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The main question

Many-body interacting systems

|

Phase transition between an ordered and a disordered phase

QUESTION: Can we induce order in the system by “minimally” tweaking
the dynamics in a parameter regime in which the bare dynamics does not
show order?

We address this question in the context of spontaneous synchronization



Spontaneous synchronization

Spontaneous coordination among interacting elements to act in unison

Photo Courtesy: Getty Images
o Synchronized firings of cardiac pacemaker cells
o Voltage oscillations in Josephson junctions arrays

o ...



Minimal framework: The Kuramoto model

@ N globally-coupled limit-cycle oscillators
with distributed natural frequencies

@ 6;: Phase
@ 99—+ K sin(0; — 0) )
@ K: Coupling constant,

w;'s: Natural frequencies,

Unimodal distr. g(w) with mean wq
(Kuramoto (1975))
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Minimal framework: The Kuramoto model
@ N globally-coupled limit-cycle oscillators
with distributed natural frequencies
@ 6;: Phase -th,

oscillator
K N . N
wi + N 2j=1 sm(9j — 9,)

@ K: Coupling constant,
w;'s: Natural frequencies,
Unimodal distr. g(w) with mean wq
(Kuramoto (1975))

o N — oo, t — oo limit:

@ Define R=rel¥ = & N elli
@ High K: Synchronized phase r#0Q UVp=m=memmmememmeeenzos)
@ Low K: Incoherent phase, r =0
@ "Phase transition" (Bifurcation) on

tuning K

@ K.= 0 T

mg(wo) K.




The Kuramoto steady state

Phase-Coupled Oscillators

Nil Phase-Locking Partial Phase-Locking Full Phase-Locking

K=12/n
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Main queries
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QUESTION: Can we modify the dynamics in a “simple” manner so that for a
given K < K, we can induce order (r # 0) in the system?

YES!!, via
Stochastic Shuffling, or, Subsystem Resetting,

@ requiring no external potential, and

@ requiring to manipulate only a few oscillators

REST OF THE TALK: WHAT are these protocols? HOW do they work?
WHY do they work?



Stochastic Shuffling and Subsystem Resetting
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=0 Kuramoto evolution A Kuramoto evolution A Kuramoto evolution
Shuffle the frequencies ( “colors”) among the oscillators at time intervals 7
distributed as p(7) = Ae™*7
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Reset a fixed subset of oscillator phases at time intervals 7 with p(T) = Ne



An ode to resetting

Restart is a simple and natural mechanism that has emerged as an over-
reaching topic in physics, chemistry, biology, ecology, engineering and
economics. Since the inaugural work of Evans and Majumdar (Evans
M R and Majumdar S N 2011, Phys. Rev. Lett. 106, 160601) a
substantial amount of research has been carried out on stochastic re-
setting and its applications. This work spans different contexts starting
from first-passage and search theory, stochastic thermodynamics, opti-
mization theory, and all the way to quantum mechanics. Further con-
nections have been made to animal foraging, protein-DNA interactions,
coagulation-diffusion processes, chemical reaction processes, as well as
to stock-market and population dynamics which display colossal crashes,
i.e., resetting events.

... J Phys. A Special Issue (2023)
Stochastic Resetting:

MAJUMDAR, Mallick, Rosso, Schehr, ADhar, Sengupta, Das, Basu,
Krishnamurthy, Kundu, Pal, Sabhapandit, Kulkarni, many (all?) others
(surely) in this room...

Review: Evans, Majumdar and Schehr, J. Phys. A 53, 193001 (2020)



Stochastic Shuffling and Subsystem Resetting
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Stochastic Shuffling & Subsystem Resetting: Results

Stochastic Shuffling
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Stochastic Shuffling

Dynamical realization 1

O
O O

‘Stochastic shuffling:

I | Time
f=( Keramotoevoluion A Kuramoto evolution A Kuramoto evolution
Dynamical realization 2:
Stochastic shuffling: O {':}
I Time
(= Kuamotoewbiion 4 Kuramoto 4 Kuramoto evolution
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Results for Gaussian g(w)

