
verged Eulerian dynamics (data not shown, see [7,11]). For
k > kth !t" the energy spectrum obeys the scaling law
E!k; t" $ c!t"k2 (see the dashed line at the bottom of the
figure). The dynamics thus spontaneously generates a scale
separation at wave number kth !t". Figure 1 also shows that
kth slowly decreases with time. For fixed k inside the k2
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It is shown that the solutions of inviscid hydrodynamical equations with suppression of all spatial Fourier
modes having wave numbers in excess of a threshold KG exhibit unexpected features. The study is carried out for
both the one-dimensional Burgers equation and the two-dimensional incompressible Euler equation. For large KG

and smooth initial conditions, the first symptom of truncation, a localized short-wavelength oscillation which we
call a “tyger,” is caused by a resonant interaction between fluid particle motion and truncation waves generated by
small-scale features (shocks, layers with strong vorticity gradients, etc.). These tygers appear when complex-space
singularities come within one Galerkin wavelength λG = 2π/KG from the real domain and typically arise far
away from preexisting small-scale structures at locations whose velocities match that of such structures. Tygers
are weak and strongly localized at first—in the Burgers case at the time of appearance of the first shock their
amplitudes and widths are proportional to KG

−2/3 and KG
−1/3, respectively—but grow and eventually invade the

whole flow. They are thus the first manifestations of the thermalization predicted by T. D. Lee [Q. J. Appl. Math.
10, 69 (1952)]. The sudden dissipative anomaly—the presence of a finite dissipation in the limit of vanishing
viscosity after a finite time t⋆—which is well known for the Burgers equation and sometimes conjectured for the
three-dimensional Euler equation, has as counterpart, in the truncated case, the ability of tygers to store a finite
amount of energy in the limit KG → ∞. This leads to Reynolds stresses acting on scales larger than the Galerkin
wavelength and thus prevents the flow from converging to the inviscid-limit solution. There are indications that
it may eventually be possible to purge the tygers and thereby to recover the correct inviscid-limit behavior.
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I. INTRODUCTION AND FORMULATION

When the motion of a fluid is described at the microscopic
level, a conservative Hamiltonian formulation is appropriate
and statistical steady states can be described using Gibbs
ensembles. At the macroscopic level, however, one obtains a
dissipative hydrodynamical description because macroscopic
motion can be irreversibly degraded into thermal molecular
motion. Curiously, T. D. Lee observed that, starting from
the hydrodynamical or magnetohydrodynamical equations
for an ideal fluid, one can obtain a conservative dynamical
system to which Gibbsian statistical mechanics becomes
applicable [1]. For this he used a Galerkin truncation of the
equations, a procedure that keeps only a finite number of spatial
Fourier harmonics. For the case of the Galerkin-truncated
three-dimensional (3D) incompressible Euler equation, Lee
obtained thermalized equilibrium statistical states having
an equipartition of kinetic energy among all the Fourier
harmonics and thus a k2 energy spectrum. This is very far
from the spectrum of fully developed turbulence, as observed
experimentally, which could lead one to believe that Galerkin
truncation applied to the Euler equation cannot tell us anything
about the dissipative states of turbulence.

Kraichnan was the first to think otherwise. Considerations
of the Galerkin-truncated equilibria of the 2D Euler equation
played an important role in his conjecture about an inverse

*Also at Centre for Condensed Matter Theory, Department of
Physics, Indian Institute of Science, Bangalore, India.

energy cascade [2,3]. In 1989 he and S. Chen went much
further and wrote ( [4], p. 162)

the truncated Euler system can imitate NS [Navier-Stokes]
fluid: the high-wavenumber degrees of freedom act like a
thermal sink into which the energy of low-wave-number
modes excited above equilibrium is dissipated. In the limit
where the sink wavenumbers are very large compared
with the anomalously excited wavenumbers, this dynamical
damping acts precisely like a molecular viscosity.

Supporting evidence was found in 2005 with very-high-
resolution spectral simulations of the 3D Galerkin-truncated
Euler equation that showed the following: When initial
conditions are used that have mostly low-wave-number modes,
the solutions have long-lasting transients in which only the
high-wave-number modes are thermalized, while the lower-
wave-number modes behave in a way similar to that for viscous
high-Reynolds-number flow [5]. This seems to hold not only
when the low-wave-number modes are weak (as implicitly
assumed by Kraichnan who invoked the fluctuation-dissipation
relations) but also in the strong turbulence regime that displays
a K41-type inertial range. One possible interpretation is that
the thermalized modes act as a kind of artificial molecular
world, thereby allowing dissipative (Navier-Stokes) dynamics
for the lower-wave-number modes.

We understand far too little about the mathematics of
the 3D Euler and Navier-Stokes equations to start a serious
analytical investigation of what happens to solutions of
the Galerkin-truncated 3D Euler equation when KG → ∞.
However, such matters may be within reach for the 1D inviscid
Burgers equation, a well-understood problem in the absence of
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scaling zone E!k; t" increases with time but E!k; t" de-
creases with time for k close (but inferior) to kth !t".

The traditionally expected [5,12] asymptotic dynamics
of the system is to reach an absolute equilibrium, which is a
statistically stationary exact solution of the truncated Euler
equations, with energy spectrum E!k" # ck2. Our new
results (see Fig. 1) show that a time-dependent statistical
equilibrium appears long before the system reaches its
stationary state. Indeed, the early appearance of a k2

zone is the key factor in the relaxation of the system
towards the absolute equilibrium: as time increases, more
and more modes gather into a time-dependent statistical
equilibrium, which itself tends towards an absolute
equilibrium.

Since the total energy E is constant, the energy dissi-
pated from large scales into the time-dependent statistical
equilibrium is given by

Eth !t" #
X

kth !t"<k
E!k; t": (4)

The time evolutions of kth and Eth are presented in Fig. 2.
The figure clearly displays the long transient during which,
for all resolutions, kth decreases and Eth increases with
time. Note that, at all times, kth increases and Eth decreases
with the resolution.

Since the energy of the time-dependent equilibrium
increases with time, the modes outside the equilibrium

lose energy. The presence of a time-dependent equilibrium
thus induces an effective dissipation on the lower k modes.

We now estimate the characteristic time of effective
dissipation !!kd " of modes kd close to kth !t" by assuming
time-scale separation and studying, at each time t, the
relaxation towards the time-independent absolute equilib-
rium characterized by Eth !t" and kmax . The existence of a
fluctuation dissipation theorem (FDT) [13,14] ensures than
dissipation around the equilibrium has the same character-
istic time scale as the equilibrium correlation functions
hv̂"!k; t"v̂#!k0; 0"i [brackets denote equilibrium statistical
averaging over initial conditions v̂#!k0; 0"]. Defining this
time scale !C as the parabolic decorrelation time

!2
C@tthv̂"!k; t"v̂#!k0; 0"ijt#0 # hv̂"!k; 0"v̂#!k0; 0"i; (5)

time translation invariance allows one to express the
second-order time derivative as $h@tv̂"!k; t" %
@t0 v̂#!k0; t0"ijt#t0#0. Using expression (1) for the time de-
rivatives reduces the evaluation of !C to that of an equal-
time fourth-order moment of a Gaussian field with corre-
lation hv̂"!k; t"v̂#!$k; t"i # AP"#!k" [5] where A #
Eth =!2kmax "3. The only nonvanishing contribution is a
one loop graph [8,15]. The correlation time !C associated
with wave number k is found in this way [14] to obey the
simple scaling law

!C #
C

k
!!!!!!!
Eth
p ; (6)

where C # 1:433 82 is a constant of order unity. The time
scale !C is the eddy turnover time at wave number kth .
Because of Kolmogorov (K41) behavior (see below) the
evolution of Eth is governed by the large-eddy turnover
time. The assumption of time-scale separation made above
is thus consistent.

