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The motivation

Quantum technologies require high precision and fast
manipulation of quantum systems.

Quantum Speed Limits (QSLs): Theoretical bounds
on the minimum time for quantum state evolution.

Deffner et al., J. Phys. A: Math. Theor. 50 453001 (2017)

Practical challenge: Environmental dissipation and
noise complicate evolution in open quantum systems.

Strong external drives, necessary for fast operations,
introduce drive-induced dissipation (DID).

Chakrabarti et al., EPL 121, 57002 (2018)

Chakrabarti et al., Phys. Rev. A 97 6 (2018)

Chanda et al., PRA 101, 042326 (2020)

|+Z⟩

|+Y⟩

|+Z⟩

|+Y⟩

Quantum Trajectories, ICTS Sarfraj Fency Optimal Speed of Quantum Control in Open Quantum Systems



The motivation

Quantum technologies require high precision and fast
manipulation of quantum systems.

Quantum Speed Limits (QSLs): Theoretical bounds
on the minimum time for quantum state evolution.

Deffner et al., J. Phys. A: Math. Theor. 50 453001 (2017)

Practical challenge: Environmental dissipation and
noise complicate evolution in open quantum systems.

Strong external drives, necessary for fast operations,
introduce drive-induced dissipation (DID).

Chakrabarti et al., EPL 121, 57002 (2018)

Chakrabarti et al., Phys. Rev. A 97 6 (2018)

Chanda et al., PRA 101, 042326 (2020)

|+Z⟩

|+Y⟩

|+Z⟩

|+Y⟩

Quantum Trajectories, ICTS Sarfraj Fency Optimal Speed of Quantum Control in Open Quantum Systems



The motivation

Quantum technologies require high precision and fast
manipulation of quantum systems.

Quantum Speed Limits (QSLs): Theoretical bounds
on the minimum time for quantum state evolution.

Deffner et al., J. Phys. A: Math. Theor. 50 453001 (2017)

Practical challenge: Environmental dissipation and
noise complicate evolution in open quantum systems.

Strong external drives, necessary for fast operations,
introduce drive-induced dissipation (DID).

Chakrabarti et al., EPL 121, 57002 (2018)

Chakrabarti et al., Phys. Rev. A 97 6 (2018)

Chanda et al., PRA 101, 042326 (2020)

|+Z⟩

|+Y⟩

|+Z⟩

|+Y⟩

Quantum Trajectories, ICTS Sarfraj Fency Optimal Speed of Quantum Control in Open Quantum Systems



The motivation

Quantum technologies require high precision and fast
manipulation of quantum systems.

Quantum Speed Limits (QSLs): Theoretical bounds
on the minimum time for quantum state evolution.

Deffner et al., J. Phys. A: Math. Theor. 50 453001 (2017)

Practical challenge: Environmental dissipation and
noise complicate evolution in open quantum systems.

Strong external drives, necessary for fast operations,
introduce drive-induced dissipation (DID).

Chakrabarti et al., EPL 121, 57002 (2018)

Chakrabarti et al., Phys. Rev. A 97 6 (2018)

Chanda et al., PRA 101, 042326 (2020)

|+Z⟩

|+Y⟩

|+Z⟩

|+Y⟩

Quantum Trajectories, ICTS Sarfraj Fency Optimal Speed of Quantum Control in Open Quantum Systems



Key Question

How does drive induced dissipation (DID) affect quantum speed limit
(QSL)?

Can we achieve fast and high-fidelity quantum operations in open
quantum systems while accounting for these dissipation?

Can we design optimal control strategies to mitigate these challenges?
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The Model

The system Hamiltonian of the TLS is given below:

H◦ =
Ω

2
σz

Time dependent external drive applied on the system

Hdr(t) = [u1(t)σx + u2(t)σy ] Cos(ωt)

The thermal bath is modeled as a two-level system:

HSL = ωSL (σ+L− + σ−L+)
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Quantum master Equation

The standard quantum master equations =⇒ environmental dissipation
Bloch Equation, Phys. Rev. 89, 728 (1953)

Redfield Master equation, IBM Journal of Research and Development 1, 19 (1957)

GKLS Master equation, Journal of Mathematical Physics 17, 821 (1976)

Strong external drive =⇒ drive induced dissipation (DID) is critical
Chakrabarti et al., Phys. Rev. A 97 6 (2018) Chakrabarti et al., EPL 121, 57002 (2018)

Several theoretical papers have shown the existence and implication of DID
Chanda et al., PRA 104, 022436 (2021) Saha et al., PRA 107, 022206 (2023)

Chatterjee et al., The European Physical Journal D 78, 44 (2024) Das et al., PRA 110, 062211 (2024)

and more....
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Fluctuation Regulated Quantum Master Equation

ρ̇s = − i TrL[Heff, ρ]
sec −

∫ ∞

0

dτ e−
τ
τc TrL[Heff(t), [Heff(t − τ), ρ]]sec

Chakrabarti et al., Phys. Rev. A 97 6 (2018)

Heff = Hdr + HSL, τc = 2
κ2
,

ρ = total density matrix, ρs = system’s density matrix

TrL = partial trace taken over the bath degrees of freedom

“sec” = secular approximation where only the slow oscillating terms are retained

Cohen-Tannoudji, Atom-photon interactions: basic processes and applications
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The dynamical equation

The entire dynamical equation is scaled with ωSL

ρ̇′s = −i
(
α

′
(t ′) [σ+, ρ

′
s ]e

−i∆′
−t′ + h.c .