@ Relaxation to stationary state:
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Results for Gaussian g(w)

@ Relaxation to stationary state:
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Results for Gaussian g(w)

@ Relaxation to stationary state:
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@ Stationary-state fluctuations and phase diagram:
X(N) = N((FD)?) = (r)?]
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Synchronization under shuffling gets easier in every practical sense

lower coupling and |ess time to achieve synchrony;



Results for Gaussian g(w)

@ Relaxation to stationary state:
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@ Stationary-state fluctuations and phase diagram:

X(N) = N((FD)?) = (r)?]
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Synchronization under shuffling gets easier in every practical sense:

lower coupling and |ess time to achieve synchrony;
similar results for any g(w) with finite variance and also with shuffling done at
fixed time intervals




Stochastic Shuffling: Analysis

@ N — oo; Initial condition: 6;(0) =6y V j

t
@ RO g0 = € MR(1)l(o0) +/\/0 dr e T R(t)|{g;(e—r)3
—_—————
No shuffling since t=0
Inspired from (Evans and Majumdar (2011))

Last shuffling at t—7

o First term: Result of dynamical evolution according to the bare
Kuramoto model and with {6;(0)} as the initial condition

o Second term: Result of dynamical evolution according to the bare
Kuramoto model and with {#;(t — 7)} as the initial condition



Stochastic Shuffling: Analysis

@ N — oo; Initial condition: 6;(0) =6y V j

t
@ RO()lgg03 = e MR(1)lo,0) +/\/0 dr e MR(t)|(,e-r))
—_—————
No shuffling since t=0
Inspired from (EVQnS and /\//ajumdar (2011))

Last shuffling at t—7

o First term: Result of dynamical evolution according to the bare
Kuramoto model and with {6;(0)} as the initial condition

o Second term: Result of dynamical evolution according to the bare
Kuramoto model and with {#;(t — 7)} as the initial condition

@ t — oo: stationary state
o) .
Rs(ts) = rs(ts)e“l’sc = im0 )\fot dr e TR(t)|{o,(e—r)}

@ Requires §; as a function of t under dynamics of bare Kuramoto evolution
interspersed with shuffling — Analytical solution not known
= {0;(t — 1)} from simulations for large N



Stochastic Shuffling: Analysis

S S i (D) . AT
@ RY = e =limesoo A fy dr e R(E)] 0,0 )

@ Requires §; as a function of t under dynamics of bare Kuramoto evolution
interspersed with shuffling — Analytical solution not known
= {6;(t — 1)} from simulations for large N
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Experiments with network of Wien Bridge oscillators: Qualitative agreement



Subsystem Resetting

Dynamical realization 1:
Subsystem resetting:
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Dynamical realization 2:
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Order parameters of reset and non-reset oscillators

o N oscillators:
Reset oscillators labelled j =1,2,...,n;
j=(n+1),(n+2),...,N: Only Kuramoto evolution;
f = n/N: fraction of oscillators undergoing reset

o Initial configuration: #; = 0 V j; reset oscillators undergoing reset to 6; = 0



Order parameters of reset and non-reset oscillators

o N oscillators:
Reset oscillators labelled j =1,2,...,n;
j=(n+1),(n+2),...,N: Only Kuramoto evolution;
f = n/N: fraction of oscillators undergoing reset

o Initial configuration: #; = 0 V j; reset oscillators undergoing reset to 6; = 0
o r(t)e:( =137 &)

o rnr(t)eiwm(t) = ﬁ Zjl'v=n+1 eiO/(t)

0 r=/f2r2+(1— f)2r2 + 2f(1 — f)rue coS(thy — tny)

W53 0 15 0 2 80 R T B R W1 5 % R S T
t t t

Lorentzian g(w) with zero mean and unit variance, K = 1.5 (< K. = 2.0),
f=05A=05



The case of infinite resetting rate
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f = n/N: fraction of oscillators undergoing reset
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The case of infinite resetting rate

o N oscillators:
Reset oscillators labelled j = 1,2,...,n;
j=(n+1),(n+2),...,N: Only Kuramoto evolution;
f = n/N: fraction of oscillators undergoing reset

o Initial configuration: 6; = 0V j; reset oscillators undergoing reset to 6; = 0
0 XN—o0: 0(t)=0Vtandj=1,2....n

o Non-reset oscillators:

do; N .
F =W+ Ny sin(f, — ;)