This strongly suggests the introduction of an effective
generalized Navier-Stokes model for the dissipative dy-
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Understanding many-body chaos in such thermalised fluids
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Direct Numerical Simulations
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Many-body Chaos: The Euler Equation
Strategy

copy perturb

vth

va
0 = vth

Independent evolution of systems a and b

Decorrelator

Auto Corelation Function

The Auto Corelation Function (ACF) for a dynam-
ical system (defined below), depicts how it decore-
lates with a delayed copy of itself in time. The mix-
ing characteristics causes the ACF to decay to zero
asymptotically. For deterministic chaotic systems,
the splitting of corelations in time is further related
to the dynamics instability of chaotic trajectories2.
The ACF for a statistically stationary quantity u(t)
is defined as

 (t) = hu(t0) · u(t0 + t)i � hui2 (6)

Here h·i mean ensemble averaging. Since for the
system in study, the statistics is stationary and sys-
tem is thermalized, the ensemble averaging can be
replaced by average of all degrees of freedom {x},
further with vanishing hui, the normalized ACF is
given by

 (t) =
hu(t0) · u(t0 + t)i

hu2i (7)
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Figure 3: showing  (t), with a gaussian shown in
dotted line.

Studies on low dimensional chaotic systems
(both continuous system like lorenz, rossler, chua cir-

cuit or for discrete maps )2 have been done, has
shown an exponential decay for the ACF. Exact re-
sults for ACF could be derived only in special cases2.
Now for a many-body chaotic system, the normal-
ized ACF when computed numerically shows a well
behaved Gaussian  (t) = e

� 1
2!

2
0t

2

. For short times
t ⌧ 1, the taylor expansion could reveal the leading

quadratic behaviour as

 (t) ⇡ 1 +
d

dt

⌦
u2

↵
+

1

2
t
2

⌦
u(x, 0) · @2t u(x, 0)

↵

hu2i (8)

⇡ 1� 1

2
!
2
0t

2
,!

2
0 =

D
(@tu)

2
E

hu2i (9)

But considering the velocity as a time signal hav-
ing Power Spectral Density S(!) of a white noise
(with a ultraviolet cuto↵ ⇠ !0 in frequency domain),
implying that all timescales are almost equally ex-
cited till tgrid in evolution. By Wiener-Khinchin theo-
rem, the Auto Correlation Function becomes a Gaus-
sian.

Chaos in Thermalized fluid

Starting with a thermalized system (E(k) ⇠ k
2),

make an identical copy of it (denoted as u0) and the
latter is given a small perturbation u0 = u + �u at
t = 0. As a finite dimensional dynamical system, the
interest is in investigating the exponential separation
(if any) of their phase space trajectories of the system
in the limit of �u ! 0. The idea is to perturb in real
space locally to observe the spread of perturbation
within the system (analogous to Butterfly e↵ect). In-
compressibility condition dictates that the perturba-
tion also obeys it r·(�u) = 0. Thus the perturbation
field is taken as a curl of another vector, which decays
exponentially away from the point of perturbation to
admit a local e↵ect. With the center of perturbation
as origin,

�u = r⇥A, Ai = ✏0urmsr0e
� r2

2r20 (10)

where r0 =⇠ L
N , urms =

p
2E. The relative size of the

perturbation becomes of order �u
urms

⇠ ✏0 ⌧ 1 near the
center and decays rapidly for r � r0. The localized
perturbation �u(x, 0), at t = 0+, begins to delocal-
ize and a↵ect neighbouring regions. The decorelation
between the system spreads rapidly to the whole do-
main, owing to the presence of non-linear interaction
in the system. It is a reasonable expectation to con-
sider the average of decorelation h|�u|ir at distance r
from the site of perturbation and monitor the growth
in time. With that, the radial cross-corelation is de-
fined as

�(r, t) =
1

4⇡r2

Z

D
dx

1

2
|�u|2� (|x|� r) =

1

2

⌦
|�u|2
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Figure 4: showing radial cross-corelation vs time at
di↵erent 0

r
0 in a lin-log scale, clearly indicating an

exponential growth

In a many-body chaotic system, for a given r an
exponential growth in time with a exponent �(r). On
the other hand, at a given time t the de-corelation
spatially should be decreasing with increasing r .
Considering the dynamical system as a whole {u}
and its trajectory in its phase space, the total cross-
corelation could be defined as

�(t) =
1

V

Z

D
dx

1

2
|�u(x, t)|2 =

1

2

⌦
|�u|2

↵
(12)

The lyapunov exponent defined in the theory of
dynamical systems could be restated here as

� = lim
✏0!0

lim
t!1

1

t
ln |�(t)| (13)
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Figure 5: showing net cross-corelation vs time in a
lin-log scale, indicating an exponential growth with
exponent �, the dotted line shows �(t) calculated
from linearized equation

But as t ! 1, �(t) saturates as the trajectories are
constrained to the constant energy manifold which is
compact. As the spread is saturated, meaning the
systems have become completely decorelated to each
other, that is huu0i = hui hu0i = 0. Thus asymptot-
ically, both radial and net cross-corelation saturates
to 2E. These cross-corelation objects �(r, t),�(t)
are used to investigate chaos in thermalized fluid.

Growth of Perturbation

With the perturbation �u = u0 � u given in real
space, the equations (all fields are truncated) in real
space for u and �u, after eliminating pressure term
using incompressibility condition

@tui = �@j (uiuj) + @
3
ijk

Z
dyG (|x� y|)uj(y)uk(y)

(14)

@t�ui = �@j [(�uj)ui + (�ui)uj + (�ui)(�uj)] + (15)

@
3
ijk

Z
dy G (|x� y|) (2�ukuj + �uk�uj) (16)

Equation 16, is the complete equation for the evo-
lution of perturbation �u. From the parent equa-
tion, it has acquired both non-linear ((�u)2 terms)
and non-local e↵ects (last term in 16). Ignoring the
second order (�u)2 terms, the linearized equation for
�u is

@t�ui(x, t) ⇡ �uj@j�ui � �uj(@jui) + @iT (17)

T = 2@2
ij

Z
dy G (|x� y|) �uj(y)uk(y)
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Linearized equation 18 is numerically solved in
spectral space using same algorithm as for u,u0.
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The Auto Corelation Function (ACF) for a dynam-
ical system (defined below), depicts how it decore-
lates with a delayed copy of itself in time. The mix-
ing characteristics causes the ACF to decay to zero
asymptotically. For deterministic chaotic systems,
the splitting of corelations in time is further related
to the dynamics instability of chaotic trajectories2.
The ACF for a statistically stationary quantity u(t)
is defined as

 (t) = hu(t0) · u(t0 + t)i � hui2 (6)

Here h·i mean ensemble averaging. Since for the
system in study, the statistics is stationary and sys-
tem is thermalized, the ensemble averaging can be
replaced by average of all degrees of freedom {x},
further with vanishing hui, the normalized ACF is
given by

 (t) =
hu(t0) · u(t0 + t)i

hu2i (7)
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Figure 3: showing  (t), with a gaussian shown in
dotted line.

