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Main message of the talk

Stochastic modulation of a trap 
center generates strong correlations 
between independent particles 
in a harmonic trap.
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System of interacting particles in equilibrium

• Energy function associated with a given configuration  

 


• The joint probability density function (JPDF) 

{x1, x2, …, xN}

E[{xi}] =
N

∑
i=1

U(xi) + ∑
i≠j

U2(xi, xj) + ∑
i≠j≠k

U3(xi, xj, xk) + ⋯

Peq[{xi}] =
1
ZN

e−β E[{xi}]



Micro and Macro observables

• Average density profile


• Correlation function: 


• Extreme value statistics and order statistics


• Spacing/gap distribution (between successive positions)


• Full counting statistics: # particles in a given interval, e.g., in   

Ci,j = ⟨xixj⟩ − ⟨xi⟩⟨xj⟩

[−L, L]



Noninteracting Limit:  U2 = U3 = ⋯ = 0

• The JPDF: 


•  are IID random variables.


• For this ideal gas, all the observables can be computed exactly.

Peq[{xi}] =
n

∏
i=1

p(xi) where p(x) =
e−βU(x)

∫ ∞
−∞

e−βU(x′ ) dx′ 

{x1, x2, …, xN}



Interacting systems in equilibrium

• The joint distribution is not factorable  the observables are very hard 

to compute.


•  One example, where the observables can be computed is the Riesz gas: 

  where  

 Calogero-Moser model, : log-gas, : Jellium model

⟹

E[{xi}] =
1
2 ∑

i

x2
i +

Jsgn(k)
2 ∑

j≠i

1
|xi − xj |

k k > − 2

k = 2 : k → 0+ k = − 1

[Agarwal, Dhar, Kulkarni, Kundu, Kethepalli, Santra, SS, Majumdar, and other collaborators]



Nonequilibrium systems
• When a many-body system is subjected to an external stochastic drive 

that breaks the time-reversal symmetry, one may reach a NESS. 


• The stationary joint probability distribution  is not a priori 

given and is often difficult to obtain explicitly. 


• Even when this stationary joint distribution is known explicitly, computing 
the observables is usually extremely hard for strongly interacting out-of-
equilibrium systems  —  there is no general prescription.

Pst(x1, x2, …, xN)



A class of models (CIID structure)

• The JPDF:     


• Model-I: Simultaneous resetting of independent Brownian motions: 

  and     [Biroli, Larralde, Majumdar, Schehr (2023, 2024)]


• Model-II:  Independent Brownian particles in a harmonic trap where the stiffness undergoes 
a dichotomous process, :      [Biroli, Kulkarni, Majumdar, Schehr (2024)] 

 and   with 

Pst(x1, x2, …, xN) = ∫
∞

−∞
du h(u)

N

∏
j=1

p(xj |u)

h(u) = re−ru p(x |u) =
e−x2/(4Du)

4πDu

μ = μ1 ↔ μ2

h(u) = C uR1−1(1 − u)R2−1 V(u) p(x |u) =
e−x2/(2V(u))

2πV(u)
V(u) = D [ 1 − u

μ1
+

u
μ2 ]

What are the necessary and sufficient conditions for a CIID structure?



A new class of analytically solvable models

• Consider a system of   noninteracting particles on a line in a harmonic 

trap       Energy:   


• Langevin equation: 


• The trap center  undergoes a bounded stochastic motion, 
i.e., , does not grow with time.

N

U(x) = 1
2 μ[x − z(t)]2 ⟹ E[{xi}, t] =

N

∑
i=1

U(xi)

dxi

dt
= − μ[xi − z(t)] + 2D ηi(t)

z(t)
⟨ |z(t) |⟩ ∼ O(1)
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Stationary joint probability density function
• For general stochastic drive , the stationary JPDF has the CIID structure: 

 


where          and 


 is the stationary PDF of a random variable  that evolves via the Langevin 

equation:  


• Given this CIID structure, we can compute the asymptotic large  behavior of all 
the observables mentioned in terms of the single function .

z(t)

Pst(x1, x2, …, xN) = ∫
∞

−∞
du h(u)

N

∏
j=1

p(xj |u)

p(xj |u) =
μ

2πD
exp (−

μ(xj − u)2

2D )
h(u) u

du
dt

= − μ u + μ z(t)

N
h(u)



Representative examples
Telegraphic drive 

•   is a dichotomous telegraphic noise that switches with a rate .


• Langevin equation:    [RTP in a harmonic trap]


•
Steady-state distribution:  


Ornstein-Uhlenbeck drive:     


• Steady-state distribution:  

(μ/v0) z(t) = σ(t) = ± 1 γ

du
dt

= − μu + v0 σ(t)

h(u) =
21−2ν

B(ν, ν)
μ
v0

1 − ( μu
v0 )

2
ν−1

, u ∈ [−
v0

μ
,

v0

μ ] with ν =
γ
μ

.

dz
dt

= −
z
τ0

+ 2D0 ξ(t)

h(u) =
1 + μτ0

2πμτ2
0D0

exp (−
(1 + μτ0) u2

2μτ2
0D0 )



Average density profile
ρ(x) = ∫

∞

−∞
du h(u) p(x |u) =

μ

2πD ∫
∞

−∞
du h(u) exp (−

μ(x − u)2

2D )

Theoretical

Simulation
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Correlation function

Ci,j = ⟨xixj⟩ − ⟨xi⟩⟨xj⟩ = Var(u) + δi,j
D
μ

Var(u) = ⟨u2⟩ − ⟨u⟩2 = ∫
∞

−∞
u2 h(u) du − [∫

∞

−∞
u h(u) du]

2

where 



Order statistics
We first arrange the positions  in descending order  
such that  


,     and   
 represents the position of the -th particle from the right.


   where   

{x1, x2, …, xN} {M1 > M2 > ⋯ > MN}

M1 = max{x1, x2, …, xN} MN = min{x1, x2, …, xN},
Mk k

Prob . [Mk = w] ≃ h(w − lk) lk ≃

2D
μ

erfc−1(2α) when
k
N

= α ∼ O(1)

2D
μ

ln N when k ∼ O(1)



Example of order statistics for dichotomous drive
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Gap statistics
-x
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Prob . (dk = g) = ∫
∞

−∞
du h(u) Prob . (Mk(u) − Mk+1(u) = g)

Prob . (dk = g) ≃
1
λN

exp (−
g
λN )

λN ≃
[

N μ

2πD
exp( − [erfc−1(2α)]2)]

−1

when
k
N

= α ∼ O(1)

D
2μk2

1

ln N
when k ∼ O(1)

For dichotomous drive



Full counting statistics
  where 


   with   

P(NL, N) ≃
1
N

H ( NL

N ) H(κ) =
2πD

μ
h[u(κ)]

exp ( μ
2D [L2 + [u(κ)]2])

sinh ( μL
D u(κ))

∼
1

κmax − κ
as κ → κmax = qL(0)

u(κ) = q−1
L (κ) qL(u) =

1
2 (erf [

μ(L − u)

2D ] + erf [
μ(L + u)

2D ])
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Conclusions
• Stochastic modulation of a trap center generates 

strong correlations between independent particles 
in a harmonic trap.


• The stationary state: 




• CIID structure allows the analytical computation of 
several observables in a strongly correlated system.

Pst(x1, x2, …, xN) = ∫
∞

−∞
du h(u)

N

∏
j=1

p(xj |u)
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