On the solutions of certain Diophantine equations over totally real fields

Satyabrat Sahoo

Joint work with Dr. Narasimha Kumar

RATIONAL POINTS ON MODULAR CURVES ICTS, Bengaluru

September 20, 2023

< ロ > < 同 > < 回 > < 回 >

Over \mathbb{Z}		
$x^n + y^n = z^n$	Wiles [Wil94]	$n \geq 3$ (no solutions)
$x^n + y^n = 2z^n$	Darmon-Merel [DM97]	$n \geq 3$ (no solutions)
$x^{p} + y^{p} = 2^{r} z^{p}$	Ribet [Rib97]	$2 \leq r < p$ (no solutions)
$x^n + y^n = z^2$	Darmon-Merel [DM97]	$n \ge 4$ (no solutions)
$x^2 = y^p + 2^r z^p$	Siksek [Sik03]	$r \geq 2, p \geq 7$ (finite solutions)
$2x^2 = y^p + 2^r z^p$	Ivorra [Ivo03]	$p \ge 7, 0 \le r \le p$ (finite solutions)

・ロト ・四ト ・ヨト ・ヨト

æ

Over \mathbb{Z}		
$x^n + y^n = z^n$	Wiles [Wil94]	$n \geq 3$ (no solutions)
$x^n + y^n = 2z^n$	Darmon-Merel [DM97]	$n \geq 3$ (no solutions)
$x^p + y^p = 2^r z^p$	Ribet [Rib97]	$2 \leq r < p$ (no solutions)
$x^n + y^n = z^2$	Darmon-Merel [DM97]	$n \ge 4$ (no solutions)
$x^2 = y^p + 2^r z^p$	Siksek [Sik03]	$r \ge 2, p \ge 7$ (finite solutions)
$2x^2 = y^p + 2^r z^p$	Ivorra [Ivo03]	$p \ge 7, 0 \le r \le p$ (finite solutions)

• Let K be a totally real field of degree n.

イロト イボト イヨト イヨト

Over \mathbb{Z}		
$x^n + y^n = z^n$	Wiles [Wil94]	$n \ge 3$ (no solutions)
$x^n + y^n = 2z^n$	Darmon-Merel [DM97]	$n \ge 3$ (no solutions)
$x^{p} + y^{p} = 2^{r} z^{p}$	Ribet [Rib97]	$2 \leq r < p$ (no solutions)
$x^n + y^n = z^2$	Darmon-Merel [DM97]	$n \ge 4$ (no solutions)
$x^2 = y^p + 2^r z^p$	Siksek [Sik03]	$r \ge 2, p \ge 7$ (finite solutions)
$2x^2 = y^p + 2^r z^p$	Ivorra [Ivo03]	$p \geq 7, 0 \leq r \leq p$ (finite solutions)

• Let K be a totally real field of degree n.

• Let \mathcal{O}_K and p represent the ring of integers of K and a rational prime, respectively.

< □ > < 同 > < 三 >

Over \mathbb{Z}		
$x^n + y^n = z^n$	Wiles [Wil94]	$n \geq 3$ (no solutions)
$x^n + y^n = 2z^n$	Darmon-Merel [DM97]	$n \geq 3$ (no solutions)
$x^p + y^p = 2^r z^p$	Ribet [Rib97]	$2 \leq r < p$ (no solutions)
$x^n + y^n = z^2$	Darmon-Merel [DM97]	$n \ge 4$ (no solutions)
$x^2 = y^p + 2^r z^p$	Siksek [Sik03]	$r \ge 2, p \ge 7$ (finite solutions)
$2x^2 = y^p + 2^r z^p$	Ivorra [Ivo03]	$p \ge 7, 0 \le r \le p$ (finite solutions)

• Let K be a totally real field of degree n.

• Let \mathcal{O}_K and p represent the ring of integers of K and a rational prime, respectively.

Definition (1.1)

We say that a Diophantine equation $Ax^p + By^p = Cz^p$ of exponent p has no asymptotic solution in $S \subseteq K^3$,

Over \mathbb{Z}		
$x^n + y^n = z^n$	Wiles [Wil94]	$n \geq 3$ (no solutions)
$x^n + y^n = 2z^n$	Darmon-Merel [DM97]	$n \geq 3$ (no solutions)
$x^p + y^p = 2^r z^p$	Ribet [Rib97]	$2 \leq r < p$ (no solutions)
$x^n + y^n = z^2$	Darmon-Merel [DM97]	$n \ge 4$ (no solutions)
$x^2 = y^p + 2^r z^p$	Siksek [Sik03]	$r \ge 2, p \ge 7$ (finite solutions)
$2x^2 = y^p + 2^r z^p$	Ivorra [Ivo03]	$p \ge 7, 0 \le r \le p$ (finite solutions)

• Let K be a totally real field of degree n.

• Let \mathcal{O}_K and p represent the ring of integers of K and a rational prime, respectively.

Definition (1.1)

We say that a Diophantine equation $Ax^p + By^p = Cz^p$ of exponent p has no asymptotic solution in $S \subseteq K^3$, if there exists a constant $V_{K,A,B,C}$ (depending on K, A, B, C) such that for primes $p > V_{K,A,B,C}$,

Over \mathbb{Z}		
$x^n + y^n = z^n$	Wiles [Wil94]	$n \geq 3$ (no solutions)
$x^n + y^n = 2z^n$	Darmon-Merel [DM97]	$n \geq 3$ (no solutions)
$x^p + y^p = 2^r z^p$	Ribet [Rib97]	$2 \leq r < p$ (no solutions)
$x^n + y^n = z^2$	Darmon-Merel [DM97]	$n \ge 4$ (no solutions)
$x^2 = y^p + 2^r z^p$	Siksek [Sik03]	$r \ge 2, p \ge 7$ (finite solutions)
$2x^2 = y^p + 2^r z^p$	Ivorra [Ivo03]	$p \ge 7, 0 \le r \le p$ (finite solutions)

• Let K be a totally real field of degree n.

• Let \mathcal{O}_K and p represent the ring of integers of K and a rational prime, respectively.

Definition (1.1)

We say that a Diophantine equation $Ax^{p} + By^{p} = Cz^{p}$ of exponent p has no asymptotic solution in $S \subseteq K^{3}$, if there exists a constant $V_{K,A,B,C}$ (depending on K, A, B, C) such that for primes $p > V_{K,A,B,C}$, the equation $Ax^{p} + By^{p} = Cz^{p}$ of exponent p has no non-trivial primitive solutions in S.

• In [FS15], Freitas and Siksek show that the equation $x^{p} + y^{p} = z^{p}$ of exponent p has no asymptotic solution in K^{3} , for a certain class of totally real fields K.

< ロ > < 同 > < 回 > < 回 >

- In [FS15], Freitas and Siksek show that the equation $x^p + y^p = z^p$ of exponent p has no asymptotic solution in K^3 , for a certain class of totally real fields K.
- In [Dec16], Deconinck extended the work in [FS15] to the generalized equation $Ax^{p} + By^{p} = Cz^{p}$ with $2 \nmid ABC$.

< ロ > < 同 > < 回 > < 回 >

- In [FS15], Freitas and Siksek show that the equation $x^{p} + y^{p} = z^{p}$ of exponent p has no asymptotic solution in K^{3} , for a certain class of totally real fields K.
- In [Dec16], Deconinck extended the work in [FS15] to the generalized equation $Ax^{p} + By^{p} = Cz^{p}$ with $2 \nmid ABC$.
- In [IKO20, Theorem 1.1], Işik, Kara, and Ozman proved that the equation $x^{p} + y^{p} = z^{2}$ of exponent p has no asymptotic solution of certain type in \mathcal{O}_{K}^{3} ,

イロト イポト イラト イラト

- In [FS15], Freitas and Siksek show that the equation $x^p + y^p = z^p$ of exponent p has no asymptotic solution in K^3 , for a certain class of totally real fields K.
- In [Dec16], Deconinck extended the work in [FS15] to the generalized equation $Ax^{p} + By^{p} = Cz^{p}$ with $2 \nmid ABC$.
- In [IKO20, Theorem 1.1], Işik, Kara, and Ozman proved that the equation x^p + y^p = z² of exponent p has no asymptotic solution of certain type in O³_K, whenever h⁺_K = 1 and f(𝔅|2) = 1 for some prime 𝔅 in O_K.

イロト イポト イラト イラト

- In [FS15], Freitas and Siksek show that the equation $x^p + y^p = z^p$ of exponent p has no asymptotic solution in K^3 , for a certain class of totally real fields K.
- In [Dec16], Deconinck extended the work in [FS15] to the generalized equation $Ax^{p} + By^{p} = Cz^{p}$ with $2 \nmid ABC$.
- In [IKO20, Theorem 1.1], Işik, Kara, and Ozman proved that the equation $x^{p} + y^{p} = z^{2}$ of exponent p has no asymptotic solution of certain type in \mathcal{O}_{K}^{3} , whenever $h_{K}^{+} = 1$ and $\mathbf{f}(\mathfrak{P}|2) = 1$ for some prime \mathfrak{P} in \mathcal{O}_{K} .
- In [Moc22], Mocanu proved [IKO20, Theorem 1.1] by replacing the assumptions in [IKO20] to $2 \nmid h_{K}^{+}$ and 2 is inert in K.