)
+ χ

(
P1 D[σ+] + P2 D[σ−]

)

+ 2|α′
(t ′)|2β

(
D[σ+] +D[σ−]

)
− α′

1(t
′)β2

(
σ+ρ

′
sσ+ e−2i∆′

−t′ + h.c .
)

α(t) =
u1(t)−iu2(t)

4
, t′ = ωSLt, β = β1 + β2, β1 = J[∆′

+], β2 = J[∆′
−],

α′(t′) = α(t′)
ωSL

, ∆− = ω−Ω= frequency of the co-rotating frame, ∆′
− =

∆−
ωSL

,

α′
1(t

′) = α
′
(t′)2+α

′∗(t′)2, D[O] = Oρ′sO†− 1
2
{O†O,ρ′s},

χ = ωSLτc = environmental correlation time
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The GRAPE algorithm

GRAPE = GRadient Ascent Pulse Engineering

We discretize the time of evolution into N steps
and hence the drive Hamiltonian is also
discretized.

u(t)

t0 T∆t

The first time step is between t0 to t1,

final N th time step is between tN−1 to tN .

It is assumed that the drive Hamiltonian for a specific time step remains
constant.

The Hamiltonian at j th time step is:

H(j) = H◦ +
m∑

k=1

uk(j)Hk
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The GRAPE algorithm

Define the initial and target state and create drive Hamiltonian using
the initial guess.

Evolve the system using the FRQME and calculate fidelity

F (ρ0, ρτ ) =

[
Tr
{√√

ρ0 ρτ
√
ρ0

}]2
We use generic optimization package to optimize pulse profile and to
maximize fidelity:

It calculates gradient at each step after evolution.
The next step is in the direction of minimum gradient in the parameter
space of the drive strength
It gives us an optimal pulse profile for the given number of steps
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The results: Pulse Time vs Fidelity
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The results: Optimal Pulse profile
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The results: Robustness

Varying environmental correlation time (χ) from 10−5 to 10−1
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The results: Robustness
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The results: Region of optimality

0.25 0.75
Pulse Time

10 3

10 2

10 1

0.75

0.80

0.85

0.90

0.95

Fid
el

ity
|ψi⟩ = +X = 1√

2
(|0⟩+ |1⟩),

|ψt⟩ = +Y = 1√
2
(|0⟩+ i |1⟩)

0.2 0.4 0.6 0.8 1.0
Pulse Time

10 3

10 2

10 1

0.92

0.94

0.96

0.98

Fid
el

ity

|ψi⟩ = cos
(
π
8

)
|0⟩+ sin

(
π
8

)
|1⟩,

|ψt⟩ = cos
(
π
8

)
|0⟩+ i sin

(
π
8

)
|1⟩

Quantum Trajectories, ICTS Sarfraj Fency Optimal Speed of Quantum Control in Open Quantum Systems



Conclusion

We revisit the method to optimize pulse profiles by incorporating both
environmental and drive-induced dissipation.

We show robustness for wide range of detuning and change in environmental
correlation time.

There exists of an optimal time of evolution

Optimal pulse profile maximizes fidelity.

This method can be used to steer the system from any initial state to a
target state.

The method is general can be adapted to other quantum platforms
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Thank You

Optimal Speed of Quantum Operations in Open Quantum Systems
Sarfraj Fency, Riddhi Chatterjee and Rangeet Bhattacharyya
Manuscript under preparation
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FRQME

The total Hamiltonian in the lab frame is given as follows:

H(t) = H◦
S +H◦

L +HSL +HS(t) +HL(t)

where H◦
S = static Hamiltonian of the quantum system

H◦
L = static Hamiltonian of local-environment

HSL = Coupling between system and local environment
HS(t) = external drive applied on the quantum system.

The total Hamiltonian of the system in interaction picture of H◦
S +H◦

L takes
the following form:

H = HS + HL + HSL

Chakrabarti et al., Phys. Rev. A 97 6 (2018)
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FRQME

The thermal noise from the environment were chosen to be diagonal in the
eigen basis of the static Hamiltonian of the environment

HL = Σj fj |ϕj⟩⟨ϕj |

here fj is assumed to be Gaussian, δ correlated stochastic variable with zero
mean and standard deviation κ.
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FRQME

Finite propagator =⇒ regulator from the thermal fluctuations (Schrödinger
equation)

The propagator = system Hamiltonian (infinitesimal) + thermal fluctuations
(finite)

Time scale separation: τc ≪ ∆t ≪ τs

Born approximation: ρ(t) = ρs(t)⊗ ρeqL

Secular approximation: |ωr |∆t ≪ 1

Quantum Trajectories, ICTS Sarfraj Fency Optimal Speed of Quantum Control in Open Quantum Systems



Final form of FRQME

The final form of FRQME:

ρ̇s = − i TrL[Heff, ρ]
sec −

∫ ∞

0

dτ e−
τ
τc TrL[Heff(t), [Heff(t − τ), ρ]]sec

here, τc =
2
κ2 , ρ = total density matrix, ρs = system’s density matrix

“sec” = secular approximation
U. Haeberlen, High Resolution NMR in solids selective averaging (Elsevier, 2012)

TrL =⇒ partial trace taken over the bath degrees of freedom
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FRQME

The effective Hamiltonian: Heff = HS + HSL.

The bath is assumed to be isotropic in nature and hence

TrL[HSL, ρ] = 0

Second term of FRQME, predicts the presence of Drive induced Dissipation
(DID)
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