B — w; — Kfsin; + K SN sin(6) — 0))
o In terms of respective order parameters:
B — o — KF sin 6 + K(1 — ) rue sin(¢ne — 6)),
rr = 1,1, = 0 at all times

@ Non-Hamiltonian dynamics of non-reset oscillators;
Absence of noise — no Langevin-Fokker-Planck description



The case of infinite resetting rate

o N — oo, n — oo for fixed and finite

o F(0,w,t): probability density to obtain an oscillator with phase 6 and
frequency w;

f do F(0,w,t) = fdwf do F(0,w,t) =1



The case of infinite resetting rate

o N — oo, n — oo for fixed and finite

o F(0,w,t): probability density to obtain an oscillator with phase 6 and
frequency w;
f do F(0,w,t) = fdwf do F(0,w,t) =1
o Number of osallators Wlth a given w conserved by dynamics —
@ Continuity equation: % + % (F%) =0
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The case of infinite resetting rate

o N — oo, n — oo for fixed and finite

o F(0,w,t): probability density to obtain an oscillator with phase 6 and
frequency w;
f do F(0,w,t) = fdwf do F(0,w,t) =1
o Number of osallators Wlth a given w conserved by dynamics —
@ Continuity equation: % + % (F%.) =0
@ L =w+L[(KQ- f)znr+Kf) 10— (K(1— f)z}, + Kf)e']
@ Znr = Inr€ ”/)“r - f f 10/_- 0 w, t)d@dw

o F(f,w,t)is 2r periodic in § = Fourier expansion

F(O,w,t) =82 |14 Y Fo(w,t)e
n=—00,n#0
Inilia,l:(d;:’r’l‘-l(:;;tiun SpeCIaI class of F — F (OJ t) [Oé(OJ, t)]n:

defined on and remaining confined to
W Ott-Antonsen (OA) manifold under evolution
(Ott-Antonsen (2008))

%ﬁ“m’_mm Dividend: two coupled first-order ordinary
detrbutions F,0.) differential equations for ry.(t) and ¥, (t)



The case of infinite resetting rate

° OAansatz = G2 = §[(1— )z}, + f] — iwa — §[(1 = )z + flo?

Znr = ffooo a*(w, t)g(w)dw



The case of infinite resetting rate

° OAansatz = G2 = §[(1— )z}, + f] — iwa — §[(1 = )z + flo?

Zur = ffooo a*(w, t)g(w)dw
o Lorentzian g(w): zn(t) = a*(wo — io, t)

° djl?r = %[((1 - f)znr + f) - ((1 - f)err + f)zr21r] - (U - in) Znr




The case of infinite resetting rate
0 OAansatz = 22 = K[(1—f)z:, + f] — iwa — E[(1 — f)z + Fla?
Znr :ffooo *(w, t)g(w)dw
o Lorentzian g(w): zn(t) = a*(wo — io, t)
0 L = K[(1— Fzge + ) — (1= £z} + F)zA] — (0 — iwp) Znr
o Rescaling: t — ot, K = K/o, and wg — wp/o
e = SO e (L= 2) = e + 55 (1= 2) cos

fnﬂ/);lr = — [—wornr + g (1 + rflr) sin zbm]




The case of infinite resetting rate

o OA ansatz — a - K[(l - f) Zy, + f] lwa — 7[( )an + f]a2
Zne = [T af(w, t)g(w)dw

o Lorentzian g(w): zn(t) = a*(wo — io, t)