・ (川) (引) (引) (引) (日)

- In [FS15], Freitas and Siksek show that the equation $x^p + y^p = z^p$ of exponent p has no asymptotic solution in K^3 , for a certain class of totally real fields K.
- In [Dec16], Deconinck extended the work in [FS15] to the generalized equation $Ax^{p} + By^{p} = Cz^{p}$ with $2 \nmid ABC$.
- In [IKO20, Theorem 1.1], Işik, Kara, and Ozman proved that the equation x^p + y^p = z² of exponent p has no asymptotic solution of certain type in O³_K, whenever h⁺_K = 1 and f(𝔅|2) = 1 for some prime 𝔅 in O_K.
- In [Moc22], Mocanu proved [IKO20, Theorem 1.1] by replacing the assumptions in [IKO20] to $2 \nmid h_{K}^{+}$ and 2 is inert in K.

We are interested to study the asymptotic solution of the following equations:

•
$$x^{p} + y^{p} = 2^{r}z^{p}$$
 and $x^{p} + y^{p} = z^{2}$ over K;

ヘロト 人間ト ヘヨト ヘヨト

- In [FS15], Freitas and Siksek show that the equation $x^p + y^p = z^p$ of exponent p has no asymptotic solution in K^3 , for a certain class of totally real fields K.
- In [Dec16], Deconinck extended the work in [FS15] to the generalized equation $Ax^{p} + By^{p} = Cz^{p}$ with $2 \nmid ABC$.
- In [IKO20, Theorem 1.1], Işik, Kara, and Ozman proved that the equation $x^p + y^p = z^2$ of exponent p has no asymptotic solution of certain type in \mathcal{O}_K^3 , whenever $h_K^+ = 1$ and $\mathbf{f}(\mathfrak{P}|2) = 1$ for some prime \mathfrak{P} in \mathcal{O}_K .
- In [Moc22], Mocanu proved [IKO20, Theorem 1.1] by replacing the assumptions in [IKO20] to $2 \nmid h_{K}^{+}$ and 2 is inert in K.

We are interested to study the asymptotic solution of the following equations:

•
$$x^{p} + y^{p} = 2^{r} z^{p}$$
 and $x^{p} + y^{p} = z^{2}$ over K;

2 $Bx^{p} + Cy^{p} = z^{2}$ and $Bx^{p} + Cy^{p} = 2z^{2}$ over *K*, where *B* is an odd integer, *C* is either an odd integer or a power of 2.

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・ ・ 日

ヘロト 人間 とくほ とくほ とう

æ

Consider the equation

$$x^{p} + y^{p} = 2^{r} z^{p} \tag{2.1}$$

of prime exponent p and $r \in \mathbb{N}$.

< ロ > < 同 > < 回 > < 回 >

Consider the equation

$$x^{p} + y^{p} = 2^{r} z^{p} \tag{2.1}$$

of prime exponent p and $r \in \mathbb{N}$.

• Let K be a totally real field of degree n.

ヨト

Consider the equation

$$x^{p} + y^{p} = 2^{r} z^{p} \tag{2.1}$$

of prime exponent p and $r \in \mathbb{N}$.

- Let K be a totally real field of degree n.
- Denote $K^* := K \setminus \{0\}$. Let $P := \operatorname{Spec}(\mathcal{O}_K)$.

A [] > A [] > A

ヨト イヨト

Consider the equation

$$x^{p} + y^{p} = 2^{r} z^{p} \tag{2.1}$$

of prime exponent p and $r \in \mathbb{N}$.

- Let K be a totally real field of degree n.
- Denote $K^* := K \setminus \{0\}$. Let $P := \operatorname{Spec}(\mathcal{O}_K)$.
- For any S ⊆ P, let O_S := {α ∈ K : ν_𝔅(α) ≥ 0 for all 𝔅 ∈ P \ S} denote the ring of S-integers in K and O_S^{*} denote the units of O_S.

イロト イポト イラト イラト

Consider the equation

$$x^{p} + y^{p} = 2^{r} z^{p} \tag{2.1}$$

of prime exponent p and $r \in \mathbb{N}$.

- Let K be a totally real field of degree n.
- Denote $K^* := K \setminus \{0\}$. Let $P := \operatorname{Spec}(\mathcal{O}_K)$.
- For any S ⊆ P, let O_S := {α ∈ K : ν_𝔅(α) ≥ 0 for all 𝔅 ∈ P \ S} denote the ring of S-integers in K and O_S^{*} denote the units of O_S.
- Let $S_{\mathcal{K}} := \{\mathfrak{P} \in P : \mathfrak{P}|2\}$, and $U_{\mathcal{K}} := \{\mathfrak{P} \in S_{\mathcal{K}} : (3, v_{\mathfrak{P}}(2)) = 1\}$.

・ ロ ト ・ 御 ト ・ ヨ ト ・ ヨ ト ・

Consider the equation

$$x^{p} + y^{p} = 2^{r} z^{p} \tag{2.1}$$

of prime exponent p and $r \in \mathbb{N}$.

- Let K be a totally real field of degree n.
- Denote $K^* := K \setminus \{0\}$. Let $P := \operatorname{Spec}(\mathcal{O}_K)$.
- For any $S \subseteq P$, let $\mathcal{O}_S := \{ \alpha \in K : v_{\mathfrak{P}}(\alpha) \ge 0 \text{ for all } \mathfrak{P} \setminus S \}$ denote the ring of S-integers in K and \mathcal{O}_S^* denote the units of \mathcal{O}_S .
- Let $S_{\mathcal{K}} := \{\mathfrak{P} \in P : \mathfrak{P} | 2\}$, and $U_{\mathcal{K}} := \{\mathfrak{P} \in S_{\mathcal{K}} : (3, v_{\mathfrak{P}}(2)) = 1\}$.
- (Trivial solution) abc = 0, or $(a, b, c) \in \{(1, 1, 1), (-1, -1, -1)\}$ for r = 1.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト ・

Consider the equation

$$x^{p} + y^{p} = 2^{r} z^{p} \tag{2.1}$$

of prime exponent p and $r \in \mathbb{N}$.

- Let K be a totally real field of degree n.
- Denote $K^* := K \setminus \{0\}$. Let $P := \operatorname{Spec}(\mathcal{O}_K)$.
- For any $S \subseteq P$, let $\mathcal{O}_S := \{ \alpha \in K : v_{\mathfrak{P}}(\alpha) \ge 0 \text{ for all } \mathfrak{P} \setminus S \}$ denote the ring of S-integers in K and \mathcal{O}_S^* denote the units of \mathcal{O}_S .
- Let $S_{\mathcal{K}} := \{\mathfrak{P} \in P : \mathfrak{P}|2\}$, and $U_{\mathcal{K}} := \{\mathfrak{P} \in S_{\mathcal{K}} : (3, v_{\mathfrak{P}}(2)) = 1\}$.
- (Trivial solution) abc = 0, or $(a, b, c) \in \{(1, 1, 1), (-1, -1, -1)\}$ for r = 1.

Definition (2.1)

Let $W_{\mathcal{K}}$ be the set of all non-trivial primitive solution $(a, b, c) \in \mathcal{O}_{\mathcal{K}}^3$ to the equation (2.1) with $\mathfrak{P}|abc$ for every $\mathfrak{P} \in S_{\mathcal{K}}$.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶

æ

Theorem (2.2) (Kumar-Sahoo, 2023)

Let K be a totally real field.

・ロト ・四ト ・ヨト ・ヨト

Theorem (2.2) (Kumar-Sahoo, 2023)

Let K be a totally real field. Suppose, for every solution (λ, μ) to the S_{K} -unit equation

$$\lambda + \mu = 1, \ \lambda, \mu \in \mathcal{O}^*_{\mathcal{S}_{\mathcal{K}}},\tag{2.2}$$

イロト イボト イヨト イヨト

Theorem (2.2) (Kumar-Sahoo, 2023)

Let K be a totally real field. Suppose, for every solution (λ, μ) to the S_{K} -unit equation

$$\lambda + \mu = 1, \ \lambda, \mu \in \mathcal{O}^*_{\mathcal{S}_{\mathcal{K}}},\tag{2.2}$$

there exists some $\mathfrak{P} \in \mathcal{S}_{\mathcal{K}}$ that satisfies

$$\max\left\{|v_{\mathfrak{P}}(\lambda)|, |v_{\mathfrak{P}}(\mu)|\right\} \le 4v_{\mathfrak{P}}(2). \tag{2.3}$$

(日)

Theorem (2.2) (Kumar-Sahoo, 2023)

Let K be a totally real field. Suppose, for every solution (λ, μ) to the S_{K} -unit equation

$$\lambda + \mu = 1, \ \lambda, \mu \in \mathcal{O}^*_{\mathcal{S}_{\mathcal{K}}},\tag{2.2}$$

there exists some $\mathfrak{P} \in \mathcal{S}_{\mathcal{K}}$ that satisfies

$$\max\left\{|v_{\mathfrak{P}}(\lambda)|, |v_{\mathfrak{P}}(\mu)|\right\} \le 4v_{\mathfrak{P}}(2). \tag{2.3}$$

Then the equation $x^{p} + y^{p} = 2^{r} z^{p}$ has no asymptotic solution in W_{K} .

