
On the sticky particle solutions to the
pressureless Euler system in general dimension

Sara Daneri
(work in collaboration with S. Bianchini)

Turbulence: Problems at the Interface of Mathematics and Physics
07 Dec 2020

Sara Daneri(work in collaboration with S. Bianchini) On sticky particle solutions in general dimension



The pressureless Euler system

We consider the pressureless Euler system in [0, 1] × Rd , d ≥ 2
∂tρ + div(ρv) = 0

∂t (ρv) + div(ρv ⊗ v) = 0

ρ|t=0 = ρ0, v|t=0 = v0

(1)

where ρ is the distribution of particles and v is their velocity.

In particular we are interested in sticky particle solutions, namely
solutions to (1) which satisfy the following adhesion principle: if two
particles of fluid do not meet, they move freely keeping constant velocity,
otherwise they join with velocity given by the balance of momentum.
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Finite particle solutions

Figure: In the first and in the third figure the total kinetic energy is dissipated. In
the second figure dissipation is violated. The third figure depicts a sticky particle
solution. In particular, this is the maximally dissipating solution.
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Finite sticky particle solutions

Given N particles

Pi(t) := (mi , xi(0), vi(0)), i = 1, . . . ,N

one can always find a sticky particle solution in the following way.
Particles evolve as ẋi(t) = vi(t), where vi(t) = vi(0) up to the first time t̄
such that there exists j , i such that xj (̄t) = xi (̄t). Then, defining

Ji(t) = {j : xj(t) = xi(t)}

set

vi(t) =

∑
j∈Ji(t) mjvj (̄t−)∑

j∈Ji(t) mj
.

Then the particles xj(t) with j ∈ Ji(t) join xj(t) after collision, the sets Ji(t)
are nondecreasing and their cardinality has a discontinuity in at most N
times.
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The one-dimensional case

In dimension d = 1, the collision of particles is a stable condition: slightly
perturbing the initial position or velocity particles are going to collide.

I Grenier and indipendently E, Rykohv and Sinai proved existence of
meaure valued solutions as limits of finite sticky particle solutions.

I Brenier and Grenier characterized the weak solutions ρ in terms of
their cumulative distribution function Mρ(x) = ρ((−∞, x]) proving
that M(t , ·) = Mρt (·) is the unique monotone entropy solution of the
scalar conservation law

∂tM + ∂xA(M) = 0,

where A is a continuous flux function depending on ρ0 and v0. In
particular one obtains the L1-stability and convergence of numerical
schemes and vanishing viscosity solutions.
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A variational viewpoint

I Let Xρ be the pseudo-inverse of the distribution function Mρ. Xρ is a
monotone function.
Natile and Savaré proved that the solution Xρt (found by
approximation and convergence through Lipschitz estimates in the
Wasserstein space) admits the following characterization

Xρt = PK (Xρ0 + tV0), V0 = v0 ◦ Xρ0 ,

d
dt

Xρt + ∂IK (Xρt ) 3 V0, t
d
dt

Xρt + ∂IK (Xρt ) 3 Xρt − Xρ0 ,

IK and PK denoting respectively the indicator function and the
projection operator on the cone of monotone maps K . The velocity
vt is uniquely determined by the relation d

dt Xρt = vt ◦ Xρt .
I Cavalletti, Sedjro and Westdickenberg gave an alternative proof of

the existence of sticky particle solutions using directly the above
characterization.
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The multi-dimensional case

The main problem in a stability result that would allow to find sticky
particle solutions from general initial data starting from finite particle
solutions is that the collision condition is not stable if d ≥ 2.
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Counterexamples to existence in dimension d ≥ 2
Bressan and Nguyen produced the following counterexample to
existence of sticky particle solutions in dimension d = 2. First, construct
the following one-dimensional sticky solution.
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Figure: A sticky solution containing infinitely many particles moving on the x-axis
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One gets the following two-dimensional counterexample.
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Figure: If the white particle Xk hits the black particle xk at time τk and sticks to it
removing it from the x-axis, then it means than no particle xj with j > k has been
hit and by white particles and removed from the x-axis. On the other hand, if no
white particle Xj with j > k hits a target particle xj and removes it from the x-axis,
then the white particle Xk+1 hits its target.
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Counterexamples to uniqueness in dimension d ≥ 2

Bressan and Nguyen produced the following counterexample to
uniqueness of sticky particle solutions in dimension d = 2.

