
Universal distribution of the number of
minima for random walks and Lévy flights
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No. of local minima in a random landscape

liquids, glassy dynamics, disordered
systems, string theory, fitness
landscapes, optics, data science, ...

Most studies =⇒ Average no. of minima 〈m〉

Full distribution of m =⇒ formidable challenge

Halperin & Lax 1966, Bray & Moore 1980, Weinrib & Halperin 1982, Cavagna et. al. 2000,

Broderix et, al. 2000, Susskind 2003, Fyodorov 2004, Barton 2005, Aazami & Easther 2006, S.M.

& Martin 2006, Bray & Dean 2007, Auffinger et. al. 2013, Dauphin et. al. 2014, Ben Arous et.

al. 2021, Park et. al. 2020, Crona et. al. 2023, Ros & Fyodorov 2023
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No. of local minima in a random landscape

liquids, glassy dynamics, disordered
systems, string theory, fitness
landscapes, optics, data science, ...

Most studies =⇒ Average no. of minima 〈m〉

Full distribution of m =⇒ formidable challenge

Halperin & Lax 1966, Bray & Moore 1980, Weinrib & Halperin 1982, Cavagna et. al. 2000,

Broderix et, al. 2000, Susskind 2003, Fyodorov 2004, Barton 2005, Aazami & Easther 2006, S.M.

& Martin 2006, Bray & Dean 2007, Auffinger et. al. 2013, Dauphin et. al. 2014, Ben Arous et.

al. 2021, Park et. al. 2020, Crona et. al. 2023, Ros & Fyodorov 2023

S.N. Majumdar
Universal distribution of the number of minima for random walks and Lévy flights



Random walk/Lévy landscape → Sinai model

xn

x
0
= 0

N

n

local minimum
discrete-time random walk:

xn = xn−1 + ηn from x0 = 0

ηn ⇒ IID jumps drawn from a
symmetric and continuous PDF f (η)

Lévy flights: f (η) ∼
|η|→∞

|η|−µ−1

0 < µ ≤ 2⇒ Lévy index

m = No. of minima in an N-step walk =⇒ random variable

Prob. distribution Q(m,N) = ?

Q(m,N) =
1

2N

(N + 1)!

(N − 2m)! (2m + 1)!
0 ≤ m ≤ N/2

independent of f (η) =⇒ Universal for all m and N !
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Universal distribution Q(m,N)

Distribution of the number of minima: Q(m,N) = 1
2N

(N+1)!
(N−2m)! (2m+1)!

Mean: 〈m〉 = N−1
4 and Variance: 〈m2〉 − 〈m〉2 = N+1

16
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Application to run-and-tumble process (RTP)

Active RTP: random autonomous motion in two phases:

(i) Run: ballistic motion during exponential run-time (γ−1) with a fixed
velocity ~v drawn from W (|~v |)

(ii) Tumble: a new run starts with a new velocity drawn from W (|~v |)
....alternates...

γ −→ tumbling rate W (|~v |) −→ velocity distribution

Ex: E. Coli bacteria in motion (Tailleur & Cates ’08, Marchetti et. al. ’13, Berg ’14,..)
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No. of minima in an RTP landscape of duration t

0 t

X(t)

time

X(t) x−component of the RTP of duration t

local minimum

Prob. distr. of the number of minima m in an RTP of duration t

Q(m, t) = e−γt/2 (γt/2)2m−1

2 (2m + 1)!

[
(2m + 1)(2m + γt) +

γ2t2

4

]

independent of d and W (|~v |) =⇒ Universal for all m and t !
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No. of minima in the first-passage landscape

xn

x
0
= 0

n

n
f

first−passage landscape

local minimum

Prob. distr. of the number of minima m in the first-passage landscape

Q fp(m) = 1
22m+2

(2m)!
m! (m+1)! for m ≥ 1

= 3/4 for m = 0

independent of f (η) =⇒ Universal for all m !
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