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Most studies = Average no. of minima (m)

Full distribution of m = formidable challenge

Halperin & Lax 1966, Bray & Moore 1980, Weinrib & Halperin 1982, Cavagna et. al. 2000,
Broderix et, al. 2000, Susskind 2003, Fyodorov 2004, Barton 2005, Aazami & Easther 2006, S.M.
& Martin 2006, Bray & Dean 2007, Auffinger et. al. 2013, Dauphin et. al. 2014, Ben Arous et.
al. 2021, Park et. al. 2020, Crona et. al. 2023, Ros & Fyodorov 2023
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Random walk/Lévy landscape — Sinai model
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Random walk/Lévy landscape — Sinai model

o — local minimum discrete-time random walk:

Xp = Xp—1 + 1, from xg =0
7n = |ID jumps drawn from a
M symmetric and continuous PDF £(n)
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Random walk/Lévy landscape — Sinai model

X=0

0 — Jocal minimum

discrete-time random walk:
Xp = Xp—1 + 1, from xg =0

7n = |ID jumps drawn from a
symmetric and continuous PDF £(n)

Lévy flights: F(n) ~ |n|=#1
[n]—o00

0 < p <2 = Lévy index

m = No. of minima in an N-step walk => random variable
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o — local minimum discrete-time random walk:
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7n = |ID jumps drawn from a
M symmetric and continuous PDF £(n)
a N Lévy flights: £(n) ~ |n|~#~1
XFO rAVAR y flights: f(n) i ree

0 < p <2 = Lévy index

m = No. of minima in an N-step walk => random variable

Prob. distribution Q(m, N) = ?

1 (N+1)!
2N (N —2m)! (2m + 1)!

Q(m, N) = 0<m< N/2

independent of f(1)) => Universal for all m and N !
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Universal distribution Q(m, V)
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Distribution of the number of minima: Q(m, N) = 5 %

Mean: (m) = Y1 and Variance: (m?) — (m)* = fu
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Application to run-and-tumble process (RTP)

Active RTP: random autonomous motion in two phases:

(i) Run: ballistic motion during exponential run-time (7 1) with a fixed
velocity v drawn from W (|V])

(i) Tumble: a new run starts with a new velocity drawn from W(|V])
....alternates...

~v —> tumbling rate ~ W/(|V|) — velocity distribution

Ex: E. Coli bacteria in motion  (Tailleur & Cates '08, Marchetti et. al. '13, Berg '14,..)
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No. of minima in an RTP landscape of duration
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Prob. distr. of the number of minima m in an RTP of duration t

independent of d and W(|V]) = Universal for all m and t

Q(m,t)=¢e
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No. of minima in the first-passage landscape
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Prob. distr. of the number of minima m in the first-passage landscape

Q™ (m) Lo Cml o for m > 1

= 2772 i (m+1)!
= 3/4 form=10

independent of f(1) => Universal for all m |
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