*

m
1

m
0 m

m

m m

m

m

m

m

m

1

2

2 3

4

5

3

4

6

*
*

*

*

Sara Daneri(work in collaboration with S. Bianchini) On sticky particle solutions in general dimension



A variational scheme for measure-valued solutions

Cavalletti, Sedjro and Westdickenberg introduced a variational in time
discretization in the spirit of minimizing movements scheme and show, in
dimension d ≥ 2, the existence of Young-measure solutions to the
pressureless Euler system and to the full compressible Euler system.

For the pressureless Euler system the approximating discrete in time
sequence is sticky, but no sticky particle property for the limit trajectories
is provided.
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Main questions

I Does there exist a “large” set of initial data for which the Cauchy
problem for the pressureless Euler system in dimension d ≥ 2 in the
class of sticky particle solutions is well-posed?

I How large is the dissipation of such sticky particle solutions? Do
they fulfil a maximal dissipation criterion?
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Dissipative solutions

In order to answer the previous questions, we will relax the notion of
sticky particle solution allowing that particles meet without interacting,
namely without changing their speed.

However, if particles interact at some time they will start to move with
velocity given by the balance of momentum and they will stick together
after that time.

The relaxing is then due to the fact that the condition of passing trough
the same point (t , x) does not mean that the particles are interacting.

We will call such solutions dissipative solutions.
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A Lagrangian notion of solution

In order to encode the sticky/dissipative property for general solutions we
use a lagrangian notion of solution.
Define the space of curves with finite energy

Γ :=

{
γ ∈ W1,2

(
(−1, 1),Rd

)
: γ̇x(−1,0) constant

}
.

with a metric dΓ which metrizes the strong L2 topology on W1,2-bounded
sets. To every γ ∈ Γ we associate the initial velocity field

V0(γ) = γ(0) − γ(−1).

The solutions to the pressureless Euler equations are a subset ofM(Γ),
where

M(Γ) =

{
η ∈ P(Γ) :

∫
|γ(0)|2η(dγ) ≤ 1,

∫
‖γ̇‖2L2(−1,1)η(dγ) ≤ 1

}
.

M(Γ) is compact w.r.t. the weak topology.
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For any t ∈ (0, 1), define

Γt := W1,2
(
(t , 1),Rd

)
.

Let Rt : Γ→ Γt be the restriction map

Rt (γ) = γx(t ,1).

The map Rt induces and equivalence relation on Γ and every η ∈ M(Γ)
has a unique disintegration

η =

∫
ωt
γ′ηt (dγ′), ηt = (Rt )]η,

where ωt
γ′ ∈ M(Γ) satisfies ωt

γ′(R
−1
t (γ′)) = 1.
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Dissipative and sticky particle solutions

Define, for all t ∈ [0, 1]

Vt (γ) :=

∫
V0(γ′)ωt

Rt (γ)(dγ
′).

Definition
We say that η ∈ M(Γ) is a dissipative solution of the pressureless Euler
equations if it holds

γ̇(t) = Vt (γ) (L1 × η)-a.e. on (−1, 1) × Γ.

Definition
We say that η ∈ M(Γ) is a sticky particle solution of the pressureless
Euler equations if it is dissipative and moreover it is concentrated on a
subset of Γ on which, for all t ∈ [0, 1], the maps Rt and et induce the
same equivalence relation, being et the evaluation map et : Γ→ Rd ,
et (γ) = γ(t).
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Energy dissipation

Proposition
Let Ψ : Rd → R be a convex function and let η ∈ M(Γ) be a dissipative
solution. Then, the map

t 7→
∫

Ψ(Vt (γ))η(dγ)

is nonincreasing. In particular, taking Ψ = | · |2 one has that
∀ s ≤ t , s, t ∈ [0, 1]∫

|Vs(γ) − Vt (γ)|2η(dγ) =

∫
|Vs(γ)|2η(dγ) −

∫
|Vt (γ)|2η(dγ).

