Noninteracting particles in a harmonic trap with a stochastically driven center

Sanjib Sabhapandit
Raman Research Institute, Bangalore

Satya N. Majumdar
LPTMS, CNRS, Université Paris-Sud, Université Paris-Saclay, Orsay, France
arXiv:2404.02480

Main message of the talk

Stochastic modulation of a trap
center generates strong correlations between independent particles in a harmonic trap.

System of interacting particles in equilibrium

- Energy function associated with a given configuration $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$

$$
E\left[\left\{x_{i}\right\}\right]=\sum_{i=1}^{N} U\left(x_{i}\right)+\sum_{i \neq j} U_{2}\left(x_{i}, x_{j}\right)+\sum_{i \neq j \neq k} U_{3}\left(x_{i}, x_{j}, x_{k}\right)+\cdots
$$

- The joint probability density function (JPDF)

$$
P_{\mathrm{eq}}\left[\left\{x_{i}\right\}\right]=\frac{1}{Z_{N}} e^{-\beta E\left[\left\{x_{i}\right\}\right]}
$$

Micro and Macro observables

- Average density profile
- Correlation function: $C_{i, j}=\left\langle x_{i} x_{j}\right\rangle-\left\langle x_{i}\right\rangle\left\langle x_{j}\right\rangle$
- Extreme value statistics and order statistics
- Spacing/gap distribution (between successive positions)
- Full counting statistics: \# particles in a given interval, e.g., in $[-L, L]$

Noninteracting Limit: $U_{2}=U_{3}=\cdots=0$

- The JPDF: $P_{\mathrm{eq}}\left[\left\{x_{i}\right\}\right]=\prod_{i=1}^{n} p\left(x_{i}\right) \quad$ where $\quad p(x)=\frac{e^{-\beta U(x)}}{\int_{-\infty}^{\infty} e^{-\beta U\left(x^{\prime}\right)} d x^{\prime}}$
- $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ are IID random variables.
- For this ideal gas, all the observables can be computed exactly.

Interacting systems in equilibrium

- The joint distribution is not factorable \Longrightarrow the observables are very hard to compute.
- One example, where the observables can be computed is the Riesz gas:

$$
E\left[\left\{x_{i}\right\}\right]=\frac{1}{2} \sum_{i} x_{i}^{2}+\frac{J \operatorname{sgn}(\mathrm{k})}{2} \sum_{j \neq i} \frac{1}{\left|x_{i}-x_{j}\right|^{k}} \text { where } k>-2
$$

$$
k=2: \text { Calogero-Moser model, } k \rightarrow 0^{+}: \text {log-gas, } k=-1: \text { Jellium model }
$$

[Agarwal, Dhar, Kulkarni, Kundu, Kethepalli, Santra, SS, Majumdar, and other collaborators]

Nonequilibrium systems

- When a many-body system is subjected to an external stochastic drive that breaks the time-reversal symmetry, one may reach a NESS.
- The stationary joint probability distribution $P_{\mathrm{st}}\left(x_{1}, x_{2}, \ldots, x_{N}\right)$ is not a priori given and is often difficult to obtain explicitly.
- Even when this stationary joint distribution is known explicitly, computing the observables is usually extremely hard for strongly interacting out-ofequilibrium systems - there is no general prescription.

A class of models (CIID structure)

- The JPDF: $\quad P_{\mathrm{st}}\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\int_{-\infty}^{\infty} d u h(u) \prod_{j=1}^{N} p\left(x_{j} \mid u\right)$
- Model-I: Simultaneous resetting of independent Brownian motions:
$h(u)=r e^{-r u}$ and $p(x \mid u)=\frac{e^{-x^{2} /(4 D u)}}{\sqrt{4 \pi D u}} \quad$ [Biroli, Larralde, Majumdar, Schehr (2023, 2024)]
- Model-II: Independent Brownian particles in a harmonic trap where the stiffness undergoes a dichotomous process, $\mu=\mu_{1} \leftrightarrow \mu_{2}$: [Biroli, Kulkarni, Majumdar, Schehr (2024)] $h(u)=C u^{R_{1}-1}(1-u)^{R_{2}-1} V(u)$ and $p(x \mid u)=\frac{e^{-x^{2} /(2 V(u))}}{\sqrt{2 \pi V(u)}}$ with $V(u)=D\left[\frac{1-u}{\mu_{1}}+\frac{u}{\mu_{2}}\right]$

A new class of analytically solvable models

- Consider a system of N noninteracting particles on a line in a harmonic $\operatorname{trap} U(x)=\frac{1}{2} \mu[x-z(t)]^{2} \Longrightarrow$ Energy: $E\left[\left\{x_{i}\right\}, t\right]=\sum_{i=1}^{N} U\left(x_{i}\right)$
. Langevin equation: $\frac{d x_{i}}{d t}=-\mu\left[x_{i}-z(t)\right]+\sqrt{2 D} \eta_{i}(t)$
- The trap center $z(t)$ undergoes a bounded stochastic motion, i.e., $\langle | z(t)\rangle \sim O(1)$, does not grow with time.

Stationary joint probability density function

- For general stochastic drive $z(t)$, the stationary JPDF has the CIID structure:
$P_{\mathrm{st}}\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\int_{-\infty}^{\infty} d u h(u) \prod_{j=1}^{N} p\left(x_{j} \mid u\right)$
where $\quad p\left(x_{j} \mid u\right)=\frac{\sqrt{\mu}}{\sqrt{2 \pi D}} \exp \left(-\frac{\mu\left(x_{j}-u\right)^{2}}{2 D}\right)$ and
$h(u)$ is the stationary PDF of a random variable u that evolves via the Langevin equation: $\frac{d u}{d t}=-\mu u+\mu z(t)$
- Given this CIID structure, we can compute the asymptotic large N behavior of all the observables mentioned in terms of the single function $h(u)$.