Theorem (2.2) (Kumar-Sahoo, 2023)

Let K be a totally real field. Suppose, for every solution (λ, μ) to the S_{K} -unit equation

$$\lambda + \mu = 1, \ \lambda, \mu \in \mathcal{O}^*_{\mathcal{S}_{\mathcal{K}}},\tag{2.2}$$

there exists some $\mathfrak{P} \in \mathcal{S}_{\mathcal{K}}$ that satisfies

$$\max\left\{|v_{\mathfrak{P}}(\lambda)|, |v_{\mathfrak{P}}(\mu)|\right\} \le 4v_{\mathfrak{P}}(2). \tag{2.3}$$

Then the equation $x^{p} + y^{p} = 2^{r} z^{p}$ has no asymptotic solution in W_{K} .

We write (ES) for "either $[K : \mathbb{Q}]$ is odd or Eichler-Shimura Conjecture holds for K."

Theorem (2.2) (Kumar-Sahoo, 2023)

Let K be a totally real field. Suppose, for every solution (λ, μ) to the S_{K} -unit equation

$$\lambda + \mu = 1, \ \lambda, \mu \in \mathcal{O}^*_{\mathcal{S}_{\mathcal{K}}},\tag{2.2}$$

there exists some $\mathfrak{P} \in \mathcal{S}_{\mathcal{K}}$ that satisfies

$$\max\left\{|v_{\mathfrak{P}}(\lambda)|, |v_{\mathfrak{P}}(\mu)|\right\} \le 4v_{\mathfrak{P}}(2). \tag{2.3}$$

Then the equation $x^{p} + y^{p} = 2^{r} z^{p}$ has no asymptotic solution in W_{K} .

We write (ES) for "either $[K : \mathbb{Q}]$ is odd or Eichler-Shimura Conjecture holds for K."

Theorem (2.3) (Kumar-Sahoo, 2023)

Let K be a totally real field satisfying the condition (*ES*).

< ロ > < 同 > < 回 > < 回 >

Theorem (2.2) (Kumar-Sahoo, 2023)

Let K be a totally real field. Suppose, for every solution (λ, μ) to the S_{K} -unit equation

$$\lambda + \mu = 1, \ \lambda, \mu \in \mathcal{O}^*_{\mathcal{S}_{\mathcal{K}}},\tag{2.2}$$

there exists some $\mathfrak{P} \in \mathcal{S}_{\mathcal{K}}$ that satisfies

$$\max\left\{|v_{\mathfrak{P}}(\lambda)|, |v_{\mathfrak{P}}(\mu)|\right\} \le 4v_{\mathfrak{P}}(2). \tag{2.3}$$

Then the equation $x^{\rho} + y^{\rho} = 2^{r} z^{\rho}$ has no asymptotic solution in W_{K} .

We write (ES) for "either $[K : \mathbb{Q}]$ is odd or Eichler-Shimura Conjecture holds for K."

Theorem (2.3) (Kumar-Sahoo, 2023)

Let K be a totally real field satisfying the condition (*ES*). Suppose, for every solution (λ, μ) to the S_{K} -unit equation (2.2) there exists some $\mathfrak{P} \in U_{K}$ that satisfies

Theorem (2.2) (Kumar-Sahoo, 2023)

Let K be a totally real field. Suppose, for every solution (λ, μ) to the S_K -unit equation

$$\lambda + \mu = 1, \ \lambda, \mu \in \mathcal{O}^*_{\mathcal{S}_{\mathcal{K}}},\tag{2.2}$$

there exists some $\mathfrak{P} \in \mathcal{S}_{\mathcal{K}}$ that satisfies

$$\max\left\{|v_{\mathfrak{P}}(\lambda)|, |v_{\mathfrak{P}}(\mu)|\right\} \le 4v_{\mathfrak{P}}(2). \tag{2.3}$$

Then the equation $x^{\rho} + y^{\rho} = 2^{r} z^{\rho}$ has no asymptotic solution in W_{K} .

We write (ES) for "either $[K : \mathbb{Q}]$ is odd or Eichler-Shimura Conjecture holds for K."

Theorem (2.3) (Kumar-Sahoo, 2023)

Let K be a totally real field satisfying the condition (*ES*). Suppose, for every solution (λ, μ) to the S_{K} -unit equation (2.2) there exists some $\mathfrak{P} \in U_{K}$ that satisfies

$$\max\left\{|v_{\mathfrak{P}}(\lambda)|, |v_{\mathfrak{P}}(\mu)|\right\} \leq 4v_{\mathfrak{P}}(2) \text{ and } v_{\mathfrak{P}}(\lambda\mu) \equiv v_{\mathfrak{P}}(2) \pmod{3}. \tag{2.4}$$

< ロ > < 同 > < 回 > < 回 >

Theorem (2.2) (Kumar-Sahoo, 2023)

Let K be a totally real field. Suppose, for every solution (λ, μ) to the S_K -unit equation

$$\lambda + \mu = 1, \ \lambda, \mu \in \mathcal{O}^*_{\mathcal{S}_{\mathcal{K}}},\tag{2.2}$$

there exists some $\mathfrak{P} \in \mathcal{S}_{\mathcal{K}}$ that satisfies

$$\max\left\{|v_{\mathfrak{P}}(\lambda)|, |v_{\mathfrak{P}}(\mu)|\right\} \le 4v_{\mathfrak{P}}(2). \tag{2.3}$$

Then the equation $x^{p} + y^{p} = 2^{r} z^{p}$ has no asymptotic solution in W_{K} .

We write (ES) for "either $[K : \mathbb{Q}]$ is odd or Eichler-Shimura Conjecture holds for K."

Theorem (2.3) (Kumar-Sahoo, 2023)

Let K be a totally real field satisfying the condition (ES). Suppose, for every solution (λ, μ) to the S_{K} -unit equation (2.2) there exists some $\mathfrak{P} \in U_{K}$ that satisfies

$$\max\left\{|v_{\mathfrak{P}}(\lambda)|, |v_{\mathfrak{P}}(\mu)|\right\} \leq 4v_{\mathfrak{P}}(2) \text{ and } v_{\mathfrak{P}}(\lambda\mu) \equiv v_{\mathfrak{P}}(2) \pmod{3}. \tag{2.4}$$

Then the equation $x^{p} + y^{p} = 2^{r} z^{p}$ with r = 2, 3 has no asymptotic solution in \mathcal{O}_{K}^{3} .

ъ

< ロ > < 同 > < 回 > < 回 >

5/16

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

æ

For any non-trivial primitive solution $(a, b, c) \in \mathcal{O}_{K}^{3}$ to the equation $x^{p} + y^{p} = 2^{r}z^{p}$, consider the Frey elliptic curve as

イロト イボト イヨト イヨト

-

For any non-trivial primitive solution $(a, b, c) \in \mathcal{O}_K^3$ to the equation $x^p + y^p = 2^r z^p$, consider the Frey elliptic curve as

$$E = E_{a,b,c} : Y^2 = X(X - a^p)(X + b^p),$$
(2.5)

イロト イボト イヨト イヨト

-

For any non-trivial primitive solution $(a, b, c) \in \mathcal{O}_K^3$ to the equation $x^p + y^p = 2^r z^p$, consider the Frey elliptic curve as

$$E = E_{a,b,c} : Y^{2} = X(X - a^{p})(X + b^{p}), \qquad (2.5)$$

where $\Delta_E = 2^{4+2r} (abc)^{2p}, \ c_4 = 2^4 (a^{2p} + 2^r b^p c^p)$ and $j_E = 2^{8-2r} \frac{(a^{2p} + 2^r b^p c^p)^3}{(abc)^{2p}}.$

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・ ・ 日
For any non-trivial primitive solution $(a, b, c) \in \mathcal{O}_{K}^{3}$ to the equation $x^{p} + y^{p} = 2^{r}z^{p}$, consider the Frey elliptic curve as

$$E = E_{a,b,c} : Y^{2} = X(X - a^{p})(X + b^{p}), \qquad (2.5)$$

where $\Delta_E = 2^{4+2r} (abc)^{2p}$, $c_4 = 2^4 (a^{2p} + 2^r b^p c^p)$ and $j_E = 2^{8-2r} \frac{(a^{2p} + 2^r b^p c^p)^3}{(abc)^{2p}}$.

• There exists a constant $A_{K,r}$ (depending on K, r) such that for primes $p > A_{K,r}$, the Frey curve E/K is modular.

・ (川) (引) (引) (引) (日)

For any non-trivial primitive solution $(a, b, c) \in \mathcal{O}_{K}^{3}$ to the equation $x^{p} + y^{p} = 2^{r}z^{p}$, consider the Frey elliptic curve as

$$E = E_{a,b,c} : Y^{2} = X(X - a^{p})(X + b^{p}), \qquad (2.5)$$

where $\Delta_E = 2^{4+2r} (abc)^{2p}$, $c_4 = 2^4 (a^{2p} + 2^r b^p c^p)$ and $j_E = 2^{8-2r} \frac{(a^{2p} + 2^r b^p c^p)^3}{(abc)^{2p}}$.

