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1. Some known results for Diophantine equations.

Over Z
xn + yn = zn Wiles [Wil94] n ≥ 3 (no solutions)
xn + yn = 2zn Darmon-Merel [DM97] n ≥ 3 (no solutions)
xp + yp = 2r zp Ribet [Rib97] 2 ≤ r < p (no solutions)
xn + yn = z2 Darmon-Merel [DM97] n ≥ 4 (no solutions)
x2 = yp + 2r zp Siksek [Sik03] r ≥ 2, p ≥ 7 (finite solutions)
2x2 = yp + 2r zp Ivorra [Ivo03] p ≥ 7, 0 ≤ r ≤ p (finite solutions)

Let K be a totally real field of degree n.
Let OK and p represent the ring of integers of K and a rational prime, respectively.

Definition (1.1)
We say that a Diophantine equation Axp + Byp = Czp of exponent p has no asymptotic
solution in S ⊆ K 3, if there exists a constant VK ,A,B,C (depending on K , A, B, C) such
that for primes p > VK ,A,B,C , the equation Axp + Byp = Czp of exponent p has no
non-trivial primitive solutions in S.
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In [FS15], Freitas and Siksek show that the equation xp + yp = zp of exponent p
has no asymptotic solution in K 3, for a certain class of totally real fields K .

In [Dec16], Deconinck extended the work in [FS15] to the generalized equation
Axp + Byp = Czp with 2 ∤ ABC .
In [IKO20, Theorem 1.1], Işik, Kara, and Ozman proved that the equation
xp + yp = z2 of exponent p has no asymptotic solution of certain type in O3

K ,
whenever h+

K = 1 and f(P|2) = 1 for some prime P in OK .
In [Moc22], Mocanu proved [IKO20, Theorem 1.1] by replacing the assumptions in
[IKO20] to 2 ∤ h+

K and 2 is inert in K .
We are interested to study the asymptotic solution of the following equations:

1 xp + yp = 2r zp and xp + yp = z2 over K ;
2 Bxp + Cyp = z2 and Bxp + Cyp = 2z2 over K , where B is an odd integer, C is

either an odd integer or a power of 2.
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2. On the solutions of xp + yp = 2r zp over K .

Consider the equation
xp + yp = 2r zp (2.1)

of prime exponent p and r ∈ N.
Let K be a totally real field of degree n.
Denote K ∗ := K \ {0}. Let P := Spec(OK ).
For any S ⊆ P, let OS := {α ∈ K : vP(α) ≥ 0 for all P ∈ P \ S} denote the ring of
S-integers in K and O∗

S denote the units of OS .
Let SK := {P ∈ P : P|2}, and UK := {P ∈ SK : (3, vP(2)) = 1}.
(Trivial solution)
abc = 0, or (a, b, c) ∈ {(1, 1, 1), (−1, −1, −1)} for r = 1.

Definition (2.1)

Let WK be the set of all non-trivial primitive solution (a, b, c) ∈ O3
K to the equation (2.1)

with P|abc for every P ∈ SK .
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Main results.

Theorem (2.2) (Kumar-Sahoo, 2023)

Let K be a totally real field. Suppose, for every solution (λ, µ) to the SK -unit equation

λ + µ = 1, λ, µ ∈ O∗
SK , (2.2)

there exists some P ∈ SK that satisfies

max {|vP(λ)|, |vP(µ)|} ≤ 4vP(2). (2.3)

Then the equation xp + yp = 2r zp has no asymptotic solution in WK .

We write (ES) for ”either [K : Q] is odd or Eichler-Shimura Conjecture holds for K .”

Theorem (2.3) (Kumar-Sahoo, 2023)

Let K be a totally real field satisfying the condition (ES). Suppose, for every solution
(λ, µ) to the SK -unit equation (2.2) there exists some P ∈ UK that satisfies

max {|vP(λ)|, |vP(µ)|} ≤ 4vP(2) and vP(λµ) ≡ vP(2) (mod 3). (2.4)

Then the equation xp + yp = 2r zp with r = 2, 3 has no asymptotic solution in O3
K .
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Key steps to prove Theorem (2.2) and Theorem (2.3).

For any non-trivial primitive solution (a, b, c) ∈ O3
K to the equation xp + yp = 2r zp ,

consider the Frey elliptic curve as

E = Ea,b,c : Y 2 = X(X − ap)(X + bp), (2.5)

where ∆E = 24+2r (abc)2p , c4 = 24(a2p + 2r bpcp) and jE = 28−2r (a2p+2r bpcp)3

(abc)2p .
There exists a constant AK ,r (depending on K , r) such that for primes p > AK ,r , the
Frey curve E/K is modular.
Then at all primes q ∈ P away from SK , the Frey curve E is minimal, semi-stable
and satisfies p|vq(∆E ).
There exists a constant CK (depending on K) such that for primes p > CK , ρ̄E ,p is
irreducible, where ρ̄E ,p is the residual Galois representation of GK acting on the
p-torsion points of E .
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Proof continues...

