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WHY PROBABILITY AND STATISTICS?

▶ The most mature language we have for understanding data

▶ Machine Learning helps with finding patterns in data
▶ Statistics helps us assess if those patterns are interesting
▶ Machine Learning is often used to make “predictions"
▶ Probability theory can also be used to make those predictions, with confidence estimates
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Part I

BASICS
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SOME BASIC RULES

▶ If B and C are mutually exclusive and exhaustive, then P(A) = P(A,B) + P(A,C)
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SOME BASIC RULES

▶ Law of Total Probability: Pr(A) =
∑∞

k=1 Pr(A ∩ Bk), where the Bj ’s are exhaustive (union is the
entire sample space) and mutually exclusive (no two of them overlap)

▶ Independent events: A and B are independent if and only if P(A,B) = P(A)P(B)
▶ Chain rule: More generally (regardless of independence of A, B),

P(A,B) = P(A)P(B|A) = P(B)P(A|B), where P(X |Y ) is the conditional probability of X given
(conditional on) Y .

▶ Point to remember: Know when probabilities are added and when they are multiplied.
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BAYES’ RULE

▶ Recall P(A,B) = P(A)P(B|A) = P(B)P(A|B).

▶ Thus, P(B|A) = P(A|B)P(B)
P(A)

▶ This simple relationship is incredibly powerful!
▶ Setting A = Data and B = Model it gives us

P(Model|Data) =
P(Data|Model)P(Model)

P(Data)
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WHY DO WE CARE ABOUT BAYES’ RULE?

P(Model|Data) =
P(Data|Model)P(Model)

P(Data)

▶ We often know how to calculate P(Data|Model)

▶ Bayes’ rule offers a simple prescription to go from P(Data|Model) to P(Model|Data).
▶ P(Model|Data) is good, as it allows us to assess different models (understanding of data) and make

predictions about future data.
▶ More on Bayesian inference in other lectures, but a highly recommended reading on this: “The

Theory That Would Not Die" by Sharon Bertsch McGrayne.
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RANDOM VARIABLES

▶ Random variables are mappings from the sample space Ω to the space R of real numbers.

▶ For instance, if we toss a coin, the observation is heads or tails, and we can map these two possible
outcomes to the numbers 0 and 1 respectively.

▶ As another example, if we toss a coin say 10 times, then the observation is some sequence of 10
heads and tails, and we can map that observation to a single number, which is the number of heads
seen.

▶ Discrete random variable X takes values x0, x1, . . . xk . . . with corresponding probabilities
p0, p1, . . . pk . . ., with the condition

∞∑
k=0

pk = 1

.
▶ The distribution of X .
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EXPECTATION

▶ Expectation of X is E [X ] =
∑

k pk xk . Also called “mean".

▶ Generalizing, expectation of a function g(x) is E [g(X )] =
∑∞

k=0 pk g(xk)

▶ Expectation is a very intuitive thing: the common “average".
▶ Let X = number of heads when you toss a fair coin 10 times. X is a random variable with possible

values x0 = 0, x1 = 1, ..., x10 = 10, with respective probabilities p0, p1, ..., p10 that you can calculate
with a formula and maybe a calculator.

▶ The expectation of X is far easier to calculate: you intuitively know it’s E(X ) = 5, without a calculator.
▶ Linearity of expectation: E(X +Y ) = E(X )+E(Y ). This makes many expectation calculations easy!
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VARIANCE

▶ Variance: E [(X − E(X ))2]

▶ In plain English, it’s the average “deviation" from the the mean. (“deviation" ≡ square of difference)
▶ Standard Deviation is the positive square root of variance.
▶ Often, beginners compare means of two groups and make claims. For instance, “my Machine

Learning program has average accuracy of 80% compared to this other program whose average
accuracy is 75%." You can’t make these claims without also looking into the variance.

▶ Variance can be harder to calculate analytically. For instance, the following is NOT TRUE in general:
Var(X + Y ) = Var(X ) + Var(Y ).
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DISCRETE DISTRIBUTIONS I: BINOMIAL DISTRIBUTION

▶ Bernoulli trial: an experiment with two possible outcomes: e.g., “success” with prob. p and “failure”
with prob. 1 − p.

▶ Suppose you do N independent Bernoulli trials, each with same success prob. What is the
distribution of the number of successes?