- There exists a constant $A_{K,r}$ (depending on K, r) such that for primes $p > A_{K,r}$, the Frey curve E/K is modular.
- Then at all primes q ∈ P away from S_K, the Frey curve E is minimal, semi-stable and satisfies p|v_q(Δ_E).

For any non-trivial primitive solution $(a, b, c) \in \mathcal{O}_{K}^{3}$ to the equation $x^{p} + y^{p} = 2^{r}z^{p}$, consider the Frey elliptic curve as

$$E = E_{a,b,c} : Y^{2} = X(X - a^{p})(X + b^{p}), \qquad (2.5)$$

where $\Delta_E = 2^{4+2r} (abc)^{2p}$, $c_4 = 2^4 (a^{2p} + 2^r b^p c^p)$ and $j_E = 2^{8-2r} \frac{(a^{2p} + 2^r b^p c^p)^3}{(abc)^{2p}}$.

- There exists a constant $A_{K,r}$ (depending on K, r) such that for primes $p > A_{K,r}$, the Frey curve E/K is modular.
- Then at all primes q ∈ P away from S_K, the Frey curve E is minimal, semi-stable and satisfies p|v_q(Δ_E).
- There exists a constant $C_{\mathcal{K}}$ (depending on \mathcal{K}) such that for primes $p > C_{\mathcal{K}}$, $\bar{\rho}_{E,p}$ is irreducible, where $\bar{\rho}_{E,p}$ is the residual Galois representation of $G_{\mathcal{K}}$ acting on the *p*-torsion points of *E*.

・ロト ・ 一下 ・ ト ・ ト ・ ト

For any non-trivial primitive solution $(a, b, c) \in \mathcal{O}_{K}^{3}$ to the equation $x^{p} + y^{p} = 2^{r}z^{p}$, consider the Frey elliptic curve as

$$E = E_{a,b,c} : Y^{2} = X(X - a^{p})(X + b^{p}), \qquad (2.5)$$

where $\Delta_E = 2^{4+2r} (abc)^{2p}$, $c_4 = 2^4 (a^{2p} + 2^r b^p c^p)$ and $j_E = 2^{8-2r} \frac{(a^{2p} + 2^r b^p c^p)^3}{(abc)^{2p}}$.

- There exists a constant $A_{K,r}$ (depending on K, r) such that for primes $p > A_{K,r}$, the Frey curve E/K is modular.
- Then at all primes q ∈ P away from S_K, the Frey curve E is minimal, semi-stable and satisfies p|v_q(Δ_E).
- There exists a constant $C_{\mathcal{K}}$ (depending on \mathcal{K}) such that for primes $p > C_{\mathcal{K}}$, $\bar{\rho}_{E,p}$ is irreducible, where $\bar{\rho}_{E,p}$ is the residual Galois representation of $G_{\mathcal{K}}$ acting on the *p*-torsion points of *E*.

・ロト ・ 一下 ・ ト ・ ト ・ ト

Lemma (2.4)

Let $\mathfrak{P} \in S_{K}$. Suppose $(a, b, c) \in \mathcal{O}_{K}^{3}$ is a non-trivial primitive solution to the equation $x^{p} + y^{p} = 2^{r}z^{p}$ of exponent $p > \max \{|(4 - r)v_{\mathfrak{P}}(2)|, [K : \mathbb{Q}]r\}$ and let $E := E_{a,b,c}$ be the associated Frey curve.

Lemma (2.4)

Let $\mathfrak{P} \in S_K$. Suppose $(a, b, c) \in \mathcal{O}_K^3$ is a non-trivial primitive solution to the equation $x^p + y^p = 2^r z^p$ of exponent $p > \max \{ |(4 - r)v_{\mathfrak{P}}(2)|, [K : \mathbb{Q}]r \}$ and let $E := E_{a,b,c}$ be the associated Frey curve.

• If $(a, b, c) \in W_K$, then $v_{\mathfrak{P}}(j_E) < 0$ and $p \nmid v_{\mathfrak{P}}(j_E)$, equivalently $p \mid \# \bar{\rho}_{E,p}(l_{\mathfrak{P}})$.

< ロ > < 同 > < 回 > < 回 >

Lemma (2.4)

Let $\mathfrak{P} \in S_K$. Suppose $(a, b, c) \in \mathcal{O}_K^3$ is a non-trivial primitive solution to the equation $x^p + y^p = 2^r z^p$ of exponent $p > \max \{ |(4 - r)v_{\mathfrak{P}}(2)|, [K : \mathbb{Q}]r \}$ and let $E := E_{a,b,c}$ be the associated Frey curve.

- If $(a, b, c) \in W_{\mathcal{K}}$, then $v_{\mathfrak{P}}(j_E) < 0$ and $p \nmid v_{\mathfrak{P}}(j_E)$, equivalently $p \mid \#\bar{\rho}_{E,p}(l_{\mathfrak{P}})$.
- 2 Let r = 2, 3. If $\mathfrak{P} \in U_{\mathcal{K}}$, then either $p | \# \bar{\rho}_{E,p}(I_{\mathfrak{P}})$ or $3 | \# \bar{\rho}_{E,p}(I_{\mathfrak{P}})$.

Lemma (2.4)

Let $\mathfrak{P} \in S_K$. Suppose $(a, b, c) \in \mathcal{O}_K^3$ is a non-trivial primitive solution to the equation $x^p + y^p = 2^r z^p$ of exponent $p > \max \{ |(4 - r)v_{\mathfrak{P}}(2)|, [K : \mathbb{Q}]r \}$ and let $E := E_{a,b,c}$ be the associated Frey curve.

- If $(a, b, c) \in W_{\mathcal{K}}$, then $v_{\mathfrak{P}}(j_E) < 0$ and $p \nmid v_{\mathfrak{P}}(j_E)$, equivalently $p \mid \#\bar{\rho}_{E,p}(l_{\mathfrak{P}})$.
- 2 Let r = 2, 3. If $\mathfrak{P} \in U_K$, then either $p | \# \bar{\rho}_{E,p}(I_{\mathfrak{P}})$ or $3 | \# \bar{\rho}_{E,p}(I_{\mathfrak{P}})$.
 - Let $(a, b, c) \in W_K$ be a non-trivial primitive solution to the equation $x^p + y^p = 2^r z^p$ of exponent $p \gg 0$ and let $E := E_{a,b,c}$ be the associated Frey curve.

Lemma (2.4)

Let $\mathfrak{P} \in S_K$. Suppose $(a, b, c) \in \mathcal{O}_K^3$ is a non-trivial primitive solution to the equation $x^p + y^p = 2^r z^p$ of exponent $p > \max \{ |(4 - r)v_{\mathfrak{P}}(2)|, [K : \mathbb{Q}]r \}$ and let $E := E_{a,b,c}$ be the associated Frey curve.

- If $(a, b, c) \in W_{\mathcal{K}}$, then $v_{\mathfrak{P}}(j_E) < 0$ and $p \nmid v_{\mathfrak{P}}(j_E)$, equivalently $p \mid \#\bar{\rho}_{E,p}(l_{\mathfrak{P}})$.
- 2 Let r = 2, 3. If $\mathfrak{P} \in U_K$, then either $p | \# \bar{\rho}_{E,p}(I_{\mathfrak{P}})$ or $3 | \# \bar{\rho}_{E,p}(I_{\mathfrak{P}})$.
 - Let $(a, b, c) \in W_K$ be a non-trivial primitive solution to the equation $x^p + y^p = 2^r z^p$ of exponent $p \gg 0$ and let $E := E_{a,b,c}$ be the associated Frey curve.
 - Then by using two key results in [FS15], there exists an elliptic curve E'/K such that E'/K has good reduction away from S_K and has full 2-torsion, $\bar{\rho}_{E,p} \sim \bar{\rho}_{E',p}$ and $v_{\mathfrak{P}}(j_{E'}) < 0$ for all $\mathfrak{P} \in S_K$.

・ロト ・雪 ト ・ヨ ト ・ ヨ ト

Lemma (2.4)

Let $\mathfrak{P} \in S_K$. Suppose $(a, b, c) \in \mathcal{O}_K^3$ is a non-trivial primitive solution to the equation $x^p + y^p = 2^r z^p$ of exponent $p > \max \{ |(4 - r)v_{\mathfrak{P}}(2)|, [K : \mathbb{Q}]r \}$ and let $E := E_{a,b,c}$ be the associated Frey curve.

- If $(a, b, c) \in W_K$, then $v_{\mathfrak{P}}(j_E) < 0$ and $p \nmid v_{\mathfrak{P}}(j_E)$, equivalently $p \mid \# \bar{\rho}_{E,p}(l_{\mathfrak{P}})$.
- 2 Let r = 2, 3. If $\mathfrak{P} \in U_K$, then either $p | \# \bar{\rho}_{E,p}(I_{\mathfrak{P}})$ or $3 | \# \bar{\rho}_{E,p}(I_{\mathfrak{P}})$.
 - Let $(a, b, c) \in W_K$ be a non-trivial primitive solution to the equation $x^p + y^p = 2^r z^p$ of exponent $p \gg 0$ and let $E := E_{a,b,c}$ be the associated Frey curve.
 - Then by using two key results in [FS15], there exists an elliptic curve E'/K such that E'/K has good reduction away from S_K and has full 2-torsion, $\bar{\rho}_{E,p} \sim \bar{\rho}_{E',p}$ and $v_{\mathfrak{P}}(j_{E'}) < 0$ for all $\mathfrak{P} \in S_K$.
 - Then we relate $j_{E'}$ in terms of solution of S_{K} -unit equation $\lambda + \mu = 1$ along with the condition max $\{|v_{\mathfrak{P}}(\lambda)|, |v_{\mathfrak{P}}(\mu)|\} \le 4v_{\mathfrak{P}}(2)$ to get $v_{\mathfrak{P}}(j_{E'}) \ge 0$ for some $\mathfrak{P} \in S_{K}$, which is a contradiction.