Moreover, the map t 7→ Vt belongs to BV1/2([0, 1]; L2
η (Γ; Rd)) and it is

right continuous.
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Main results

Definition (Initial data for sticky particle solutions)
Let V0 : Γ→ Rd be the continuous map defined by V0(γ) = γ(0) − γ(−1).
We say that a vector valued measure ν0 on Rd × Rd is an initial data of a
dissipative solution η if ν0 = (e0,V0)#η.

Theorem (Bianchini, D. 2020)
For every initial data as above there exists at least one dissipative
solution.
The set of dissipative solutions is a compact closed set w.r.t. the weak L2

topology.
The family of finite sticky particle solutions is dense in the set of
dissipative solutions.
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Main results

Definition (Free flow)
We say that a dissipative solution η ∈ M(Γ) is a free flow if η is
concentrated on a set of straight lines with empty mutual intersection.

Theorem (Bianchini, D. 2020)
There is a set D0 ⊂ P2(Rd × Rd) such that, for any ν0 ∈ D0 there exists a
unique dissipative solution η with initial data ν0 and it is given by a free
flow. Such a set is a Gδ and dense w.r.t. the weak topology on
P2(Rd × Rd). Moreover, the corresponding solutions are measure
solutions to the pressureless Euler system.
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A Gδ set of zero dissipation data

I Since d ≥ 2, given a finite sticky particle solution it is easy to perturb
the initial datum (e0,V0)#η ∈ P2(Rd × Rd) slightly in order to have
data generating uniquely a free flow whose trajectories have mutual
distance 0 < δ � 1.

I Define the total dissipation of a measure η ∈ M(Γ) as

D(η) = ‖V0‖
2
L2
η
−

∫ ∫ 1

0
|Vt (γ)|2dtη(dγ). (2)

Such data generating uniquely a free flow belong to the set

D0 =
{
µ ∈ P2(Rd×Rd) : D(η) = 0∀ η ∈ M(Γ) dissipative s.t. V0#η = µ

}
.

I By compactness of dissipative solutions and upper semicontinuity of
the total dissipation D(η), the sets

D1/k =
{
µ ∈ P2(Rd) : D(η) < 1/k ∀ η ∈ M(Γ) dissipative s.t. V0#η = µ

}
.

are open and D0 = ∩k∈ND1/k .

Sara Daneri(work in collaboration with S. Bianchini) On sticky particle solutions in general dimension



A Gδ set of zero dissipation data

I Since d ≥ 2, given a finite sticky particle solution it is easy to perturb
the initial datum (e0,V0)#η ∈ P2(Rd × Rd) slightly in order to have
data generating uniquely a free flow whose trajectories have mutual
distance 0 < δ � 1.

I Define the total dissipation of a measure η ∈ M(Γ) as

D(η) = ‖V0‖
2
L2
η
−

∫ ∫ 1

0
|Vt (γ)|2dtη(dγ). (2)

Such data generating uniquely a free flow belong to the set

D0 =
{
µ ∈ P2(Rd×Rd) : D(η) = 0∀ η ∈ M(Γ) dissipative s.t. V0#η = µ

}
.

I By compactness of dissipative solutions and upper semicontinuity of
the total dissipation D(η), the sets

D1/k =
{
µ ∈ P2(Rd) : D(η) < 1/k ∀ η ∈ M(Γ) dissipative s.t. V0#η = µ

}
.

are open and D0 = ∩k∈ND1/k .

Sara Daneri(work in collaboration with S. Bianchini) On sticky particle solutions in general dimension



A Gδ set of zero dissipation data

I Since d ≥ 2, given a finite sticky particle solution it is easy to perturb
the initial datum (e0,V0)#η ∈ P2(Rd × Rd) slightly in order to have
data generating uniquely a free flow whose trajectories have mutual
distance 0 < δ � 1.

I Define the total dissipation of a measure η ∈ M(Γ) as

D(η) = ‖V0‖
2
L2
η
−

∫ ∫ 1

0
|Vt (γ)|2dtη(dγ). (2)

Such data generating uniquely a free flow belong to the set

D0 =
{
µ ∈ P2(Rd×Rd) : D(η) = 0∀ η ∈ M(Γ) dissipative s.t. V0#η = µ

}
.

