Quantum meets Topology: Quantum Hall
Effect
ICTS, January 2025, 100 years

Perhaps, the most fundamental constant in quantum mechanics (CGS units, NOT Si) :

Fine structure constant a = e?/hc ~ 1/137 (0.007 297 352 5693)
: : : : e

It is protected as an invariant by topology
although conductance is a macroscopic
property of 10* electrons

Indeed electrical conductance has the dimension ot velocity

This invariant ‘velocity’ac/ 21~1/26k-ohm is quantum Hall conductance (1980)
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case of repulsive scatterers.* This means that electrons which fully occupy impurity bands do
not contribute to the Hall current, while those which occupy the main Landau level give rise to

the same Hall current as that obtained when all i.e. 1/2z/% electrons of the Landau level move

freely. 1975 the effects of higher Born scattering does not vanish

Presence of individual delta-function quenched impurities does not affect the Hall conductivity— isolated
bound states form, but the remaining free electrons carry extra current exactly compensating for this

IQHE is a topological phase
protected by a gap and
characterized by the Chern
number invariant— the first and
the prototypical example of SPT in
physics (also the only decisive one)
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‘ These T=0 topologlcal theories establish QHE as Chern-invariant but are useless
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CS theory asserts that a T=0 quantization is guaranteed for infinite systems, but

says NOTHING about its experimental observability at finite
temperature/disorder-- THE GAP IS THE TOPOLOGICAL PROTECTION

So, the theory ‘explains’ quantization after the fact, but does not predict it
because it provides no technique for calculating corrections!

Also, spectral gap is not sufficient, one must have a transport gap for the
chemical potential to move, which necessitates having some disorder

Gap ~ 50-500K
Disorder < 1K
Magnetic length (~ 10 nm)<< L (cm)
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Robust quantization
and topology not
observed yet in spite of
huge research efforts
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Topo invariant:
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Gap ~ 100-500 mK
Disorder™ 1-20K
Coherence length>>L
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T-dependence? Disorder dependence? Cyclotron energy dependence? Size dependence? LL, u?
Reconciling B=0 Anderson localization with the existence of IQHE?
None of these relevant questions can be addressed within the universal CS theories!



How does the QA plateau width dependon I, 1 ,and V?

Increase/Decrease/Constant/No idea ? (3/3/3/1)
Can strong disorder destroy IQHE though a quantum phase transition at any v ?

How is the B=0 limit of orthogonal class reached in IQHE?
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Sit on a plateau: Increase disorder, temperature

What happens to the plateau width?

What happens when the disorder is very strong?
The problem is nontrivial even if it is single
particle physics

Topology, localization, I, w, K T,L:many scales
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(i)
Deceptively simple Hamiltonian with
chirality/topology hidden as constraints
QHE is a nonperturbative topological effect
H can be diagonalized directly
A percolation network model appropriate
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Exact T=0 finite size calculations for the two lowest Landau levels
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T=0: The QHE plateau decreases continuously with increasing disorder with the LLL extended
state moving up in energy with increasing disorder: Strong disorder (>2w ) ‘destroys’ QHE




Conductance
peak
associated
with the
extended state
at LL center
shows scaling
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FIG. 5. (Left) The scaling of the conductance peak demon-
strating approximated collapse for the w = 0.41 disorder case.
We use the exponent o = 2.609 from Ref. 35. (Right) The
width o of the unscaled Gaussian calculated by fitting log G
by (v — v.)?. Resulting scaling exponents are given in the
inset compared with o = o™, denoted by the horizontal line.
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Semiclassical percolation network theory for IQHE including both disorder and
temperature: The main effect of finite T is activation of carriers into extended states
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GaAs 1981
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-Marv Cage (1987) NIST: “Widths decrease with
lincreasing T. They also decrease with increasing
mobility. Widths disappear at high mobilties, and
also shrink for very low mobilities.”

We explain all of this—universal CS theory cannot

IQHE difficult to achieve in better
samples!!
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systems?

Can 1 /rrc occur jor o=v ana/or imrataace

Yes: All we need are 2D flat band, topology
Spontaneous breaking of time reversal invariance

-Chern-insulators and FCI, QAHE/FQAHE

|24 Selected for a Viewpoint in Physics

week ending

PRL 106, 236803 (2011) PHYSICAL REVIEW LETTERS 10 JUNE 2011
In the presence interparticle

Active huge ] . interactions, these models lead
current subject Nearly Flatbands with Nontrivial Topology to Abelian and non-Abelian

with many | : | A fractionalChern insulators.

papers in Kai Sun,” Zhengcheng Gu,” Hosho Katsura,” and S. Das Sarmd we test with hardcore bosons at
2023-25 in - 1/3 filling, and

experiment Chern number arising from the band Berry curvature N 4 fractional quantum Hall state is
and theory PHYSICAL REVIEW B 86, 241112(R) (2012) gdsenved:

Topological flat band models with arbitrary Chern numbers

ab | r | ‘) . 1 ] .l
Shuo Yane.! Zhene-Cheng Gu.2 Kai Sun.! and S. Das Sarma

1

As the strength of disorder increases, the
FCI/FQH phase turns into a compressible
Fermi liquid and then into a topologically
trivial insulator.




Topology and Quantum Mechanics
will continue their synergy, becoming
a single subject in physics, and will
also lead to the first practical fully
quantum machine: Topological
Quantum Computer (QHE is the just
the beginning of this journey)