Studies on low dimensional chaotic systems
(both continuous system like lorenz, rossler, chua cir-

cuit or for discrete maps )2 have been done, has
shown an exponential decay for the ACF. Exact re-
sults for ACF could be derived only in special cases2.
Now for a many-body chaotic system, the normal-
ized ACF when computed numerically shows a well
behaved Gaussian  (t) = e
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But considering the velocity as a time signal hav-
ing Power Spectral Density S(!) of a white noise
(with a ultraviolet cuto↵ ⇠ !0 in frequency domain),
implying that all timescales are almost equally ex-
cited till tgrid in evolution. By Wiener-Khinchin theo-
rem, the Auto Correlation Function becomes a Gaus-
sian.

Chaos in Thermalized fluid

Starting with a thermalized system (E(k) ⇠ k
2),

make an identical copy of it (denoted as u0) and the
latter is given a small perturbation u0 = u + �u at
t = 0. As a finite dimensional dynamical system, the
interest is in investigating the exponential separation
(if any) of their phase space trajectories of the system
in the limit of �u ! 0. The idea is to perturb in real
space locally to observe the spread of perturbation
within the system (analogous to Butterfly e↵ect). In-
compressibility condition dictates that the perturba-
tion also obeys it r·(�u) = 0. Thus the perturbation
field is taken as a curl of another vector, which decays
exponentially away from the point of perturbation to
admit a local e↵ect. With the center of perturbation
as origin,

�u = r⇥A, Ai = ✏0urmsr0e
� r2

2r20 (10)

where r0 =⇠ L
N , urms =

p
2E. The relative size of the

perturbation becomes of order �u
urms

⇠ ✏0 ⌧ 1 near the
center and decays rapidly for r � r0. The localized
perturbation �u(x, 0), at t = 0+, begins to delocal-
ize and a↵ect neighbouring regions. The decorelation
between the system spreads rapidly to the whole do-
main, owing to the presence of non-linear interaction
in the system. It is a reasonable expectation to con-
sider the average of decorelation h|�u|ir at distance r
from the site of perturbation and monitor the growth
in time. With that, the radial cross-corelation is de-
fined as
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Figure 4: showing radial cross-corelation vs time at
di↵erent 0

r
0 in a lin-log scale, clearly indicating an

exponential growth

In a many-body chaotic system, for a given r an
exponential growth in time with a exponent �(r). On
the other hand, at a given time t the de-corelation
spatially should be decreasing with increasing r .
Considering the dynamical system as a whole {u}
and its trajectory in its phase space, the total cross-
corelation could be defined as
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The lyapunov exponent defined in the theory of
dynamical systems could be restated here as

� = lim
✏0!0
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Figure 5: showing net cross-corelation vs time in a
lin-log scale, indicating an exponential growth with
exponent �, the dotted line shows �(t) calculated
from linearized equation

But as t ! 1, �(t) saturates as the trajectories are
constrained to the constant energy manifold which is
compact. As the spread is saturated, meaning the
systems have become completely decorelated to each
other, that is huu0i = hui hu0i = 0. Thus asymptot-
ically, both radial and net cross-corelation saturates
to 2E. These cross-corelation objects �(r, t),�(t)
are used to investigate chaos in thermalized fluid.

Growth of Perturbation

With the perturbation �u = u0 � u given in real
space, the equations (all fields are truncated) in real
space for u and �u, after eliminating pressure term
using incompressibility condition

@tui = �@j (uiuj) + @
3
ijk

Z
dyG (|x� y|)uj(y)uk(y)

(14)

@t�ui = �@j [(�uj)ui + (�ui)uj + (�ui)(�uj)] + (15)

@
3
ijk

Z
dy G (|x� y|) (2�ukuj + �uk�uj) (16)

Equation 16, is the complete equation for the evo-
lution of perturbation �u. From the parent equa-
tion, it has acquired both non-linear ((�u)2 terms)
and non-local e↵ects (last term in 16). Ignoring the
second order (�u)2 terms, the linearized equation for
�u is

@t�ui(x, t) ⇡ �uj@j�ui � �uj(@jui) + @iT (17)

T = 2@2
ij

Z
dy G (|x� y|) �uj(y)uk(y)

(18)

Linearized equation 18 is numerically solved in
spectral space using same algorithm as for u,u0.
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Theory

From the 3D Euler Equations

Linearised equation for �u

@t�ui(x, t) ⇡ �vthj @j�ui � �uj(@jui) + @iT
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The Auto Corelation Function (ACF) for a dynam-
ical system (defined below), depicts how it decore-
lates with a delayed copy of itself in time. The mix-
ing characteristics causes the ACF to decay to zero
asymptotically. For deterministic chaotic systems,
the splitting of corelations in time is further related
to the dynamics instability of chaotic trajectories2.
The ACF for a statistically stationary quantity u(t)
is defined as

 (t) = hu(t0) · u(t0 + t)i � hui2 (6)

Here h·i mean ensemble averaging. Since for the
system in study, the statistics is stationary and sys-
tem is thermalized, the ensemble averaging can be
replaced by average of all degrees of freedom {x},
further with vanishing hui, the normalized ACF is
given by

 (t) =
hu(t0) · u(t0 + t)i

hu2i (7)
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Figure 3: showing  (t), with a gaussian shown in
dotted line.

Studies on low dimensional chaotic systems
(both continuous system like lorenz, rossler, chua cir-

cuit or for discrete maps )2 have been done, has
shown an exponential decay for the ACF. Exact re-
sults for ACF could be derived only in special cases2.
Now for a many-body chaotic system, the normal-
ized ACF when computed numerically shows a well
behaved Gaussian  (t) = e
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But considering the velocity as a time signal hav-
ing Power Spectral Density S(!) of a white noise
(with a ultraviolet cuto↵ ⇠ !0 in frequency domain),
implying that all timescales are almost equally ex-
cited till tgrid in evolution. By Wiener-Khinchin theo-
rem, the Auto Correlation Function becomes a Gaus-
sian.