Lemma (2.4)

Let P ∈ SK . Suppose (a, b, c) ∈ O3
K is a non-trivial primitive solution to the equation

xp + yp = 2r zp of exponent p > max {|(4 − r)vP(2)|, [K : Q]r} and let E := Ea,b,c be
the associated Frey curve.

1 If (a, b, c) ∈ WK , then vP(jE ) < 0 and p ∤ vP(jE ), equivalently p|#ρ̄E ,p(IP).
2 Let r = 2, 3. If P ∈ UK , then either p|#ρ̄E ,p(IP) or 3|#ρ̄E ,p(IP).

Let (a, b, c) ∈ WK be a non-trivial primitive solution to the equation xp + yp = 2r zp

of exponent p ≫ 0 and let E := Ea,b,c be the associated Frey curve.
Then by using two key results in [FS15], there exists an elliptic curve E ′/K such
that E ′/K has good reduction away from SK and has full 2-torsion, ρ̄E ,p ∼ ρ̄E ′,p and
vP(jE ′ ) < 0 for all P ∈ SK .
Then we relate jE ′ in terms of solution of SK -unit equation λ + µ = 1 along with the
condition max {|vP(λ)|, |vP(µ)|} ≤ 4vP(2) to get vP(jE ′ ) ≥ 0 for some P ∈ SK ,
which is a contradiction.
A similar argument also holds for any non-trivial primitive solution (a, b, c) ∈ O3

K to
the equation xp + yp = 2r zp of exponent p ≫ 0 with r = 2, 3, but in this case we
get either vP(jE ′ ) < 0 or 3 ∤ vP(jE ′ ) for P ∈ UK .
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Then we relate jE ′ in terms of solution of SK -unit equation λ + µ = 1 along with the
condition max {|vP(λ)|, |vP(µ)|} ≤ 4vP(2) to get vP(jE ′ ) ≥ 0 for some P ∈ SK ,
which is a contradiction.
A similar argument also holds for any non-trivial primitive solution (a, b, c) ∈ O3

K to
the equation xp + yp = 2r zp of exponent p ≫ 0 with r = 2, 3, but in this case we
get either vP(jE ′ ) < 0 or 3 ∤ vP(jE ′ ) for P ∈ UK .
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Local criteria

Now, we will provide several local criteria of K the equation xp + yp = 2r zp .

Proposition (Even degree)

Let K = Q(
√

d). Suppose d ≥ 2 is a square-free integer satisfy one of the following
conditions:

1 d ≡ 3 (mod 8);
2 d ≡ 5 (mod 8);
3 d ≡ 6 or 10 (mod 16);
4 d ≡ 2 (mod 16) and d has some prime divisor q ≡ 5 or 7 (mod 8);
5 d ≡ 14 (mod 16) and d has some prime divisor q ≡ 3 or 5 (mod 8).

Then the equation xp + yp = 2r zp has no asymptotic solution in WK .

Proposition (Odd degree)

Assume 2 is either inert or totally ramified in K. Suppose one of the hypothesis holds:
1 Suppose n = [K : Q] and l > 5 is a prime number such that (n, l − 1) = 1 and l

totally ramifies in K.
2 Suppose [K : Q] is odd and 3 totally splits in K.

Then the equation xp + yp = 2r zp has no asymptotic solution in WK .
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3. On the solutions of xp + yp = z2 over K .

Consider the equation
xp + yp = z2 (3.1)

with prime exponent p.
(Trivial solution)
abc = 0

Definition (3.1)

Let W ′
K be the set of all non-trivial primitive solution (a, b, c) ∈ O3

K to the equation (3.1)
with P|ab for every P ∈ SK .

We define the m-Selmer group K and SK by
K(SK , m) := {x ∈ K ∗/(K ∗)m : vp(x) ≡ 0 (mod m), ∀p /∈ SK }.
Let L = K(

√
a) for a ∈ K(SK , 2).

Let SL be the set of all prime ideals of L lying over primes of SK .
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Main result.

Theorem (3.2) (Kumar-Sahoo, 2023)

Let K be a totally real field. For each a ∈ K(SK , 2), let L = K(
√

a). Suppose, for every
solution (λ, µ) to the SK -unit equation λ + µ = 1 with λ, µ ∈ O∗

SK , there exists some
P ∈ SK that satisfies

max {|vP(λ)|, |vP(µ)|} ≤ 4vP(2), (3.2)

and for every solution (λ, µ) to the SL-unit equation λ + µ = 1 with λ, µ ∈ O∗
SL , there

exists some P′ ∈ SL that satisfies

max {|vP′ (λ)|, |vP′ (µ)|} ≤ 4vP′ (2). (3.3)

Then the equation xp + yp = z2 has no asymptotic solution in W ′
K .
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4. On the solutions of Bxp + Cyp = z2 and Bxp + 2r yp = 2z2 over K .