(日)

Lemma (2.4)

Let $\mathfrak{P} \in S_K$. Suppose $(a, b, c) \in \mathcal{O}_K^3$ is a non-trivial primitive solution to the equation $x^p + y^p = 2^r z^p$ of exponent $p > \max \{ |(4 - r)v_{\mathfrak{P}}(2)|, [K : \mathbb{Q}]r \}$ and let $E := E_{a,b,c}$ be the associated Frey curve.

- If $(a, b, c) \in W_K$, then $v_{\mathfrak{P}}(j_E) < 0$ and $p \nmid v_{\mathfrak{P}}(j_E)$, equivalently $p \mid \#\bar{\rho}_{E,p}(l_{\mathfrak{P}})$.
- 2 Let r = 2, 3. If $\mathfrak{P} \in U_K$, then either $p | \# \bar{\rho}_{E,p}(I_{\mathfrak{P}})$ or $3 | \# \bar{\rho}_{E,p}(I_{\mathfrak{P}})$.
 - Let (a, b, c) ∈ W_K be a non-trivial primitive solution to the equation x^p + y^p = 2^rz^p of exponent p ≫ 0 and let E := E_{a,b,c} be the associated Frey curve.
 - Then by using two key results in [FS15], there exists an elliptic curve E'/K such that E'/K has good reduction away from S_K and has full 2-torsion, $\bar{\rho}_{E,p} \sim \bar{\rho}_{E',p}$ and $v_{\mathfrak{P}}(j_{E'}) < 0$ for all $\mathfrak{P} \in S_K$.
 - Then we relate *j_{E'}* in terms of solution of *S_K*-unit equation λ + μ = 1 along with the condition max {|*v*_𝔅(λ)|, |*v*_𝔅(μ)|} ≤ 4*v*_𝔅(2) to get *v*_𝔅(*j_{E'}*) ≥ 0 for some 𝔅 ∈ *S_K*, which is a contradiction.
 - A similar argument also holds for any non-trivial primitive solution (a, b, c) ∈ O³_K to the equation x^p + y^p = 2^rz^p of exponent p ≫ 0 with r = 2, 3, but in this case we get either v_𝔅(j_{E'}) < 0 or 3 ∤ v_𝔅(j_{E'}) for 𝔅 ∈ U_K.

э.

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ─ 臣

Now, we will provide several local criteria of K the equation $x^{p} + y^{p} = 2^{r}z^{p}$.

イロト 不得 トイヨト イヨト 二日

Now, we will provide several local criteria of K the equation $x^{p} + y^{p} = 2^{r}z^{p}$.

Proposition (Even degree)

Let $K = \mathbb{Q}(\sqrt{d})$. Suppose $d \ge 2$ is a square-free integer satisfy one of the following conditions:

- $0 \ d \equiv 3 \pmod{8};$
- $d \equiv 5 \pmod{8};$
- **3** $d \equiv 6 \text{ or } 10 \pmod{16};$

• $d \equiv 2 \pmod{16}$ and d has some prime divisor $q \equiv 5 \text{ or } 7 \pmod{8}$;

() $d \equiv 14 \pmod{16}$ and d has some prime divisor $q \equiv 3 \text{ or } 5 \pmod{8}$.

Then the equation $x^{p} + y^{p} = 2^{r} z^{p}$ has no asymptotic solution in W_{K} .

イロト イポト イヨト イヨト 三日

Now, we will provide several local criteria of K the equation $x^{p} + y^{p} = 2^{r}z^{p}$.

Proposition (Even degree)

Let $K = \mathbb{Q}(\sqrt{d})$. Suppose $d \ge 2$ is a square-free integer satisfy one of the following conditions:

- $0 \ d \equiv 3 \pmod{8};$
- 2 $d \equiv 5 \pmod{8};$
- **3** $d \equiv 6 \text{ or } 10 \pmod{16};$
- $d \equiv 2 \pmod{16}$ and d has some prime divisor $q \equiv 5 \text{ or } 7 \pmod{8}$;
- **(**) $d \equiv 14 \pmod{16}$ and d has some prime divisor $q \equiv 3 \text{ or } 5 \pmod{8}$.

Then the equation $x^{p} + y^{p} = 2^{r} z^{p}$ has no asymptotic solution in W_{K} .

Proposition (Odd degree)

Assume 2 is either inert or totally ramified in K. Suppose one of the hypothesis holds:

- Suppose n = [K : ℚ] and l > 5 is a prime number such that (n, l − 1) = 1 and l totally ramifies in K.
- Suppose $[K : \mathbb{Q}]$ is odd and 3 totally splits in K.

Then the equation $x^{p} + y^{p} = 2^{r} z^{p}$ has no asymptotic solution in W_{K} .

ヘロト 人間ト 人目ト 人目下

æ

Consider the equation

$$x^{p} + y^{p} = z^{2} \tag{3.1}$$

with prime exponent p.

<ロト < 同ト < ヨト < ヨト

э

Consider the equation

$$x^p + y^p = z^2 \tag{3.1}$$

with prime exponent p.

• (Trivial solution) abc = 0

< ロ > < 同 > < 回 > < 回 >

э

Consider the equation

$$x^{p} + y^{p} = z^{2} \tag{3.1}$$

with prime exponent p.

• (Trivial solution) abc = 0

Definition (3.1)

Let W'_{K} be the set of all non-trivial primitive solution $(a, b, c) \in \mathcal{O}_{K}^{3}$ to the equation (3.1) with $\mathfrak{P}|ab$ for every $\mathfrak{P} \in S_{K}$.

Image: A matrix and a matrix

Consider the equation

$$x^{p} + y^{p} = z^{2} \tag{3.1}$$

with prime exponent p.

(Trivial solution)
abc = 0

Definition (3.1)

Let W'_{K} be the set of all non-trivial primitive solution $(a, b, c) \in \mathcal{O}_{K}^{3}$ to the equation (3.1) with $\mathfrak{P}|ab$ for every $\mathfrak{P} \in S_{K}$.

• We define the *m*-Selmer group K and S_K by $K(S_K, m) := \{x \in K^*/(K^*)^m : v_p(x) \equiv 0 \pmod{m}, \forall p \notin S_K\}.$

• • • • • • • • •

Consider the equation

$$x^{p} + y^{p} = z^{2} \tag{3.1}$$

with prime exponent p.

(Trivial solution)
abc = 0

Definition (3.1)

Let W'_{K} be the set of all non-trivial primitive solution $(a, b, c) \in \mathcal{O}_{K}^{3}$ to the equation (3.1) with $\mathfrak{P}|ab$ for every $\mathfrak{P} \in S_{K}$.

- We define the *m*-Selmer group K and S_K by $K(S_K, m) := \{x \in K^*/(K^*)^m : v_p(x) \equiv 0 \pmod{m}, \forall p \notin S_K\}.$
- Let $L = K(\sqrt{a})$ for $a \in K(S_{\kappa}, 2)$.

・ ロ ト ・ 同 ト ・ 三 ト ・

Consider the equation

$$x^{p} + y^{p} = z^{2} \tag{3.1}$$

with prime exponent p.

(Trivial solution)
abc = 0

Definition (3.1)

Let W'_K be the set of all non-trivial primitive solution $(a, b, c) \in \mathcal{O}_K^3$ to the equation (3.1) with $\mathfrak{P}|ab$ for every $\mathfrak{P} \in S_K$.

- We define the *m*-Selmer group K and S_K by $K(S_K, m) := \{x \in K^*/(K^*)^m : v_p(x) \equiv 0 \pmod{m}, \forall p \notin S_K\}.$
- Let $L = K(\sqrt{a})$ for $a \in K(S_{\kappa}, 2)$.
- Let S_L be the set of all prime ideals of L lying over primes of S_K .

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣.

Theorem (3.2) (Kumar-Sahoo, 2023)

Let K be a totally real field. For each $a \in K(S_K, 2)$, let $L = K(\sqrt{a})$.