Chaos in Thermalized fluid

Starting with a thermalized system (E(k) ⇠ k
2),

make an identical copy of it (denoted as u0) and the
latter is given a small perturbation u0 = u + �u at
t = 0. As a finite dimensional dynamical system, the
interest is in investigating the exponential separation
(if any) of their phase space trajectories of the system
in the limit of �u ! 0. The idea is to perturb in real
space locally to observe the spread of perturbation
within the system (analogous to Butterfly e↵ect). In-
compressibility condition dictates that the perturba-
tion also obeys it r·(�u) = 0. Thus the perturbation
field is taken as a curl of another vector, which decays
exponentially away from the point of perturbation to
admit a local e↵ect. With the center of perturbation
as origin,

�u = r⇥A, Ai = ✏0urmsr0e
� r2

2r20 (10)

where r0 =⇠ L
N , urms =

p
2E. The relative size of the

perturbation becomes of order �u
urms

⇠ ✏0 ⌧ 1 near the
center and decays rapidly for r � r0. The localized
perturbation �u(x, 0), at t = 0+, begins to delocal-
ize and a↵ect neighbouring regions. The decorelation
between the system spreads rapidly to the whole do-
main, owing to the presence of non-linear interaction
in the system. It is a reasonable expectation to con-
sider the average of decorelation h|�u|ir at distance r
from the site of perturbation and monitor the growth
in time. With that, the radial cross-corelation is de-
fined as
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0 in a lin-log scale, clearly indicating an

exponential growth

In a many-body chaotic system, for a given r an
exponential growth in time with a exponent �(r). On
the other hand, at a given time t the de-corelation
spatially should be decreasing with increasing r .
Considering the dynamical system as a whole {u}
and its trajectory in its phase space, the total cross-
corelation could be defined as
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The lyapunov exponent defined in the theory of
dynamical systems could be restated here as
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Figure 5: showing net cross-corelation vs time in a
lin-log scale, indicating an exponential growth with
exponent �, the dotted line shows �(t) calculated
from linearized equation

But as t ! 1, �(t) saturates as the trajectories are
constrained to the constant energy manifold which is
compact. As the spread is saturated, meaning the
systems have become completely decorelated to each
other, that is huu0i = hui hu0i = 0. Thus asymptot-
ically, both radial and net cross-corelation saturates
to 2E. These cross-corelation objects �(r, t),�(t)
are used to investigate chaos in thermalized fluid.

Growth of Perturbation

With the perturbation �u = u0 � u given in real
space, the equations (all fields are truncated) in real
space for u and �u, after eliminating pressure term
using incompressibility condition

@tui = �@j (uiuj) + @
3
ijk

Z
dyG (|x� y|)uj(y)uk(y)

(14)

@t�ui = �@j [(�uj)ui + (�ui)uj + (�ui)(�uj)] + (15)

@
3
ijk

Z
dy G (|x� y|) (2�ukuj + �uk�uj) (16)

Equation 16, is the complete equation for the evo-
lution of perturbation �u. From the parent equa-
tion, it has acquired both non-linear ((�u)2 terms)
and non-local e↵ects (last term in 16). Ignoring the
second order (�u)2 terms, the linearized equation for
�u is

@t�ui(x, t) ⇡ �uj@j�ui � �uj(@jui) + @iT (17)

T = 2@2
ij

Z
dy G (|x� y|) �uj(y)uk(y)

(18)

Linearized equation 18 is numerically solved in
spectral space using same algorithm as for u,u0.
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From the 3D Euler Equations
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The Auto Corelation Function (ACF) for a dynam-
ical system (defined below), depicts how it decore-
lates with a delayed copy of itself in time. The mix-
ing characteristics causes the ACF to decay to zero
asymptotically. For deterministic chaotic systems,
the splitting of corelations in time is further related
to the dynamics instability of chaotic trajectories2.
The ACF for a statistically stationary quantity u(t)
is defined as

 (t) = hu(t0) · u(t0 + t)i � hui2 (6)

Here h·i mean ensemble averaging. Since for the
system in study, the statistics is stationary and sys-
tem is thermalized, the ensemble averaging can be
replaced by average of all degrees of freedom {x},
further with vanishing hui, the normalized ACF is
given by

 (t) =
hu(t0) · u(t0 + t)i

hu2i (7)
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Figure 3: showing  (t), with a gaussian shown in
dotted line.

Studies on low dimensional chaotic systems
(both continuous system like lorenz, rossler, chua cir-

cuit or for discrete maps )2 have been done, has
shown an exponential decay for the ACF. Exact re-
sults for ACF could be derived only in special cases2.
Now for a many-body chaotic system, the normal-
ized ACF when computed numerically shows a well
behaved Gaussian  (t) = e
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But considering the velocity as a time signal hav-
ing Power Spectral Density S(!) of a white noise
(with a ultraviolet cuto↵ ⇠ !0 in frequency domain),
implying that all timescales are almost equally ex-
cited till tgrid in evolution. By Wiener-Khinchin theo-
rem, the Auto Correlation Function becomes a Gaus-
sian.

Chaos in Thermalized fluid

Starting with a thermalized system (E(k) ⇠ k
2),

make an identical copy of it (denoted as u0) and the
latter is given a small perturbation u0 = u + �u at
t = 0. As a finite dimensional dynamical system, the
interest is in investigating the exponential separation
(if any) of their phase space trajectories of the system
in the limit of �u ! 0. The idea is to perturb in real
space locally to observe the spread of perturbation
within the system (analogous to Butterfly e↵ect). In-
compressibility condition dictates that the perturba-
tion also obeys it r·(�u) = 0. Thus the perturbation
field is taken as a curl of another vector, which decays
exponentially away from the point of perturbation to
admit a local e↵ect. With the center of perturbation
as origin,

�u = r⇥A, Ai = ✏0urmsr0e
� r2

2r20 (10)

where r0 =⇠ L
N , urms =
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2E. The relative size of the

perturbation becomes of order �u
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⇠ ✏0 ⌧ 1 near the
center and decays rapidly for r � r0. The localized
perturbation �u(x, 0), at t = 0+, begins to delocal-
ize and a↵ect neighbouring regions. The decorelation
between the system spreads rapidly to the whole do-
main, owing to the presence of non-linear interaction
in the system. It is a reasonable expectation to con-
sider the average of decorelation h|�u|ir at distance r
from the site of perturbation and monitor the growth
in time. With that, the radial cross-corelation is de-
fined as
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Figure 4: showing radial cross-corelation vs time at
di↵erent 0

r
0 in a lin-log scale, clearly indicating an

exponential growth

In a many-body chaotic system, for a given r an
exponential growth in time with a exponent �(r). On
the other hand, at a given time t the de-corelation
spatially should be decreasing with increasing r .
Considering the dynamical system as a whole {u}
and its trajectory in its phase space, the total cross-
corelation could be defined as
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The lyapunov exponent defined in the theory of
dynamical systems could be restated here as
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Figure 5: showing net cross-corelation vs time in a
lin-log scale, indicating an exponential growth with
exponent �, the dotted line shows �(t) calculated
from linearized equation

But as t ! 1, �(t) saturates as the trajectories are
constrained to the constant energy manifold which is
compact. As the spread is saturated, meaning the
systems have become completely decorelated to each
other, that is huu0i = hui hu0i = 0. Thus asymptot-
ically, both radial and net cross-corelation saturates
to 2E. These cross-corelation objects �(r, t),�(t)
are used to investigate chaos in thermalized fluid.