Representative examples

Telegraphic drive

- $\left(\mu / v_{0}\right) z(t)=\sigma(t)= \pm 1$ is a dichotomous telegraphic noise that switches with a rate γ.
- Langevin equation: $\frac{d u}{d t}=-\mu u+v_{0} \sigma(t)$ [RTP in a harmonic trap]
- Steady-state distribution: $h(u)=\frac{2^{1-2 \nu}}{B(\nu, \nu)} \frac{\mu}{v_{0}}\left[1-\left(\frac{\mu u}{v_{0}}\right)^{2}\right]^{\nu-1}, u \in\left[-\frac{v_{0}}{\mu}, \frac{v_{0}}{\mu}\right] \quad$ with $\quad \nu=\frac{\gamma}{\mu}$.

Ornstein-Uhlenbeck drive: $\frac{d z}{d t}=-\frac{z}{\tau_{0}}+\sqrt{2 D_{0}} \xi(t)$
. Steady-state distribution: $h(u)=\sqrt{\frac{1+\mu \tau_{0}}{2 \pi \mu \tau_{0}^{2} D_{0}}} \exp \left(-\frac{\left(1+\mu \tau_{0}\right) u^{2}}{2 \mu \tau_{0}^{2} D_{0}}\right)$

Average density profile

$$
\rho(x)=\int_{-\infty}^{\infty} d u h(u) p(x \mid u)=\frac{\sqrt{\mu}}{\sqrt{2 \pi D}} \int_{-\infty}^{\infty} d u h(u) \exp \left(-\frac{\mu(x-u)^{2}}{2 D}\right)
$$

Example: $\left(\mu / v_{0}\right) z(t)=\sigma(t)= \pm 1$ is a dichotomous noise

Correlation function

$$
C_{i, j}=\left\langle x_{i} x_{j}\right\rangle-\left\langle x_{i}\right\rangle\left\langle x_{j}\right\rangle=\operatorname{Var}(u)+\delta_{i, j} \frac{D}{\mu}
$$

where

$$
\operatorname{Var}(u)=\left\langle u^{2}\right\rangle-\langle u\rangle^{2}=\int_{-\infty}^{\infty} u^{2} h(u) d u-\left[\int_{-\infty}^{\infty} u h(u) d u\right]^{2}
$$

Order statistics

We first arrange the positions $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ in descending order $\left\{M_{1}>M_{2}>\cdots>M_{N}\right\}$ such that

$$
M_{1}=\max \left\{x_{1}, x_{2}, \ldots, x_{N}\right\}, \quad M_{N}=\min \left\{x_{1}, x_{2}, \ldots, x_{N}\right\}, \text { and }
$$

M_{k} represents the position of the k-th particle from the right.
Prob. $\left[M_{k}=w\right] \simeq h\left(w-l_{k}\right)$ where $l_{k} \simeq \begin{cases}\sqrt{\frac{2 D}{\mu}} \operatorname{erfc}^{-1}(2 \alpha) & \text { when } \frac{k}{N}=\alpha \sim O(1) \\ \sqrt{\frac{2 D}{\mu} \ln N} & \text { when } k \sim O(1)\end{cases}$

Example of order statistics for dichotomous drive

$$
\left(\mu / v_{0}\right) z(t)=\sigma(t)= \pm 1
$$

Gap statistics

$\operatorname{Prob} .\left(d_{k}=g\right)=\int_{-\infty}^{\infty} d u h(u) \operatorname{Prob} .\left(M_{k}(u)-M_{k+1}(u)=g\right)$

$$
\begin{aligned}
& \text { Prob. }\left(d_{k}=g\right) \simeq \frac{1}{\lambda_{N}} \exp \left(-\frac{g}{\lambda_{N}}\right) \\
& \lambda_{N} \simeq \begin{cases}{\left[\frac{N \sqrt{\mu}}{\sqrt{2 \pi D}} \exp \left(-\left[\operatorname{erfc}^{-1}(2 \alpha)\right]^{2}\right)\right]^{-1} \quad \text { when } \frac{k}{N}=\alpha \sim O(1)} \\
\sqrt{\frac{D}{2 \mu k^{2}}} \frac{1}{\sqrt{\ln N}} & \text { when } k \sim O(1)\end{cases}
\end{aligned}
$$

Full counting statistics

$P\left(N_{L}, N\right) \simeq \frac{1}{N} H\left(\frac{N_{L}}{N}\right)$ where $H(\kappa)=\sqrt{\frac{2 \pi D}{\mu}} h[u(\kappa)] \frac{\exp \left(\frac{\mu}{2 D}\left[L^{2}+[u(\kappa)]^{2}\right]\right)}{\sinh \left(\frac{\mu L}{D} u(\kappa)\right)} \sim \frac{1}{\sqrt{\kappa_{\max }-\kappa}}$ as $\kappa \rightarrow \kappa_{\max }=q_{L}(0)$
$u(\kappa)=q_{L}^{-1}(\kappa)$ with $q_{L}(u)=\frac{1}{2}\left(\operatorname{erf}\left[\frac{\sqrt{\mu}(L-u)}{\sqrt{2 D}}\right]+\operatorname{erf}\left[\frac{\sqrt{\mu}(L+u)}{\sqrt{2 D}}\right]\right)$
For dichotomous drive:

Concivions

- Stochastic modulation of a trap center generates strong correlations between independent particles in a harmonic trap.
- The stationary state:

$$
P_{\mathrm{st}}\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\int_{-\infty}^{\infty} d u h(u) \prod_{j=1}^{N} p\left(x_{j} \mid u\right)
$$

- CIID structure allows the analytical computation of several observables in a strongly correlated system.