イロト イボト イヨト イヨト

э

Theorem (3.2) (Kumar-Sahoo, 2023)

Let K be a totally real field. For each $a \in K(S_K, 2)$, let $L = K(\sqrt{a})$. Suppose, for every solution (λ, μ) to the S_K -unit equation $\lambda + \mu = 1$ with $\lambda, \mu \in \mathcal{O}^*_{S_K}$, there exists some $\mathfrak{P} \in S_K$ that satisfies

$$\max\left\{|v_{\mathfrak{P}}(\lambda)|, |v_{\mathfrak{P}}(\mu)|\right\} \le 4v_{\mathfrak{P}}(2), \tag{3.2}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (3.2) (Kumar-Sahoo, 2023)

Let K be a totally real field. For each $a \in K(S_K, 2)$, let $L = K(\sqrt{a})$. Suppose, for every solution (λ, μ) to the S_K -unit equation $\lambda + \mu = 1$ with $\lambda, \mu \in \mathcal{O}^*_{S_K}$, there exists some $\mathfrak{P} \in S_K$ that satisfies

$$\max\left\{|v_{\mathfrak{P}}(\lambda)|, |v_{\mathfrak{P}}(\mu)|\right\} \le 4v_{\mathfrak{P}}(2), \tag{3.2}$$

and for every solution (λ, μ) to the S_L -unit equation $\lambda + \mu = 1$ with $\lambda, \mu \in \mathcal{O}^*_{S_L}$, there exists some $\mathfrak{P}' \in S_L$ that satisfies

$$\max\left\{|v_{\mathfrak{P}'}(\lambda)|, |v_{\mathfrak{P}'}(\mu)|\right\} \le 4v_{\mathfrak{P}'}(2). \tag{3.3}$$

< ロ > < 同 > < 三 > <

Theorem (3.2) (Kumar-Sahoo, 2023)

Let K be a totally real field. For each $a \in K(S_K, 2)$, let $L = K(\sqrt{a})$. Suppose, for every solution (λ, μ) to the S_K -unit equation $\lambda + \mu = 1$ with $\lambda, \mu \in \mathcal{O}^*_{S_K}$, there exists some $\mathfrak{P} \in S_K$ that satisfies

$$\max\left\{\left|v_{\mathfrak{P}}(\lambda)\right|,\left|v_{\mathfrak{P}}(\mu)\right|\right\} \leq 4v_{\mathfrak{P}}(2),\tag{3.2}$$

and for every solution (λ, μ) to the S_L -unit equation $\lambda + \mu = 1$ with $\lambda, \mu \in \mathcal{O}^*_{S_L}$, there exists some $\mathfrak{P}' \in S_L$ that satisfies

$$\max\left\{|v_{\mathfrak{P}'}(\lambda)|, |v_{\mathfrak{P}'}(\mu)|\right\} \le 4v_{\mathfrak{P}'}(2). \tag{3.3}$$

Then the equation $x^{p} + y^{p} = z^{2}$ has no asymptotic solution in W'_{K} .

э

Consider the equation

$$Bx^{p} + Cy^{p} = z^{2}, \qquad (4.1)$$

э

Consider the equation

$$Bx^p + Cy^p = z^2, (4.1)$$

where B is an odd integer, C is either an odd integer or a power of 2.

< □ > < 同 > <

∃ ► < ∃ ►</p>

Consider the equation

$$Bx^{p} + Cy^{p} = z^{2}, \qquad (4.1)$$

where B is an odd integer, C is either an odd integer or a power of 2.

(Trivial solution)
abc = 0

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Consider the equation

$$Bx^{\rho} + Cy^{\rho} = z^2, \qquad (4.1)$$

where B is an odd integer, C is either an odd integer or a power of 2.

(Trivial solution)
abc = 0

Definition

Let W_K be the set of all non-trivial primitive solutions $(a, b, c) \in \mathcal{O}_K^3$ to the equation (4.1) with $\mathfrak{P}|bc$ for every $\mathfrak{P} \in S_K$.

< ロ > < 同 > < 回 > < 回 >

Consider the equation

$$Bx^{\rho} + Cy^{\rho} = z^2, \qquad (4.1)$$

where B is an odd integer, C is either an odd integer or a power of 2.

(Trivial solution)
abc = 0

Definition

Let $W_{\mathcal{K}}$ be the set of all non-trivial primitive solutions $(a, b, c) \in \mathcal{O}_{\mathcal{K}}^3$ to the equation (4.1) with $\mathfrak{P}|bc$ for every $\mathfrak{P} \in S_{\mathcal{K}}$.

For any set S ⊆ P, let Cl_S(K) := Cl(K)/⟨[𝔅])_{𝔅∈S} and Cl_S(K)[n] be its n-torsion points.

< ロ > < 同 > < 回 > < 回 >

Consider the equation

$$Bx^{\rho} + Cy^{\rho} = z^2, \qquad (4.1)$$

where B is an odd integer, C is either an odd integer or a power of 2.

(Trivial solution)
abc = 0

Definition

Let $W_{\mathcal{K}}$ be the set of all non-trivial primitive solutions $(a, b, c) \in \mathcal{O}_{\mathcal{K}}^3$ to the equation (4.1) with $\mathfrak{P}|bc$ for every $\mathfrak{P} \in S_{\mathcal{K}}$.

- For any set S ⊆ P, let Cl_S(K) := Cl(K)/⟨[𝔅])_{𝔅∈S} and Cl_S(K)[n] be its n-torsion points.
- Let $S'_{\mathcal{K}} := \{\mathfrak{P} \in P : \mathfrak{P} | 2BC \}.$

(日) (同) (三) (三) (二)

Consider the equation

$$Bx^{p} + Cy^{p} = z^{2}, \qquad (4.1)$$

where B is an odd integer, C is either an odd integer or a power of 2.

(Trivial solution)
abc = 0

Definition

Let W_K be the set of all non-trivial primitive solutions $(a, b, c) \in \mathcal{O}_K^3$ to the equation (4.1) with $\mathfrak{P}|bc$ for every $\mathfrak{P} \in S_K$.

- For any set S ⊆ P, let Cl_S(K) := Cl(K)/⟨[𝔅])_{𝔅∈S} and Cl_S(K)[n] be its n-torsion points.
- Let $S'_{\mathcal{K}} := \{\mathfrak{P} \in P : \mathfrak{P} | 2BC \}.$
- For $r \in \mathbb{N}$, let S_r be the set consisting of elements $(\pm \sqrt{2^r + B}, 1, 1), \ (\pm \sqrt{2^r B}, -1, 1), \ (\pm \sqrt{-2^r + B}, 1, -1), \ (\pm \sqrt{-2^r B}, 1, 1).$

-

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣.
Theorem (4.1) (Kumar-Sahoo)

Let K be a totally real field with $\operatorname{Cl}_{S'_{K}}(K)[2] = 1$.

・ロト ・四ト ・ヨト ・ヨト

æ

Theorem (4.1) (Kumar-Sahoo)

Let K be a totally real field with $\operatorname{Cl}_{S'_{K}}(K)[2] = 1$. Suppose for every solution (α, β, γ) to the equation

$$\alpha + \beta = \gamma^{2}, \text{ where } \alpha, \beta \in \mathcal{O}_{\mathcal{S}'_{\mathcal{K}}}^{*}, \ \gamma \in \mathcal{O}_{\mathcal{S}'_{\mathcal{K}}}.$$
(4.2)

there exists $\mathfrak{P} \in \mathcal{S}_{\mathcal{K}}$ that satisfies

・ロト ・四ト ・ヨト ・ヨト

э

Theorem (4.1) (Kumar-Sahoo)

Let K be a totally real field with $\operatorname{Cl}_{S'_{K}}(K)[2] = 1$. Suppose for every solution (α, β, γ) to the equation

$$\alpha + \beta = \gamma^{2}, \text{ where } \alpha, \beta \in \mathcal{O}_{\mathcal{S}'_{\mathcal{K}}}^{*}, \ \gamma \in \mathcal{O}_{\mathcal{S}'_{\mathcal{K}}}.$$
(4.2)

there exists $\mathfrak{P} \in S_{\mathcal{K}}$ that satisfies

$$\left| \mathbf{v}_{\mathfrak{P}} \left(\alpha \beta^{-1} \right) \right| \le 6 \mathbf{v}_{\mathfrak{P}}(2). \tag{4.3}$$

э

Theorem (4.1) (Kumar-Sahoo)

Let K be a totally real field with $\operatorname{Cl}_{S'_{K}}(K)[2] = 1$. Suppose for every solution (α, β, γ) to the equation

$$\alpha + \beta = \gamma^{2}, \text{ where } \alpha, \beta \in \mathcal{O}_{\mathcal{S}'_{\mathcal{K}}}^{*}, \ \gamma \in \mathcal{O}_{\mathcal{S}'_{\mathcal{K}}}.$$
(4.2)

there exists $\mathfrak{P} \in S_{\mathcal{K}}$ that satisfies

$$\left| \mathsf{v}_{\mathfrak{P}}\left(\alpha \beta^{-1} \right) \right| \leq 6 \mathsf{v}_{\mathfrak{P}}(2).$$
 (4.3)

Then, the equation $Bx^p + Cy^p = z^2$ (resp., $Bx^p + 2^r y^p = 2z^2$) has no asymptotic solution in W_K (resp., \mathcal{O}_K^3).

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Theorem (4.1) (Kumar-Sahoo)

Let K be a totally real field with $\operatorname{Cl}_{S'_{K}}(K)[2] = 1$. Suppose for every solution (α, β, γ) to the equation

$$\alpha + \beta = \gamma^{2}, \text{ where } \alpha, \beta \in \mathcal{O}_{\mathcal{S}'_{\mathcal{K}}}^{*}, \ \gamma \in \mathcal{O}_{\mathcal{S}'_{\mathcal{K}}}.$$
(4.2)

there exists $\mathfrak{P} \in S_{\mathcal{K}}$ that satisfies

$$\left| \mathsf{v}_{\mathfrak{P}} \left(\alpha \beta^{-1} \right) \right| \le 6 \mathsf{v}_{\mathfrak{P}}(2). \tag{4.3}$$

Then, the equation $Bx^p + Cy^p = z^2$ (resp., $Bx^p + 2^r y^p = 2z^2$) has no asymptotic solution in W_K (resp., \mathcal{O}_K^3).