▶ Binomial distribution: prob. of k successes in N trials.

pk =

(
N
k

)
pk(1 − p)N−k

▶ Mean E(X ) = Np; Variance Var(X ) = Np(1 − p)
▶ Example: A genome has 20% ’C’s, 20% ’G’s, 30% ’A’s, 30% ’T’s. Find all 1 Kbp segments with G/C

content that is at least three standard deviations above expectation. (Answer: Expectation
= 1000 × 0.4 = 400, Standard deviation =

√
1000 ∗ 0.4 ∗ 0.6 ≈ 15, so look for all 1 Kbp segments

with G+C count above 445.)
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DISCRETE DISTRIBUTIONS II: POISSON DISTRIBUTION

▶ Used to model the number of occurrences of “events" over a fixed interval of time, e.g., number of
911 calls in an hour.

pk =
e−λλk

k!

▶ λ is a parameter.
▶ E(X ) = λ, Var(X ) = λ

▶ Example: The pattern “TCACGT" has about one occurrence per 1000 bp in a genome. What is the
probability of observing four or more occurrences of “TCACGT" in a particular gene’s promoter (1000
bp long)? (Answer: ∼ 2%)
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CONTINUOUS DISTRIBUTIONS

▶ With continuous distributions, probability of any particular value is 0. We talk about "probability
density" at a particular value, not its probability.

▶ Probability density function (pdf) f (x) and cumulative prob. distribution F (x) = P[X ≤ x ].

F (x) =
∫ x

−∞
f (x)dx

▶ E [x ] =
∫

xf (x)dx
▶ Var [x ] =

∫
(x − E [X ])2f (x)dx
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NORMAL DISTRIBUTION

▶ Normal distribution

f (x) =
1

σ
√

2π
exp

[
−1

2

(
x − µ

σ

)2
]

▶ µ and σ are parameters equal to expectation and standard deviation resp.
▶ Supported on the whole set of reals
▶ The famous Bell curve!
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Part II

STATISTICAL TESTING
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STATISTICAL TEST: INFORMALLY SPEAKING

▶ Toss a coin 50 times, get heads 50 times. I ask you "Is the coin a fair coin?"

▶ You do not want to believe the "hypothesis" that “the coin is unbiased”. i.e., you reject this hypothesis.
▶ Same experiment, but 40 heads and 10 tails. Do you still want to reject the hypothesis?
▶ Maybe? Maybe not? Need a systematic procedure.
▶ That’s what a statistical test does.
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STATISTICAL TESTING: A NOT-SO-GOOD SOLUTION

▶ Step 1: State the null hypothesis. “The coin is unbiased". This allows probability calculations. For
instance, coin tosses are Bernoulli trials with prob. of heads p = 0.5.

▶ Step 2: Decide upon the “test statistic", a random variable whose value depends on the data. For
instance, X = “number of heads in 50 coin tosses".

▶ Step 3. Calculate the probability of the observed value of test statistic (X ). For instance,
P(X = 40) = 0.000009. (Use Binomial distribution.)

▶ Step 4. If the probability from Step 3 is “small" (say less than 5%), then reject the null hypothesis –
the data do not seem likely under that hypothesis, so it is likely to be wrong.
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WHERE’S THE PROBLEM?

▶ Say you saw 30 heads out of 50 coin tosses. What does your intuition say? Is it very unlikely?

▶ No. You probably are not surprised to see 30 heads in 50 coin tosses, when using a regular (fair)
coin.

▶ Yet, Step 3 will calculate the probability P(X = 30) = 0.042 and in Step 4 you will reject the null
hypothesis.

▶ This problem gets exacerbated as you have more data!
▶ Say you saw 250 heads out of 500 coin tosses. Surely this is not unlikely under the fair coin

hypothesis? It’s the most likely outcome after all! Yet, Step 3 calculates P(X = 250) = 0.036 and
you will reject the null hypothesis!

▶ Our test is not so good!
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STATISTICAL TESTING: THE COMMON SOLUTION

▶ Step 1: State the null hypothesis. "The coin is unbiased". (Coin tosses are Bernoulli trials with prob.
of heads p = 0.5.)

▶ Step 2: Decide upon the test statistic, X = number of heads in 50 coin tosses.
▶ Step 3. Calculate the probability of the observed value of test statistic (X ) being equal to or more

“extreme" than the observed value. For instance, P(X ≥ 40) = 0.0000119. (Use Binomial
distribution.)

▶ Step 4. If the probability from Step 3 is “small" (say less than 5%), then reject the null hypothesis –
the data do not seem likely under that hypothesis, so it is likely to be wrong.