Growth of Perturbation

With the perturbation �u = u0 � u given in real
space, the equations (all fields are truncated) in real
space for u and �u, after eliminating pressure term
using incompressibility condition

@tui = �@j (uiuj) + @
3
ijk

Z
dyG (|x� y|)uj(y)uk(y)

(14)

@t�ui = �@j [(�uj)ui + (�ui)uj + (�ui)(�uj)] + (15)

@
3
ijk

Z
dy G (|x� y|) (2�ukuj + �uk�uj) (16)

Equation 16, is the complete equation for the evo-
lution of perturbation �u. From the parent equa-
tion, it has acquired both non-linear ((�u)2 terms)
and non-local e↵ects (last term in 16). Ignoring the
second order (�u)2 terms, the linearized equation for
�u is

@t�ui(x, t) ⇡ �uj@j�ui � �uj(@jui) + @iT (17)

T = 2@2
ij

Z
dy G (|x� y|) �uj(y)uk(y)

(18)

Linearized equation 18 is numerically solved in
spectral space using same algorithm as for u,u0.
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Diagonalising and solving in the basis of the 
eigenvectors of the strain-rate matrix 
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The Auto Corelation Function (ACF) for a dynam-
ical system (defined below), depicts how it decore-
lates with a delayed copy of itself in time. The mix-
ing characteristics causes the ACF to decay to zero
asymptotically. For deterministic chaotic systems,
the splitting of corelations in time is further related
to the dynamics instability of chaotic trajectories2.
The ACF for a statistically stationary quantity u(t)
is defined as

 (t) = hu(t0) · u(t0 + t)i � hui2 (6)

Here h·i mean ensemble averaging. Since for the
system in study, the statistics is stationary and sys-
tem is thermalized, the ensemble averaging can be
replaced by average of all degrees of freedom {x},
further with vanishing hui, the normalized ACF is
given by

 (t) =
hu(t0) · u(t0 + t)i

hu2i (7)
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Figure 3: showing  (t), with a gaussian shown in
dotted line.

Studies on low dimensional chaotic systems
(both continuous system like lorenz, rossler, chua cir-

cuit or for discrete maps )2 have been done, has
shown an exponential decay for the ACF. Exact re-
sults for ACF could be derived only in special cases2.
Now for a many-body chaotic system, the normal-
ized ACF when computed numerically shows a well
behaved Gaussian  (t) = e
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But considering the velocity as a time signal hav-
ing Power Spectral Density S(!) of a white noise
(with a ultraviolet cuto↵ ⇠ !0 in frequency domain),
implying that all timescales are almost equally ex-
cited till tgrid in evolution. By Wiener-Khinchin theo-
rem, the Auto Correlation Function becomes a Gaus-
sian.

Chaos in Thermalized fluid

Starting with a thermalized system (E(k) ⇠ k
2),

make an identical copy of it (denoted as u0) and the
latter is given a small perturbation u0 = u + �u at
t = 0. As a finite dimensional dynamical system, the
interest is in investigating the exponential separation
(if any) of their phase space trajectories of the system
in the limit of �u ! 0. The idea is to perturb in real
space locally to observe the spread of perturbation
within the system (analogous to Butterfly e↵ect). In-
compressibility condition dictates that the perturba-
tion also obeys it r·(�u) = 0. Thus the perturbation
field is taken as a curl of another vector, which decays
exponentially away from the point of perturbation to
admit a local e↵ect. With the center of perturbation
as origin,

�u = r⇥A, Ai = ✏0urmsr0e
� r2

2r20 (10)

where r0 =⇠ L
N , urms =

p
2E. The relative size of the

perturbation becomes of order �u
urms

⇠ ✏0 ⌧ 1 near the
center and decays rapidly for r � r0. The localized
perturbation �u(x, 0), at t = 0+, begins to delocal-
ize and a↵ect neighbouring regions. The decorelation
between the system spreads rapidly to the whole do-
main, owing to the presence of non-linear interaction
in the system. It is a reasonable expectation to con-
sider the average of decorelation h|�u|ir at distance r
from the site of perturbation and monitor the growth
in time. With that, the radial cross-corelation is de-
fined as
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1
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D
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2
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Figure 4: showing radial cross-corelation vs time at
di↵erent 0

r
0 in a lin-log scale, clearly indicating an

exponential growth

In a many-body chaotic system, for a given r an
exponential growth in time with a exponent �(r). On
the other hand, at a given time t the de-corelation
spatially should be decreasing with increasing r .
Considering the dynamical system as a whole {u}
and its trajectory in its phase space, the total cross-
corelation could be defined as

�(t) =
1
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dx
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2
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The lyapunov exponent defined in the theory of
dynamical systems could be restated here as

� = lim
✏0!0

lim
t!1
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t
ln |�(t)| (13)
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Figure 5: showing net cross-corelation vs time in a
lin-log scale, indicating an exponential growth with
exponent �, the dotted line shows �(t) calculated
from linearized equation

But as t ! 1, �(t) saturates as the trajectories are
constrained to the constant energy manifold which is
compact. As the spread is saturated, meaning the
systems have become completely decorelated to each
other, that is huu0i = hui hu0i = 0. Thus asymptot-
ically, both radial and net cross-corelation saturates
to 2E. These cross-corelation objects �(r, t),�(t)
are used to investigate chaos in thermalized fluid.

Growth of Perturbation

With the perturbation �u = u0 � u given in real
space, the equations (all fields are truncated) in real
space for u and �u, after eliminating pressure term
using incompressibility condition

@tui = �@j (uiuj) + @
3
ijk

Z
dyG (|x� y|)uj(y)uk(y)

(14)

@t�ui = �@j [(�uj)ui + (�ui)uj + (�ui)(�uj)] + (15)

@
3
ijk

Z
dy G (|x� y|) (2�ukuj + �uk�uj) (16)

Equation 16, is the complete equation for the evo-
lution of perturbation �u. From the parent equa-
tion, it has acquired both non-linear ((�u)2 terms)
and non-local e↵ects (last term in 16). Ignoring the
second order (�u)2 terms, the linearized equation for
�u is

@t�ui(x, t) ⇡ �uj@j�ui � �uj(@jui) + @iT (17)

T = 2@2
ij

Z
dy G (|x� y|) �uj(y)uk(y)

(18)

Linearized equation 18 is numerically solved in
spectral space using same algorithm as for u,u0.
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Diagonalising and solving in the basis of the 
eigenvectors of the strain-rate matrix 
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direction
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Decorrelator

Auto Corelation Function

The Auto Corelation Function (ACF) for a dynam-
ical system (defined below), depicts how it decore-
lates with a delayed copy of itself in time. The mix-
ing characteristics causes the ACF to decay to zero
asymptotically. For deterministic chaotic systems,
the splitting of corelations in time is further related
to the dynamics instability of chaotic trajectories2.
The ACF for a statistically stationary quantity u(t)
is defined as

 (t) = hu(t0) · u(t0 + t)i � hui2 (6)

Here h·i mean ensemble averaging. Since for the
system in study, the statistics is stationary and sys-
tem is thermalized, the ensemble averaging can be
replaced by average of all degrees of freedom {x},
further with vanishing hui, the normalized ACF is
given by

 (t) =
hu(t0) · u(t0 + t)i

hu2i (7)
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Figure 3: showing  (t), with a gaussian shown in
dotted line.