Theorem (4.2) (Kumar-Sahoo)

Let K be a totally real field satisfying (ES) with $\operatorname{Cl}_{S'_{k}}(K)[2] = 1$.

Theorem (4.1) (Kumar-Sahoo)

Let K be a totally real field with $\operatorname{Cl}_{S'_{K}}(K)[2] = 1$. Suppose for every solution (α, β, γ) to the equation

$$\alpha + \beta = \gamma^{2}, \text{ where } \alpha, \beta \in \mathcal{O}_{\mathcal{S}'_{\mathcal{K}}}^{*}, \ \gamma \in \mathcal{O}_{\mathcal{S}'_{\mathcal{K}}}.$$
(4.2)

there exists $\mathfrak{P} \in \mathcal{S}_{\mathcal{K}}$ that satisfies

$$\left| \mathbf{v}_{\mathfrak{P}}\left(\alpha \beta^{-1} \right) \right| \leq 6 \mathbf{v}_{\mathfrak{P}}(2).$$
 (4.3)

Then, the equation $Bx^p + Cy^p = z^2$ (resp., $Bx^p + 2^r y^p = 2z^2$) has no asymptotic solution in W_K (resp., \mathcal{O}_K^3).

Theorem (4.2) (Kumar-Sahoo)

Let K be a totally real field satisfying (ES) with $\operatorname{Cl}_{S'_{K}}(K)[2] = 1$. Suppose for every solution (α, β, γ) to the equation (4.2), there exists $\mathfrak{P} \in U_{K}$ that satisfies

$$\left| v_{\mathfrak{P}}(\alpha \beta^{-1}) \right| \leq 6 v_{\mathfrak{P}}(2) \text{ and } v_{\mathfrak{P}}\left(\alpha \beta^{-1} \right) \equiv 0 \pmod{3}.$$
 (4.4)

12/16

Theorem (4.1) (Kumar-Sahoo)

Let K be a totally real field with $\operatorname{Cl}_{S'_{K}}(K)[2] = 1$. Suppose for every solution (α, β, γ) to the equation

$$\alpha + \beta = \gamma^{2}, \text{ where } \alpha, \beta \in \mathcal{O}_{\mathcal{S}'_{\mathcal{K}}}^{*}, \ \gamma \in \mathcal{O}_{\mathcal{S}'_{\mathcal{K}}}.$$
(4.2)

there exists $\mathfrak{P} \in \mathcal{S}_{\mathcal{K}}$ that satisfies

$$\left| \mathbf{v}_{\mathfrak{P}}\left(\alpha \beta^{-1} \right) \right| \leq 6 \mathbf{v}_{\mathfrak{P}}(2).$$
 (4.3)

Then, the equation $Bx^p + Cy^p = z^2$ (resp., $Bx^p + 2^r y^p = 2z^2$) has no asymptotic solution in W_K (resp., \mathcal{O}_K^3).

Theorem (4.2) (Kumar-Sahoo)

Let K be a totally real field satisfying (ES) with $\operatorname{Cl}_{S'_{K}}(K)[2] = 1$. Suppose for every solution (α, β, γ) to the equation (4.2), there exists $\mathfrak{P} \in U_{K}$ that satisfies

$$\left| v_{\mathfrak{P}}(\alpha \beta^{-1}) \right| \leq 6 v_{\mathfrak{P}}(2) \text{ and } v_{\mathfrak{P}}\left(\alpha \beta^{-1} \right) \equiv 0 \pmod{3}.$$
 (4.4)

Then the equation $Bx^p + 2^r y^p = z^2$ with $r \in \{1, 2, 4, 5\}$ has no asymptotic solution in $\mathcal{O}_K^3 \setminus S_r$.

Theorem (4.1) (Kumar-Sahoo)

Let K be a totally real field with $\operatorname{Cl}_{S'_{K}}(K)[2] = 1$. Suppose for every solution (α, β, γ) to the equation

$$\alpha + \beta = \gamma^{2}, \text{ where } \alpha, \beta \in \mathcal{O}_{\mathcal{S}'_{\mathcal{K}}}^{*}, \ \gamma \in \mathcal{O}_{\mathcal{S}'_{\mathcal{K}}}.$$
(4.2)

there exists $\mathfrak{P} \in \mathcal{S}_{\mathcal{K}}$ that satisfies

$$\left| \mathbf{v}_{\mathfrak{P}}\left(\alpha \beta^{-1} \right) \right| \leq 6 \mathbf{v}_{\mathfrak{P}}(2).$$
 (4.3)

Then, the equation $Bx^p + Cy^p = z^2$ (resp., $Bx^p + 2^r y^p = 2z^2$) has no asymptotic solution in W_K (resp., \mathcal{O}_K^3).

Theorem (4.2) (Kumar-Sahoo)

Let K be a totally real field satisfying (ES) with $\operatorname{Cl}_{S'_{K}}(K)[2] = 1$. Suppose for every solution (α, β, γ) to the equation (4.2), there exists $\mathfrak{P} \in U_{K}$ that satisfies

$$\left| v_{\mathfrak{P}}(\alpha \beta^{-1}) \right| \leq 6 v_{\mathfrak{P}}(2) \text{ and } v_{\mathfrak{P}}\left(\alpha \beta^{-1} \right) \equiv 0 \pmod{3}.$$
 (4.4)

Then the equation $Bx^p + 2^r y^p = z^2$ with $r \in \{1, 2, 4, 5\}$ has no asymptotic solution in $\mathcal{O}_K^3 \setminus S_r$. In particular, if $[K : \mathbb{Q}]$ is odd, then $S_r = \phi$ for r = 2, 4, 5.

Here, we will explain the methodology that is common in the proof of Theorem (4.1) and Theorem (4.2).

・ロト ・四ト ・ヨト ・ヨト

э

Here, we will explain the methodology that is common in the proof of Theorem (4.1) and Theorem (4.2).

• For any solution $(a, b, c) \in \mathcal{O}_K^3$ to the equation $Bx^p + Cy^p = z^2$,

くロト (雪下) (ヨト (ヨト))

3

Here, we will explain the methodology that is common in the proof of Theorem (4.1) and Theorem (4.2).

• For any solution $(a, b, c) \in \mathcal{O}_K^3$ to the equation $Bx^p + Cy^p = z^2$, consider the Frey elliptic curve $E := E_{a,b,c}$ as

$$E: Y^{2} = X(X^{2} + 2aX + Bb^{p}), \qquad (4.5)$$

with $c_4 = 2^4 (Bb^p + 4Cc^p)$, $\Delta_E = 2^6 (B^2 C) (b^2 c)^p$ and $j_E = 2^6 \frac{(Bb^p + 4Cc^p)^3}{B^2 C (b^2 c)^p}$.

(日) (同) (三) (三) (二)

Here, we will explain the methodology that is common in the proof of Theorem (4.1) and Theorem (4.2).

• For any solution $(a, b, c) \in \mathcal{O}_K^3$ to the equation $Bx^p + Cy^p = z^2$, consider the Frey elliptic curve $E := E_{a,b,c}$ as

$$E: Y^{2} = X(X^{2} + 2aX + Bb^{p}), \qquad (4.5)$$

with $c_4 = 2^4 (Bb^p + 4Cc^p)$, $\Delta_E = 2^6 (B^2 C) (b^2 c)^p$ and $j_E = 2^6 \frac{(Bb^p + 4Cc^p)^3}{B^2 C (b^2 c)^p}$.

 There exists a constant A := A_{K,B,C} > 0 (depending on K, B, C) such that for primes p > A, the Frey elliptic curve E/K is modular.

Here, we will explain the methodology that is common in the proof of Theorem (4.1) and Theorem (4.2).

• For any solution $(a, b, c) \in \mathcal{O}_K^3$ to the equation $Bx^p + Cy^p = z^2$, consider the Frey elliptic curve $E := E_{a,b,c}$ as

$$E: Y^{2} = X(X^{2} + 2aX + Bb^{p}), \qquad (4.5)$$

with $c_4 = 2^4 (Bb^p + 4Cc^p)$, $\Delta_E = 2^6 (B^2 C) (b^2 c)^p$ and $j_E = 2^6 \frac{(Bb^p + 4Cc^p)^3}{B^2 C (b^2 c)^p}$.

- There exists a constant A := A_{K,B,C} > 0 (depending on K, B, C) such that for primes p > A, the Frey elliptic curve E/K is modular.
- For $p \gg 0$, the residual representation $\bar{\rho}_{E,p}$ is irreducible.

くロト く得ト くきト くきトー

Here, we will explain the methodology that is common in the proof of Theorem (4.1) and Theorem (4.2).