▶ Note: The “5%" threshold defining “small" in Step 4 is called the "significance level" of the test.
▶ Note: The probability calculated in Step 3 is called the “p-value" of the test.
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POINTS TO PONDER (ON YOUR OWN)

▶ Let’s see if the “problem" got fixed. First, 30 heads out of 50 tosses gives us P(X ≥ 30) = 0.10,
which is not that small. Second, 250 heads out of 500 coin tosses gives us P(X ≥ 250) = 0.52,
clearly not a small number.

▶ Another point: what does “more extreme" mean, in the language of Step 3?
▶ When you see 40 heads out of 50 tosses, you’re really testing if it’s “too many", so “as extreme"

means X ≥ 40.
▶ You might also be testing 40 out of 50 is "too far from what you expected (25)", in which case you

should calculate P(X ≥ 40) + P(X ≤ 10), since both X = 40 and X = 10 are as far from your
expectation and thus "as extreme".

▶ In the former scenario, we say "Null hypothesis: p = 0.5, Alternative hypothesis: p > 0.5. A
"one-sided test".

▶ In the latter scenario, we say "Null hypothesis: p = 0.5, Alternative hypothesis: p ̸= 0.5. A
"two-sided test".
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NULL DISTRIBUTION OF P-VALUE

▶ Let’s say that the null hypothesis (unbiased coin) is true. Do 50 coin tosses, count heads. This count
is a random variable, call it X .

▶ Calculate the p-value of X , e.g., with a one-sided test. Denote the p-value by p. Note that p is
determined by X , and is thus a random variable itself.

▶ What is the probability distribution of p?
▶ Pr(p ≤ π) = π.
▶ In other words, the p-value follows a uniform distribution between 0 and 1.
▶ This means that even if an unbiased coin was used there’s a 5% chance that your test will produce a

“significant" p-value of ≤ 0.05, and you will reject the null hypothesis (that coin is unbiased), i.e.,
you’ll make an erroneous inference.

▶ This is an important realization. We’ll come back to it later.
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▶ In other words, the p-value follows a uniform distribution between 0 and 1.
▶ This means that even if an unbiased coin was used there’s a 5% chance that your test will produce a

“significant" p-value of ≤ 0.05, and you will reject the null hypothesis (that coin is unbiased), i.e.,
you’ll make an erroneous inference.

▶ This is an important realization. We’ll come back to it later.
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STATISTICAL TEST EXAMPLE: T-TEST

▶ Consider two groups of hypertension patients, each of size K . The first group (“M") is given a
medication, while the second group (“P") was given placebo. Measure blood pressure in each
individual.

▶ Assume that blood pressure in both groups is a normally distributed variable (XM and XP). Null
hypothesis: XM and XP have the same mean and variance (i.e., all measurements in either group are
from the same probability distribution).
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STATISTICAL TEST EXAMPLE: T-TEST

▶ Calculate averages XM and XP respectively and the standard deviations sM and sP respectively for
both groups.

▶ Calculate the “statistic”

t =
XM − XP√
1
K (s

2
M + s2

P)

▶ The statistic t follows a “t-distribution with 2(K − 1) degrees of freedom". This allows determining
p-value of an observed value of t .

▶ This is the “t-test”.
▶ Example use: you could compare a gene’s expression in two groups of biospecimens (e.g., patients

and healthy subjects) using the t-test, to determine if this gene is of interest. (We’ll come back to this
in a bit.)
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ENRICHMENT TEST OR HYPERGEOMETRIC TEST

▶ A study is looking at a “population” of N genes.

▶ A subset of n genes have been identified as being turned on in cancer.
▶ Suspiciously many of these n cancer genes are known to be involved in “cell division”.
▶ Can we demonstrate a connection?
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ENRICHMENT TEST OR HYPERGEOMETRIC TEST

▶ A study is looking a “population” of N genes.
▶ A subset of n genes have been identified as being turned on in cancer.
▶ Collect the set of all genes involved in cell division, say this is of size m

▶ Find k genes to be in the intersection of the cancer set and the cell division set
▶ Is this (k ) significantly large, given N, m, n?
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ENRICHMENT TEST OR HYPERGEOMETRIC TEST

▶ The Hypergeometric test:

▶ Let us keep the n cancer genes to be a fixed set.
▶ If we had picked a random sample of m genes, how likely is an intersection equal to k?

▶ f (k ;N, n,m) =
(n

k)(
N−n
m−k)

(N
m)

▶ How likely is an intersection equal to or greater than k?
▶ P =

∑
j≥k f (j;N, n,m)

▶ If P calculated this way is below some threshold α, e.g., 0.05, we say that the association between
the cancer set and the cell division set is statistically significant.