Studies on low dimensional chaotic systems
(both continuous system like lorenz, rossler, chua cir-

cuit or for discrete maps )2 have been done, has
shown an exponential decay for the ACF. Exact re-
sults for ACF could be derived only in special cases2.
Now for a many-body chaotic system, the normal-
ized ACF when computed numerically shows a well
behaved Gaussian  (t) = e
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t ⌧ 1, the taylor expansion could reveal the leading
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But considering the velocity as a time signal hav-
ing Power Spectral Density S(!) of a white noise
(with a ultraviolet cuto↵ ⇠ !0 in frequency domain),
implying that all timescales are almost equally ex-
cited till tgrid in evolution. By Wiener-Khinchin theo-
rem, the Auto Correlation Function becomes a Gaus-
sian.

Chaos in Thermalized fluid

Starting with a thermalized system (E(k) ⇠ k
2),

make an identical copy of it (denoted as u0) and the
latter is given a small perturbation u0 = u + �u at
t = 0. As a finite dimensional dynamical system, the
interest is in investigating the exponential separation
(if any) of their phase space trajectories of the system
in the limit of �u ! 0. The idea is to perturb in real
space locally to observe the spread of perturbation
within the system (analogous to Butterfly e↵ect). In-
compressibility condition dictates that the perturba-
tion also obeys it r·(�u) = 0. Thus the perturbation
field is taken as a curl of another vector, which decays
exponentially away from the point of perturbation to
admit a local e↵ect. With the center of perturbation
as origin,

�u = r⇥A, Ai = ✏0urmsr0e
� r2

2r20 (10)

where r0 =⇠ L
N , urms =

p
2E. The relative size of the

perturbation becomes of order �u
urms

⇠ ✏0 ⌧ 1 near the
center and decays rapidly for r � r0. The localized
perturbation �u(x, 0), at t = 0+, begins to delocal-
ize and a↵ect neighbouring regions. The decorelation
between the system spreads rapidly to the whole do-
main, owing to the presence of non-linear interaction
in the system. It is a reasonable expectation to con-
sider the average of decorelation h|�u|ir at distance r
from the site of perturbation and monitor the growth
in time. With that, the radial cross-corelation is de-
fined as
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Figure 4: showing radial cross-corelation vs time at
di↵erent 0

r
0 in a lin-log scale, clearly indicating an

exponential growth

In a many-body chaotic system, for a given r an
exponential growth in time with a exponent �(r). On
the other hand, at a given time t the de-corelation
spatially should be decreasing with increasing r .
Considering the dynamical system as a whole {u}
and its trajectory in its phase space, the total cross-
corelation could be defined as

�(t) =
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The lyapunov exponent defined in the theory of
dynamical systems could be restated here as

� = lim
✏0!0

lim
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t
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Figure 5: showing net cross-corelation vs time in a
lin-log scale, indicating an exponential growth with
exponent �, the dotted line shows �(t) calculated
from linearized equation

But as t ! 1, �(t) saturates as the trajectories are
constrained to the constant energy manifold which is
compact. As the spread is saturated, meaning the
systems have become completely decorelated to each
other, that is huu0i = hui hu0i = 0. Thus asymptot-
ically, both radial and net cross-corelation saturates
to 2E. These cross-corelation objects �(r, t),�(t)
are used to investigate chaos in thermalized fluid.

Growth of Perturbation

With the perturbation �u = u0 � u given in real
space, the equations (all fields are truncated) in real
space for u and �u, after eliminating pressure term
using incompressibility condition

@tui = �@j (uiuj) + @
3
ijk

Z
dyG (|x� y|)uj(y)uk(y)

(14)

@t�ui = �@j [(�uj)ui + (�ui)uj + (�ui)(�uj)] + (15)

@
3
ijk

Z
dy G (|x� y|) (2�ukuj + �uk�uj) (16)

Equation 16, is the complete equation for the evo-
lution of perturbation �u. From the parent equa-
tion, it has acquired both non-linear ((�u)2 terms)
and non-local e↵ects (last term in 16). Ignoring the
second order (�u)2 terms, the linearized equation for
�u is

@t�ui(x, t) ⇡ �uj@j�ui � �uj(@jui) + @iT (17)

T = 2@2
ij

Z
dy G (|x� y|) �uj(y)uk(y)

(18)

Linearized equation 18 is numerically solved in
spectral space using same algorithm as for u,u0.
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Recall the Quantum bound: �  T/~
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Many-body Chaos: The Euler Equation
Numerical Results

Decorrelator

Auto Corelation Function

The Auto Corelation Function (ACF) for a dynam-
ical system (defined below), depicts how it decore-
lates with a delayed copy of itself in time. The mix-
ing characteristics causes the ACF to decay to zero
asymptotically. For deterministic chaotic systems,
the splitting of corelations in time is further related
to the dynamics instability of chaotic trajectories2.
The ACF for a statistically stationary quantity u(t)
is defined as

 (t) = hu(t0) · u(t0 + t)i � hui2 (6)

Here h·i mean ensemble averaging. Since for the
system in study, the statistics is stationary and sys-
tem is thermalized, the ensemble averaging can be
replaced by average of all degrees of freedom {x},
further with vanishing hui, the normalized ACF is
given by

 (t) =
hu(t0) · u(t0 + t)i

hu2i (7)
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Figure 3: showing  (t), with a gaussian shown in
dotted line.

Studies on low dimensional chaotic systems
(both continuous system like lorenz, rossler, chua cir-

cuit or for discrete maps )2 have been done, has
shown an exponential decay for the ACF. Exact re-
sults for ACF could be derived only in special cases2.
Now for a many-body chaotic system, the normal-
ized ACF when computed numerically shows a well
behaved Gaussian  (t) = e
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But considering the velocity as a time signal hav-
ing Power Spectral Density S(!) of a white noise
(with a ultraviolet cuto↵ ⇠ !0 in frequency domain),
implying that all timescales are almost equally ex-
cited till tgrid in evolution. By Wiener-Khinchin theo-
rem, the Auto Correlation Function becomes a Gaus-
sian.