Consider the equation
Bxp + Cyp = z2, (4.1)

where B is an odd integer, C is either an odd integer or a power of 2.
(Trivial solution)
abc = 0

Definition

Let WK be the set of all non-trivial primitive solutions (a, b, c) ∈ O3
K to the

equation (4.1) with P|bc for every P ∈ SK .

For any set S ⊆ P, let ClS(K) := Cl(K)/⟨[P]⟩P∈S and ClS(K)[n] be its n-torsion
points.
Let S ′

K := {P ∈ P : P|2BC}.
For r ∈ N, let Sr be the set consisting of elements
(±

√
2r + B, 1, 1), (±

√
2r − B, −1, 1), (±

√
−2r + B, 1, −1), (±

√
−2r − B, 1, 1).
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Main results.

Theorem (4.1) (Kumar-Sahoo)

Let K be a totally real field with ClS′
K

(K)[2] = 1. Suppose for every solution (α, β, γ) to
the equation

α + β = γ2, where α, β ∈ O∗
S′

K
, γ ∈ OS′

K
. (4.2)

there exists P ∈ SK that satisfies∣∣vP (
αβ−1)∣∣ ≤ 6vP(2). (4.3)

Then, the equation Bxp + Cyp = z2 (resp., Bxp + 2r yp = 2z2) has no asymptotic
solution in WK (resp., O3

K ).

Theorem (4.2) (Kumar-Sahoo)

Let K be a totally real field satisfying (ES) with ClS′
K

(K)[2] = 1. Suppose for every
solution (α, β, γ) to the equation (4.2), there exists P ∈ UK that satisfies∣∣vP(αβ−1)

∣∣ ≤ 6vP(2) and vP
(
αβ−1) ≡ 0 (mod 3). (4.4)

Then the equation Bxp + 2r yp = z2 with r ∈ {1, 2, 4, 5} has no asymptotic solution in
O3

K \ Sr . In particular, if [K : Q] is odd, then Sr = ϕ for r = 2, 4, 5.
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O3

K \ Sr . In particular, if [K : Q] is odd, then Sr = ϕ for r = 2, 4, 5.
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Methodology.

Here, we will explain the methodology that is common in the proof of Theorem (4.1) and
Theorem (4.2).

For any solution (a, b, c) ∈ O3
K to the equation Bxp + Cyp = z2, consider the Frey

elliptic curve E := Ea,b,c as

E : Y 2 = X(X 2 + 2aX + Bbp), (4.5)

with c4 = 24(Bbp + 4Ccp), ∆E = 26(B2C)(b2c)p and jE = 26 (Bbp+4Ccp)3

B2C(b2c)p .
There exists a constant A := AK ,B,C > 0 (depending on K , B, C) such that for
primes p > A, the Frey elliptic curve E/K is modular.
For p ≫ 0, the residual representation ρ̄E ,p is irreducible.
The Frey elliptic curve E has semi-stable reduction away from S ′

K and satisfies
p|vq(∆E ) for q /∈ S ′

K .
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For any solution (a, b, c) ∈ WK to the equation Bxp + Cyp = z2 with exponent
p ≫ 0, we get p|#ρ̄E ,p(IP) for P ∈ SK .

Then there exists an elliptic curve E ′/K having a non-trivial 2-torsion, E ′ has good
reduction away from S ′

K such that ρ̄E ,p ∼ ρ̄E ′,p and vP(jE ′ ) < 0 for P ∈ SK .
Finally using a nice technique of Mocanu, we relate jE ′ in terms of solution
(α, β, γ) ∈ (O∗

S′
K

, O∗
S′

K
, OS′

K
) to the equation α + β = γ2 along with the condition∣∣vP (

αβ−1)∣∣ ≤ 6vP(2) to get vP(jE ′ ) ≥ 0 for some P ∈ SK , which is a
contradiction.
A similar idea also works for any solution (a, b, c) ∈ O3

K \ Sr to the equation
Bxp + 2r yp = z2 (with r = 1, 2, 4, 5) but in this case we have either p|#ρ̄E ,p(IP) or
3|#ρ̄E ,p(IP) for P ∈ UK .
Similar to xp + yp = 2r zp case, we can also give local criteria of K for the solutions
of Bxp + Cyp = z2 and Bxp + 2r yp = 2z2.
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