• For any solution $(a, b, c) \in \mathcal{O}_K^3$ to the equation $Bx^p + Cy^p = z^2$, consider the Frey elliptic curve $E := E_{a,b,c}$ as

$$E: Y^{2} = X(X^{2} + 2aX + Bb^{p}), \qquad (4.5)$$

with $c_4 = 2^4 (Bb^p + 4Cc^p)$, $\Delta_E = 2^6 (B^2 C) (b^2 c)^p$ and $j_E = 2^6 \frac{(Bb^p + 4Cc^p)^3}{B^2 C (b^2 c)^p}$.

- There exists a constant A := A_{K,B,C} > 0 (depending on K, B, C) such that for primes p > A, the Frey elliptic curve E/K is modular.
- For $p \gg 0$, the residual representation $\bar{\rho}_{E,p}$ is irreducible.
- The Frey elliptic curve *E* has semi-stable reduction away from $S'_{\mathcal{K}}$ and satisfies $p|v_{\mathfrak{q}}(\Delta_E)$ for $\mathfrak{q} \notin S'_{\mathcal{K}}$.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

• For any solution $(a, b, c) \in W_K$ to the equation $Bx^p + Cy^p = z^2$ with exponent $p \gg 0$, we get $p |\# \bar{\rho}_{E,p}(I_{\mathfrak{P}})$ for $\mathfrak{P} \in S_K$.

э

- For any solution $(a, b, c) \in W_K$ to the equation $Bx^p + Cy^p = z^2$ with exponent $p \gg 0$, we get $p |\# \bar{\rho}_{E,p}(I_{\mathfrak{P}})$ for $\mathfrak{P} \in S_K$.
- Then there exists an elliptic curve E'/K having a non-trivial 2-torsion, E' has good reduction away from S'_K such that $\bar{\rho}_{E,p} \sim \bar{\rho}_{E',p}$ and $v_{\mathfrak{P}}(j_{E'}) < 0$ for $\mathfrak{P} \in S_K$.

< ロ > < 同 > < 回 > < 回 > <

- For any solution $(a, b, c) \in W_K$ to the equation $Bx^p + Cy^p = z^2$ with exponent $p \gg 0$, we get $p |\# \bar{\rho}_{E,p}(I_{\mathfrak{P}})$ for $\mathfrak{P} \in S_K$.
- Then there exists an elliptic curve E'/K having a non-trivial 2-torsion, E' has good reduction away from S'_{K} such that $\bar{\rho}_{E,p} \sim \bar{\rho}_{E',p}$ and $v_{\mathfrak{P}}(j_{E'}) < 0$ for $\mathfrak{P} \in S_{K}$.
- Finally using a nice technique of Mocanu, we relate $j_{E'}$ in terms of solution $(\alpha, \beta, \gamma) \in (\mathcal{O}^*_{S'_{K}}, \mathcal{O}^*_{S'_{K}}, \mathcal{O}_{S'_{K}})$ to the equation $\alpha + \beta = \gamma^2$ along with the condition $|v_{\mathfrak{P}}(\alpha\beta^{-1})| \leq 6v_{\mathfrak{P}}(2)$ to get $v_{\mathfrak{P}}(j_{E'}) \geq 0$ for some $\mathfrak{P} \in S_{\mathcal{K}}$, which is a contradiction.

- For any solution $(a, b, c) \in W_K$ to the equation $Bx^p + Cy^p = z^2$ with exponent $p \gg 0$, we get $p |\# \bar{\rho}_{E,p}(I_{\mathfrak{P}})$ for $\mathfrak{P} \in S_K$.
- Then there exists an elliptic curve E'/K having a non-trivial 2-torsion, E' has good reduction away from S'_{K} such that $\bar{\rho}_{E,p} \sim \bar{\rho}_{E',p}$ and $v_{\mathfrak{P}}(j_{E'}) < 0$ for $\mathfrak{P} \in S_{K}$.
- Finally using a nice technique of Mocanu, we relate $j_{E'}$ in terms of solution $(\alpha, \beta, \gamma) \in (\mathcal{O}^*_{S'_{K}}, \mathcal{O}^*_{S'_{K}}, \mathcal{O}_{S'_{K}})$ to the equation $\alpha + \beta = \gamma^2$ along with the condition $|v_{\mathfrak{P}}(\alpha\beta^{-1})| \leq 6v_{\mathfrak{P}}(2)$ to get $v_{\mathfrak{P}}(j_{E'}) \geq 0$ for some $\mathfrak{P} \in S_{\mathcal{K}}$, which is a contradiction.
- A similar idea also works for any solution $(a, b, c) \in \mathcal{O}_K^3 \setminus S_r$ to the equation $Bx^p + 2^r y^p = z^2$ (with r = 1, 2, 4, 5) but in this case we have either $p | \# \bar{\rho}_{E,p}(l_{\mathfrak{P}})$ or $3 | \# \bar{\rho}_{E,p}(l_{\mathfrak{P}})$ for $\mathfrak{P} \in U_K$.

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・ ・ 日

- For any solution $(a, b, c) \in W_K$ to the equation $Bx^p + Cy^p = z^2$ with exponent $p \gg 0$, we get $p |\# \bar{\rho}_{E,p}(I_{\mathfrak{P}})$ for $\mathfrak{P} \in S_K$.
- Then there exists an elliptic curve E'/K having a non-trivial 2-torsion, E' has good reduction away from S'_{K} such that $\bar{\rho}_{E,p} \sim \bar{\rho}_{E',p}$ and $v_{\mathfrak{P}}(j_{E'}) < 0$ for $\mathfrak{P} \in S_{K}$.
- Finally using a nice technique of Mocanu, we relate $j_{E'}$ in terms of solution $(\alpha, \beta, \gamma) \in (\mathcal{O}^*_{S'_{K}}, \mathcal{O}^*_{S'_{K}}, \mathcal{O}_{S'_{K}})$ to the equation $\alpha + \beta = \gamma^2$ along with the condition $|v_{\mathfrak{P}}(\alpha\beta^{-1})| \leq 6v_{\mathfrak{P}}(2)$ to get $v_{\mathfrak{P}}(j_{E'}) \geq 0$ for some $\mathfrak{P} \in S_{\mathcal{K}}$, which is a contradiction.
- A similar idea also works for any solution $(a, b, c) \in \mathcal{O}_{K}^{3} \setminus S_{r}$ to the equation $Bx^{p} + 2^{r}y^{p} = z^{2}$ (with r = 1, 2, 4, 5) but in this case we have either $p | \# \bar{\rho}_{E,p}(l_{\mathfrak{P}})$ or $3 | \# \bar{\rho}_{E,p}(l_{\mathfrak{P}})$ for $\mathfrak{P} \in U_{K}$.
- Similar to $x^{p} + y^{p} = 2^{r}z^{p}$ case, we can also give local criteria of *K* for the solutions of $Bx^{p} + Cy^{p} = z^{2}$ and $Bx^{p} + 2^{r}y^{p} = 2z^{2}$.

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

References I

- Deconinck, Heline. On the generalized Fermat equation over totally real fields. Acta Arith. 173 (2016), no. 3, 225–237.
- Darmon, Henri; Merel, Loïc. Winding quotients and some variants of Fermat's last theorem. J. Reine Angew. Math. 490 (1997), 81–100.
 - Freitas, Nuno; Siksek, Samir. The asymptotic Fermat's last theorem for five-sixths of real quadratic fields. Compos. Math. 151 (2015), no. 8, 1395–1415.
 - Ivorra, Wilfrid. Sur les équations $x^p + 2^{\beta}y^p = z^2$ et $x^p + 2^{\beta}y^p = 2z^2$. (French) [[On the equations $x^p + 2^{\beta}y^p = z^2$ and $x^p + 2^{\beta}y^p = 2z^2$]] Acta Arith. 108 (2003), no. 4, 327–338.
- Işik, Erman; Kara, Yasemin; Ozman, Ekin. On ternary Diophantine equations of signature (p, p, 2) over number fields. Turkish J. Math. 44 (2020), no. 4, 1197–1211.
- Kumar, Narasimha; Sahoo, Satyabrat. On the solutions of $x^{p} + y^{p} = 2^{r}z^{p}, x^{p} + y^{p} = z^{2}$ over totally real fields. To appear in Acta Arithmetica.
- Kumar, Narasimha; Sahoo, Satyabrat. On the solutions of $x^2 = By^p + Cz^p$ and $2x^2 = By^p + Cz^p$ over totally real fields. https://arxiv.org/abs/2301.09263.

э.

References II

- Mocanu, Diana. Asymptotic Fermat for signatures (*p*, *p*, 2) and (*p*, *p*, 3) over totally real fields. Mathematika 68 (2022), no. 4, 1233–1257.
- Ribet, Kenneth A. On the equation $a^{\rho} + 2^{\alpha}b^{\rho} + c^{\rho} = 0$. Acta Arith. 79 (1997), no. 1, 7–16.
- Siksek, Samir. On the Diophantine equation $x^2 = y^p + 2^k z^p$. J. Théor. Nombres Bordeaux 15 (2003), no. 3, 839–846.
- Silverman, Joseph H. The arithmetic of elliptic curves. Second edition. Graduate Texts in Mathematics, 106. Springer, Dordrecht, 2009.
- Wiles, Andrew. Modular forms, elliptic curves, and Fermat's last theorem. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), 243–245, Birkhäuser, Basel, 1995.

< ロ > < 同 > < 回 > < 回 >