Chaos in Thermalized fluid

Starting with a thermalized system (E(k) ⇠ k
2),

make an identical copy of it (denoted as u0) and the
latter is given a small perturbation u0 = u + �u at
t = 0. As a finite dimensional dynamical system, the
interest is in investigating the exponential separation
(if any) of their phase space trajectories of the system
in the limit of �u ! 0. The idea is to perturb in real
space locally to observe the spread of perturbation
within the system (analogous to Butterfly e↵ect). In-
compressibility condition dictates that the perturba-
tion also obeys it r·(�u) = 0. Thus the perturbation
field is taken as a curl of another vector, which decays
exponentially away from the point of perturbation to
admit a local e↵ect. With the center of perturbation
as origin,

�u = r⇥A, Ai = ✏0urmsr0e
� r2

2r20 (10)

where r0 =⇠ L
N , urms =

p
2E. The relative size of the

perturbation becomes of order �u
urms

⇠ ✏0 ⌧ 1 near the
center and decays rapidly for r � r0. The localized
perturbation �u(x, 0), at t = 0+, begins to delocal-
ize and a↵ect neighbouring regions. The decorelation
between the system spreads rapidly to the whole do-
main, owing to the presence of non-linear interaction
in the system. It is a reasonable expectation to con-
sider the average of decorelation h|�u|ir at distance r
from the site of perturbation and monitor the growth
in time. With that, the radial cross-corelation is de-
fined as
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Figure 4: showing radial cross-corelation vs time at
di↵erent 0

r
0 in a lin-log scale, clearly indicating an

exponential growth

In a many-body chaotic system, for a given r an
exponential growth in time with a exponent �(r). On
the other hand, at a given time t the de-corelation
spatially should be decreasing with increasing r .
Considering the dynamical system as a whole {u}
and its trajectory in its phase space, the total cross-
corelation could be defined as

�(t) =
1
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The lyapunov exponent defined in the theory of
dynamical systems could be restated here as
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Figure 5: showing net cross-corelation vs time in a
lin-log scale, indicating an exponential growth with
exponent �, the dotted line shows �(t) calculated
from linearized equation

But as t ! 1, �(t) saturates as the trajectories are
constrained to the constant energy manifold which is
compact. As the spread is saturated, meaning the
systems have become completely decorelated to each
other, that is huu0i = hui hu0i = 0. Thus asymptot-
ically, both radial and net cross-corelation saturates
to 2E. These cross-corelation objects �(r, t),�(t)
are used to investigate chaos in thermalized fluid.

Growth of Perturbation

With the perturbation �u = u0 � u given in real
space, the equations (all fields are truncated) in real
space for u and �u, after eliminating pressure term
using incompressibility condition

@tui = �@j (uiuj) + @
3
ijk

Z
dyG (|x� y|)uj(y)uk(y)

(14)

@t�ui = �@j [(�uj)ui + (�ui)uj + (�ui)(�uj)] + (15)

@
3
ijk

Z
dy G (|x� y|) (2�ukuj + �uk�uj) (16)

Equation 16, is the complete equation for the evo-
lution of perturbation �u. From the parent equa-
tion, it has acquired both non-linear ((�u)2 terms)
and non-local e↵ects (last term in 16). Ignoring the
second order (�u)2 terms, the linearized equation for
�u is

@t�ui(x, t) ⇡ �uj@j�ui � �uj(@jui) + @iT (17)

T = 2@2
ij

Z
dy G (|x� y|) �uj(y)uk(y)

(18)

Linearized equation 18 is numerically solved in
spectral space using same algorithm as for u,u0.
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Many-body Chaos: The Euler Equation
Numerical Results

Decorrelator

Auto Corelation Function

The Auto Corelation Function (ACF) for a dynam-
ical system (defined below), depicts how it decore-
lates with a delayed copy of itself in time. The mix-
ing characteristics causes the ACF to decay to zero
asymptotically. For deterministic chaotic systems,
the splitting of corelations in time is further related
to the dynamics instability of chaotic trajectories2.
The ACF for a statistically stationary quantity u(t)
is defined as

 (t) = hu(t0) · u(t0 + t)i � hui2 (6)

Here h·i mean ensemble averaging. Since for the
system in study, the statistics is stationary and sys-
tem is thermalized, the ensemble averaging can be
replaced by average of all degrees of freedom {x},
further with vanishing hui, the normalized ACF is
given by

 (t) =
hu(t0) · u(t0 + t)i

hu2i (7)
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Figure 3: showing  (t), with a gaussian shown in
dotted line.

Studies on low dimensional chaotic systems
(both continuous system like lorenz, rossler, chua cir-

cuit or for discrete maps )2 have been done, has
shown an exponential decay for the ACF. Exact re-
sults for ACF could be derived only in special cases2.
Now for a many-body chaotic system, the normal-
ized ACF when computed numerically shows a well
behaved Gaussian  (t) = e
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But considering the velocity as a time signal hav-
ing Power Spectral Density S(!) of a white noise
(with a ultraviolet cuto↵ ⇠ !0 in frequency domain),
implying that all timescales are almost equally ex-
cited till tgrid in evolution. By Wiener-Khinchin theo-
rem, the Auto Correlation Function becomes a Gaus-
sian.

Chaos in Thermalized fluid

Starting with a thermalized system (E(k) ⇠ k
2),

make an identical copy of it (denoted as u0) and the
latter is given a small perturbation u0 = u + �u at
t = 0. As a finite dimensional dynamical system, the
interest is in investigating the exponential separation
(if any) of their phase space trajectories of the system
in the limit of �u ! 0. The idea is to perturb in real
space locally to observe the spread of perturbation
within the system (analogous to Butterfly e↵ect). In-
compressibility condition dictates that the perturba-
tion also obeys it r·(�u) = 0. Thus the perturbation
field is taken as a curl of another vector, which decays
exponentially away from the point of perturbation to
admit a local e↵ect. With the center of perturbation
as origin,

�u = r⇥A, Ai = ✏0urmsr0e
� r2

2r20 (10)

where r0 =⇠ L
N , urms =
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2E. The relative size of the

perturbation becomes of order �u
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⇠ ✏0 ⌧ 1 near the
center and decays rapidly for r � r0. The localized
perturbation �u(x, 0), at t = 0+, begins to delocal-
ize and a↵ect neighbouring regions. The decorelation
between the system spreads rapidly to the whole do-
main, owing to the presence of non-linear interaction
in the system. It is a reasonable expectation to con-
sider the average of decorelation h|�u|ir at distance r
from the site of perturbation and monitor the growth
in time. With that, the radial cross-corelation is de-
fined as
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Figure 4: showing radial cross-corelation vs time at
di↵erent 0

r
0 in a lin-log scale, clearly indicating an

exponential growth

In a many-body chaotic system, for a given r an
exponential growth in time with a exponent �(r). On
the other hand, at a given time t the de-corelation
spatially should be decreasing with increasing r .
Considering the dynamical system as a whole {u}
and its trajectory in its phase space, the total cross-
corelation could be defined as

�(t) =
1

V

Z

D
dx

1

2
|�u(x, t)|2 =

1

2

⌦
|�u|2

↵
(12)

The lyapunov exponent defined in the theory of
dynamical systems could be restated here as

� = lim
✏0!0

lim
t!1

1

t
ln |�(t)| (13)
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Figure 5: showing net cross-corelation vs time in a
lin-log scale, indicating an exponential growth with
exponent �, the dotted line shows �(t) calculated
from linearized equation

But as t ! 1, �(t) saturates as the trajectories are
constrained to the constant energy manifold which is
compact. As the spread is saturated, meaning the
systems have become completely decorelated to each
other, that is huu0i = hui hu0i = 0. Thus asymptot-
ically, both radial and net cross-corelation saturates
to 2E. These cross-corelation objects �(r, t),�(t)
are used to investigate chaos in thermalized fluid.

