Universal distribution of the number of minima for random walks and Lévy flights

Satya N. Majumdar

Laboratoire de Physique Théorique et Modèles Statistiques, CNRS,
Université Paris-Saclay, France

Collaborators:
Anupam Kundu (ICTS, Bangalore)
Gregory Schehr (LPTHE, Univ. Sorbonne)
Ref: arXiv: 2402.04215

No. of local minima in a random landscape

liquids, glassy dynamics, disordered systems, string theory, fitness landscapes, optics, data science, ...

No. of local minima in a random landscape

liquids, glassy dynamics, disordered systems, string theory, fitness landscapes, optics, data science, ...

Most studies \Longrightarrow Average no. of minima $\langle m\rangle$

No. of local minima in a random landscape

liquids, glassy dynamics, disordered systems, string theory, fitness landscapes, optics, data science, ...

Most studies \Longrightarrow Average no. of minima $\langle m\rangle$
Full distribution of $m \Longrightarrow$ formidable challenge

Halperin \& Lax 1966, Bray \& Moore 1980, Weinrib \& Halperin 1982, Cavagna et. al. 2000,
Broderix et, al. 2000, Susskind 2003, Fyodorov 2004, Barton 2005, Aazami \& Easther 2006, S.M.
\& Martin 2006, Bray \& Dean 2007, Auffinger et. al. 2013, Dauphin et. al. 2014, Ben Arous et.
al. 2021, Park et. al. 2020, Crona et. al. 2023, Ros \& Fyodorov 2023

Random walk/Lévy landscape \rightarrow Sinai model

discrete-time random walk:

$$
x_{n}=x_{n-1}+\eta_{n} \text { from } x_{0}=0
$$

Random walk/Lévy landscape \rightarrow Sinai model

discrete-time random walk:
$x_{n}=x_{n-1}+\eta_{n}$ from $x_{0}=0$
$\eta_{n} \Rightarrow$ IID jumps drawn from a symmetric and continuous PDF $f(\eta)$

Random walk/Lévy landscape \rightarrow Sinai model

discrete-time random walk:
$x_{n}=x_{n-1}+\eta_{n}$ from $x_{0}=0$
$\eta_{n} \Rightarrow$ IID jumps drawn from a symmetric and continuous PDF $f(\eta)$
Lévy flights: $f(\eta) \underset{|\eta| \rightarrow \infty}{\sim}|\eta|^{-\mu-1}$
$0<\mu \leq 2 \Rightarrow$ Lévy index

Random walk/Lévy landscape \rightarrow Sinai model

discrete-time random walk:
$x_{n}=x_{n-1}+\eta_{n}$ from $x_{0}=0$
$\eta_{n} \Rightarrow$ IID jumps drawn from a symmetric and continuous PDF $f(\eta)$
Lévy flights: $f(\eta) \underset{|\eta| \rightarrow \infty}{\sim}|\eta|^{-\mu-1}$
$0<\mu \leq 2 \Rightarrow$ Lévy index
$m=$ No. of minima in an N-step walk \Longrightarrow random variable

Random walk/Lévy landscape \rightarrow Sinai model

discrete-time random walk:
$x_{n}=x_{n-1}+\eta_{n}$ from $x_{0}=0$
$\eta_{n} \Rightarrow$ IID jumps drawn from a symmetric and continuous PDF $f(\eta)$

Lévy flights: $f(\eta) \underset{|\eta| \rightarrow \infty}{\sim}|\eta|^{-\mu-1}$
$0<\mu \leq 2 \Rightarrow$ Lévy index
$m=$ No. of minima in an N-step walk \Longrightarrow random variable
Prob. distribution $Q(m, N)=$?

Random walk/Lévy landscape \rightarrow Sinai model

discrete-time random walk:
$x_{n}=x_{n-1}+\eta_{n}$ from $x_{0}=0$
$\eta_{n} \Rightarrow$ IID jumps drawn from a symmetric and continuous PDF $f(\eta)$

Lévy flights: $f(\eta) \underset{|\eta| \rightarrow \infty}{\sim}|\eta|^{-\mu-1}$
$0<\mu \leq 2 \Rightarrow$ Lévy index
$m=$ No. of minima in an N-step walk \Longrightarrow random variable
Prob. distribution $Q(m, N)=$?

$$
Q(m, N)=\frac{1}{2^{N}} \frac{(N+1)!}{(N-2 m)!(2 m+1)!} \quad 0 \leq m \leq N / 2
$$

Random walk/Lévy landscape \rightarrow Sinai model

discrete-time random walk:
$x_{n}=x_{n-1}+\eta_{n}$ from $x_{0}=0$
$\eta_{n} \Rightarrow$ IID jumps drawn from a symmetric and continuous PDF $f(\eta)$

Lévy flights: $f(\eta) \underset{|\eta| \rightarrow \infty}{\sim}|\eta|^{-\mu-1}$
$0<\mu \leq 2 \Rightarrow$ Lévy index
$m=$ No. of minima in an N-step walk \Longrightarrow random variable
Prob. distribution $Q(m, N)=$?

$$
Q(m, N)=\frac{1}{2^{N}} \frac{(N+1)!}{(N-2 m)!(2 m+1)!} \quad 0 \leq m \leq N / 2
$$

independent of $f(\eta) \Longrightarrow$ Universal for all m and N !

Universal distribution $Q(m, N)$

Distribution of the number of minima: $Q(m, N)=\frac{1}{2^{N}} \frac{(N+1)!}{(N-2 m)!(2 m+1)!}$
Mean: $\langle m\rangle=\frac{N-1}{4}$ and Variance: $\left\langle m^{2}\right\rangle-\langle m\rangle^{2}=\frac{N+1}{16}$

Application to run-and-tumble process (RTP)

Active RTP: random autonomous motion in two phases:
(i) Run: ballistic motion during exponential run-time $\left(\gamma^{-1}\right)$ with a fixed velocity \vec{v} drawn from $W(|\vec{v}|)$
(ii) Tumble: a new run starts with a new velocity drawn from $W(|\vec{v}|)$alternates...
$\gamma \longrightarrow$ tumbling rate $W(|\vec{v}|) \longrightarrow$ velocity distribution

[^0]

Prob. distr. of the number of minima m in an RTP of duration t

$$
Q(m, t)=e^{-\gamma t / 2} \frac{(\gamma t / 2)^{2 m-1}}{2(2 m+1)!}\left[(2 m+1)(2 m+\gamma t)+\frac{\gamma^{2} t^{2}}{4}\right]
$$

independent of d and $W(|\vec{v}|) \Longrightarrow$ Universal for all m and t

No. of minima in the first-passage landscape

Prob. distr. of the number of minima m in the first-passage landscape

$$
\begin{aligned}
Q^{\mathrm{fp}}(m) & =\frac{1}{2^{2 m+2}} \frac{(2 m)!}{m!(m+1)!} & & \text { for } m \geq 1 \\
& =3 / 4 & & \text { for } m=0
\end{aligned}
$$

independent of $f(\eta) \Longrightarrow$ Universal for all m !

[^0]: Ex: E. Coli bacteria in motion (Tailleur \& Cates '08, Marchetti et. al. '13, Berg '14,..)