I By compactness of dissipative solutions and upper semicontinuity of
the total dissipation D(η), the sets

D1/k =
{
µ ∈ P2(Rd) : D(η) < 1/k ∀ η ∈ M(Γ) dissipative s.t. V0#η = µ

}
.

are open and D0 = ∩k∈ND1/k .

Sara Daneri(work in collaboration with S. Bianchini) On sticky particle solutions in general dimension



Further steps

1. Compactness of dissipative solutions,

2. Density of finite sticky particle solutions.

The second step is proved through a series of approximation procedures:

i) Discrete in time approximation,

ii) Countable sticky particle solutions,

iii) Finite sticky particle solutions.
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Compactness of dissipative solutions

Issue: To pass to the limit in the relation

γ̇(t) = Vt (γ) =

∫
V0(γ′)ωn,t

Rt (γ)
(dγ′) (L1 × ηn)-a.e. on (−1, 1) × Γ.

as ηn converge weakly to η.
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Discrete in time approximation

Definition (Discrete in time dissipative solutions)
A dissipative solution η ∈ M(Γ) is discrete in time if there exists a finite
partition 0 = t0 < t1 < · · · < tN = 1 such that Vt = Vti for all t ∈ [ti , ti+1). In
particular, the trajectories followed by the particles are piecewise affine
with speeds possibly changing at times t0, . . . tN .

Proposition
Let η ∈ M(Γ) be a dissipative solution and ε > 0. Then there exists
η̃ε = F̃ ε

#
η ∈ M(Γ) discrete in time dissipative solution such that

V0(F̃ ε(γ)) = V0(γ), ‖Ṽ ε
t ◦F̃

ε−Vt‖
2
L2
η
≤ ε2,

∫
|F̃ ε(γ)(t)−γ(t)|2η(dγ) ≤ ε.

In particular, as ε → 0, the measures ηε converge inM(Γ) to η.
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Since t 7→ Vt belongs to BV1/2([0, 1]; L2
η (Γ; Rd)) and it is right continuous.

Therefore, given ε > 0, there exists a finite partition
0 = t0 < t1 < · · · < tN = 1 such that either

‖Vti ‖
2
L2
η
− ‖Vti+1‖

2
L2
η
< ε2 (3)

or

‖Vti ‖
2
L2
η
− lim

s↗ti+1

‖Vs‖
2
L2
η
< ε2. (4)

Define V̄t = Vti if t ∈ [ti , ti+1). In particular, ‖V̄t − Vt‖L2
η
≤ ε.

Define

F̃ ε : Γ→ Γ, F̃ ε(γ(t)) = γ(1) −

∫ 1

t
V̄s(γ)ds.

Then, F̃ ε
#
η is a dissipative solution satisfying the required estimates.
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Countable and finite particle approximation

Proposition
Let η be a discrete in time dissipative solution and δ > 0. Then there
exists η̂δ = F̂δ

#
η discrete in time dissipative solution such that

|Vt (F̂δ(γ)) − Vt (γ)| ≤ δ, |F̂δ(γ)(t) − γ(t)| ≤ δ. (5)

Moreover, η̂δ is a dissipative countable particle solution, namely it is
concentrated on a countable number of trajectories.

Proposition
Let η ∈ M(Γ) be a dissipative countable particle solution. Then, for every
σ > 0, there exists ησ finite sticky particle solution with the property that
ησ ⇀ η as σ→ 0.
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Conclusions

I We prove that for a comeager set of initial data in the weak topology
the pressureless Euler system admits a unique sticky particle
solution given by a free flow where trajectories are disjoint straight
lines.

I Such an existence and uniqueness result holds for a broader class
of solutions decreasing their kinetic energy, which we call dissipative
solutions, and which turns out to be the compact weak closure of the
classical sticky particle solutions.
Therefore any scheme for which the energy is l.s.c. and is dissipated
will converge, for a comeager set of data, to the solution given by the
free flow.
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