Growth of Perturbation

With the perturbation �u = u0 � u given in real
space, the equations (all fields are truncated) in real
space for u and �u, after eliminating pressure term
using incompressibility condition

@tui = �@j (uiuj) + @
3
ijk

Z
dyG (|x� y|)uj(y)uk(y)

(14)

@t�ui = �@j [(�uj)ui + (�ui)uj + (�ui)(�uj)] + (15)

@
3
ijk

Z
dy G (|x� y|) (2�ukuj + �uk�uj) (16)

Equation 16, is the complete equation for the evo-
lution of perturbation �u. From the parent equa-
tion, it has acquired both non-linear ((�u)2 terms)
and non-local e↵ects (last term in 16). Ignoring the
second order (�u)2 terms, the linearized equation for
�u is

@t�ui(x, t) ⇡ �uj@j�ui � �uj(@jui) + @iT (17)

T = 2@2
ij

Z
dy G (|x� y|) �uj(y)uk(y)

(18)

Linearized equation 18 is numerically solved in
spectral space using same algorithm as for u,u0.
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Short time 
Long time

�(t) ⇠ e�t

�(t) ⇠ E/NG

Predictions



The Classical Bound of the Lyapunov Exponent 
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T

3D Euler-1D Burgers Combined Data
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Lyapunov Exponent and Decorrelation Time: 3D Euler 

Autocorrelation function (3D Euler)

C(t) =
hvth(x, t0) · vth(x, t0 + t)i

hvth2i
=) ⌧



Autocorrelation Function: 3D Euler

Fully Thermalised

Largest scales not yet thermalised

Murugan, Kumar, Bhattacharjee, and Ray, in preparation (see also:  ArXiv: 1906.00016)

C(t) =
hvth(x, t0) · vth(x, t0 + t)i

hvth2i
=) ⌧



Fixed N

Fixed T

Lyapunov Exponent and Decorrelation Time: 3D Euler 

Murugan, Kumar, Bhattacharjee, and Ray, in preparation (see also:  ArXiv: 1906.00016)



• Spin Systems: Long-range interactions [Murugan, Ray, and Bhattacharjee]

• Hydrodynamics: Gross-Pitaevskii equation [Shukla, Bhattacharjee, and Ray]

• Dynamical Systems: Shell models [Bhattacharjee and Ray]

• Driven-Dissipative Systems: Active Turbulence [Singh, Mukherjee, James, and Ray] 

Perspective

Ongoing Work
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Suppressing thermalization and constructing weak solutions in truncated inviscid equations
of hydrodynamics: Lessons from the Burgers equation
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Finite-dimensional, inviscid equations of hydrodynamics, obtained through a Fourier-Galerkin projection,
thermalize with an energy equipartition. Hence, numerical solutions of such inviscid equations, which typically
must be Galerkin-truncated, show a behavior at odds with the parent equation. An important consequence of this
is an uncertainty in the measurement of the temporal evolution of the distance of the complex singularity from
the real domain leading to a lack of a firm conjecture on the finite-time blow-up problem in the incompressible,
three-dimensional Euler equation. We now propose, by using the one-dimensional Burgers equation as a testing
ground, a numerical recipe, named tyger purging, to arrest the onset of thermalization and hence recover the
true dissipative solution. Our method, easily adapted for higher dimensions, provides a tool to not only tackle
the celebrated blow-up problem but also to obtain weak and dissipative solutions—conjectured by Onsager and
numerically elusive thus far—of the Euler equation.

DOI: 10.1103/PhysRevResearch.2.033202

Introduction. Nonlinear, partial differential equations of
hydrodynamics, such as the inviscid one-dimensional Burgers
or three-dimensional Euler equations, are often studied, nu-
merically and theoretically, by projecting them onto a Fourier
subspace with a finite number of modes bounded by a (large)
wave number KG. This projection (defined precisely later),
known as a Galerkin projection, ensures that unlike the parent
partial differential equation (PDE) which has an infinite num-
ber of degrees of freedom, the Galerkin-truncated equation
is constrained to have only finitely many Fourier modes.
Consequently, the resulting finite-dimensional, inviscid equa-
tions of hydrodynamics, such as the three-dimensional (3D)
incompressible Euler equations or the one-dimensional (1D)
Burgers equation, conserve both energy and phase space,
leading to solutions which thermalize in a finite time. These
solutions are thus completely different from the solutions
of the actual partial differential equation, from which they
derive, with infinite degrees of freedom [1,2].

In recent years however, this area has received renewed
interest [3]—spanning studies in turbulence [4– 9] and bot-
tlenecks and hyperviscosity [10– 12] to problems of cross
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correlators in condensed matter physics [13]—beginning with
the work of Majda and Timofeyev [14] on the thermaliza-
tion of the Galerkin-truncated, 1D inviscid Burgers equation.
Subsequently, Cichowlas et al. [15], through state-of-the-art
direct numerical simulations (DNSs), showed the existence
of similar thermalized states in the Galerkin-truncated 3D
incompressible Euler equation (see, also, Ref. [16]). How-
ever the precise mechanism by which solutions thermalize
was discovered later by Ray et al. [17], who showed that
thermalization was triggered through a resonant-wave-like
interaction leading to localized structures christened tygers
(see also Refs. [18– 20]).

Understanding Galerkin-truncated systems assumes a spe-
cial importance when numerically studying inviscid equations
for the problem of finite-time blow-up of the incompressible
Euler equation (under suitable conditions). A way to con-
jecture for or against a finite-time singularity is to numeri-
cally solve the Euler equation and measure the width of the
analyticity strip δ [21], i.e., the distance to the real domain
of the nearest complex singularity. By assuming analyticity,
at least up to a hypothetical time of blow-up t∗, this proce-
dure reduces to measuring the Fourier modes of the velocity
field ûk ∼ exp [− δ(t )k] (ignoring vectors for convenience),
for large wave numbers k, and thence, δ as a function of time
t . Therefore, a numerically compelling proof for finite-time
blow-up is to show δ(t ) → 0 in a finite time.

Simple as it sounds, such an approach unfortunately runs
into a severe problem in its implementation. To solve such
equations on the computer, one has to make them finite-
dimensional through a Galerkin truncation. Solutions to such
truncated equations thermalize, beginning at small scales (or
large wave numbers k) in a finite time. Hence, asymptotically
at large wave numbers the Fourier modes of the velocity field
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Numerically obtaining weak (dissipative) solutions from Galerkin-truncated inviscid equations