▶ In other words, we have just discovered a link between cancer and cell division, which is probably
worthy of further investigation.
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TESTING A GENE FOR DIFFERENTIAL EXPRESSION

▶ Suppose a gene’s expression was measured in 100 different samples from cancer patients and 100
samples from healthy individuals

▶ Test whether gene is “differentially expressed" between the two groups: t-test.
▶ Test produces a p-value, and if this p-value is ≤ α (say α = 0.05), we can proclaim this gene to be

“differentially expressed" in cancer. Interesting!
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FALSE POSITIVES?

▶ We noted previously that even if the null hypothesis is true, i.e., the gene is not significantly different
between cancer patients and healthy individuals, the test may call it “differentially expressed" and
interesting. The probability of such a “false positive" prediction is α.

▶ False Positive: “Positive" because rejecting null hypothesis usually implicates the gene as being
interesting in some way. “False" because null hypothesis being true means that the rejection was an
error.

▶ So yes, our statistical test can make a false positive error, but such errors are “controlled" (probability
of the error is α).
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TESTING MULTIPLE GENES

▶ Now consider repeating the above test on 10000 genes, one by one.

▶ In each test, the probability of false positive is α.
▶ In other words, if I do 10000 tests, I might make false positive errors 10000 × α times. (For α = 0.05,

this amounts to 500 false predictions!)
▶ This is the multiple hypothesis testing problem. A significance level (α) that looks convincing on a

single test no longer looks so convincing when doing many tests.
▶ We’d like to predict a set of genes as being interesting, i.e., as violating null hypothesis, but with

“control" over the total false positive error.
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TESTING MULTIPLE GENES

▶ One option: make the significance level α really small.

▶ For example, when testing 10000 genes, if α = 0.05/10000, the same calculation tells us that the
expected number of false positive errors is 10000 × α = 0.05. This is quite acceptable. It’s called the
Bonferroni correction.

▶ The Bonferroni correction is harsh! If we demand that p-value is ≤ α = 0.05/10000, very few genes
may show up as significant. Did we overdo this “multiple testing correction" thing? We went from
using α = 0.05 to α = 0.000005. Is there some “middle ground" here, that allows us to keep false
positive errors low without resorting to such a super small α?

▶ FDR ("false discovery rate") is one such middle ground.
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FALSE DISCOVERY RATE (SELF-READING)

▶ Is a procedure for deciding upon a significance level so that the false positive errors are controlled at
a low level.

▶ The final outcome will be a set of genes predicted to be differentially expressed
▶ We will have some control on the proportion of false positives among these predicted genes
▶ The theory talks about ’tests’ and not ’genes’, of course. Here, we are using it in the context of tests

involving genes.
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FALSE DISCOVERY RATE (SELF-READING)

▶ Say there are 10000 genes and 100 are truly differentially expressed. It is probably OK then to
predict some set of 100 genes as being differentially expressed, with the disclaimer that (say) 10 of
these may be false positives.

▶ Our testing is based on p-values. So we need a way to go from a p-value (e.g., “probability of a false
positive call on this gene is 0.05") to an overall false positive proportion (e.g., “of all genes found
significant by us, we expect 10% to be false positives").
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AN FDR PROCEDURE (SELF-READING)

▶ Proposed by Benjamini and Hochberg in 1995. Many other procedures since then, but we’ll only see
this original one.

▶ Begin with a per-gene p-value, i.e., Pr(X ≥ τ |H0), for every one of the g genes being studied.
▶ Let the g p-values be denoted by p(i)

▶ Consider these g p-values to be sorted in ascending order, i.e., p(1) ≤ p(2) ≤ . . . ≤ p(g)

▶ Let H(i)
0 be the null hypothesis corresponding to p(i)

▶ Let qi =
iα
g for i = 1, 2, 3 . . . g where α is the desired FDR

▶ Let k be the max i such that p(i) ≤ qi

▶ Procedure: Reject null hypothesis H(1)
0 ,H(2)

0 , . . .H(k)
0 and accept all others.

▶ Theorem: This controls the FDR at level α. What does that mean?
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A NOTE ON FDRS VS P-VALUES (SELF-READING)

▶ FDR is fundamentally different from a p-value.
▶ P-value assesses significance of data. If we publish some data that we claim to be significant, we

should present a small p-value for the data (e.g., ≤ 0.05)
▶ FDR is generally used as a “culling tool"; the investigator wants to predict a set of genes to test

experimentally, and an FDR of 0.1 or even 0.5 may be acceptable to them (they will do twice as
much experimental work, which may be fine)
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