0 9 — K[(1— F)zae + ) — (1 — )z + £)22] — (0 — i) Zur

o Rescaling: t — ot, K = K/o, and wg — wp/o

Q rl;r = wrm (1 — rgr) — rar + gf (1 —rs )coswm,

fnﬂ/’;u == [—wornr + % (]' + rgr) sin wnr]
o ry; = 0 never a stationary solution as soon as f # 0
@ Resetting a vanishing fraction synchronizes the nonreset subsystem
@ Synchronization transition of the bare model becomes a crossover




The case of infinite resetting rate

o OA ansatz — %—? = %[(1 =z}, + f] — iwa — —[( F)zne + f]a2

Znr = ffooo a*(w, t)g(w)dw
o Lorentzian g(w): zn(t) = a*(wo — io, t)
o G — K[(1— f)za + F) — (1 — )z + F)Z2] — (0 — iwo) Zur
o Rescaling: t — ot, K = K/o, and wg — wp/o
/ K(1—f
0 ry, = 7(12 )r]ﬂr (1 — rgr) — rar + gf (1 —rs ) COS Yny;
Faxthy, = — [—worar + g (14 r2.) sin ]
o ry; = 0 never a stationary solution as soon as f # 0
@ Resetting a vanishing fraction synchronizes the nonreset subsystem
@ Synchronization transition of the bare model becomes a crossover
o Long-time state depends on mean wy of g(w) (unlike the bare model)
@ wg = 0: Stationary state —-

(@3)3 + (1Tff) (GS{E)Z + {ﬁ - 1} Mix — (fff) =0

T K(l f) K2f2 1 wh
@ wo #0: 1—(rst)? — T (? (1+(r“ )

nz

Stationary state provided f > f., with K (ﬁ) = w%%



The case of infinite resetting rate: wy =0

o Stationary state:
(52 + () (58 + [y — 1 it = (i) =0

1.0 1.0

Simulation, A = 25.0
T =00
0.8 0.6 0.8] — =003
== [=01
== f=05
0.6 05 0.6 ...... ,
— 04 % & %E y
0.4 0.3 0.4 Y
0.2 i
0.2 0.2 {
0.1 .
3 4 0 1 2 3 1
K

2

K
o Lorentzian g(w) with unit variance

@ Non-reset subsystem has a synchronized stationary state at long times
for any K and f

@ Synchronization transition as a function of K of the bare dynamics

becomes a crossover in presence of subsystem resetting
@ Agreement between theory and simulations



The case of infinite resetting rate: wy # 0

. . K(l f) K2f2 1 w3
° ; = ey — ——
Stationary state =) + \/ ) ()

provided £ > £, with K ( :li_f> _ g A=

: . — 1
0.8 P — Ao T 7
Pur o Simulation, ¥nr 4 /)
o8 s 5 o3 o z/‘/\
0.6 (T 371680
0.6 . 6 0.6 !
“~ ] s a8
04 = =
04 . 0.4
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o Lorentzian g(w) with unit variance
@ Non-reset subsystem as a%ynzhromze statlonary state for any

K < K. and for any f
@ For K > K., non-reset subsystem at long times has
(i) for large f a synchronized stationary state, and
(i) for small f an oscillatory synchronized state with a non-zero
time-independent time average
@ — Non-reset subsystem is synchronized at long times for any K and f
@ Agreement between theory and simulations



The case of infinite resetting rate

Main conclusion:

Non-reset subsystem may or may not have a stationary state depending on the
values of the dynamical parameters, even when resetting happens all the time
(A = o0);

Non-reset subsystem always synchronized

Contrast with global resetting when the system always has a stationary state
independent of the value of A
(Sarkar and Gupta (2022))



The case of finite resetting rate



No resetting: Two coupled subsystems r and nr
evolving according to bare Kuramoto dynamics

©

©

©

(]

Oscillators in the individual subsystems on respective OA manifolds
N — 0 : g(w) = gn(w) = g(w)
Lorentzian g(w)

@ Reset subsystem:

dr, 1-r2
w=—on+K ( 2f> [fre + (1 = ) ry cos ]
dwr =wo— K(1—f)siny (%) Mar

o Non reset subsystem:

G = —or + K (555 [frecos w4+ (1= Aral; © =y
dw“‘—wo—i—Kfsmw( 2>rr

— 1,



Finite resetting rate: The case wy =0

o (r(t),9:(t)) and (rur(t), ¥ne(t)): Random variables

o With initial condition 9,(0) = ¢,,,(0) = 0, one has ,(t) = 0 and
Ynr(t) = O for all times t

o During bare evolution between two resets:
dry __

= =—on+K (1—r§> [fro+ (1= f)ra;
dryy
d

2 = 0 + K ( ) [fre + (1 = )r]




Finite resetting rate: The case wy =0

o (r(t), () and (rur(t), ¥nr(t)): Random variables
o With initial condition t,(0) = 1,,;(0) = 0, one has ,(t) = 0 and
tnr(t) = 0 for all times t

o During bare evolution between two resets:

‘gg =-—on+K <1_’3> [fro+ (1= f)ra;

% =—0fy + K ( ) [fre + (1 = )r]

o Realization average of change in order parameters in [t, t + dt]:
dF, = (1 — Adt) dr, + Adt (1 — r,);
dFyy = dryy



Finite resetting rate: The case wy =0

o (r(t),9:(t)) and (rur(t), ¥ne(t)): Random variables

o With initial condition ,(0) = t,,;(0) = 0, one has ¥,(t) = 0 and
Ynr(t) = O for all times t

o During bare evolution between two resets:
2
&~ —or+ K (5 ) [+ (1= F)rue]:

% =—0fy + K ( ) [fre + (1 = )r]

o Realization average of change in order parameters in [t, t + dt]:
df, = (1 — Adt) dn, + Adt (1 — r);
dFyy = dhyy

o Exact evolution equation for realization-averaged order parameters of reset
and non-reset subsystems:

9 _oF + [frr (1= ) = F1F = (L= O)r| + A (1= R);
S — a4 17+ (1 e 1775~ 1 - 7]




Finite resetting rate: The case wy =0

o Exact evolution equation for realization-averaged order parameters of reset
and non-reset subsystems:

&= —oF+ X [fa + (1= —fr3—(1- f)rgrm] + A1 -R);

%:_U'_’nr‘F%|:fFr+(1_f)Fnr_frrrgr_(l_f)a}

o A large but finite: rr2, =~ B2 Pry~ PRy 3o B

nr’ nr’ ry

~
ERiY



Finite resetting rate: The case wy =0

o Exact evolution equation for realization-averaged order parameters of reset
and non-reset subsystems:

& = —of+ X [ffr + (1= —fr3—(1- f)rgrm] + A1 -R);
I = _oF,, + & {ffr (1= ) — fror2 — (1 f)@}

o A large but finite: r,fr2 N RPRG PPy & PRy r3 ~P BT

o (B + [ (7 7t —ggj+'“?<t”—1}r?t—i>;

(7’ + ] ( '

%z -1 =0

Lorent2|an w) with unit variance
Results similar to )\ — 0 C g(w)

Non-reset subsystem has a synchronlzed stationary state at long times,
Agreement between theory and simulations



Finite resetting rate: The case wy # 0

o Realization average of change in order parameters in [t, t + dt]:
df, = (1 — Adt) dr, + Mdt (1 — r);

d;ir‘lr - drnr;
di, = (1 — Adt) dib, — Adtih,;
d¢nr = dwnr

o Exact evolution equation for realization-averaged order parameters of reset
and non-reset subsystems:

e = —0f + M1 —R)+ 5[fR + (1 = F)rar cos (U — thur) —
frr3 —(1 — f)rl?rnr cos ('(/)r - "/}nr)};
dFar _

di. = O+

% [frr cos (Pr — ) + (1 — F) Py — Fror?, cos (v — Py, ) — (1 — f)rgr},
dl/Jr = wp — K(l — f)Sin (¢r - 7/’111") <1;,:r2) 'nr — )\1/71.;

1 2
d’gl);u = wg + Kfsin (7/1r - wnr) ( ;;:‘:r> ry




Finite resetting rate: The case wy # 0

o Realization average of change in order parameters in [t, t + dt]:
df, = (1 — Adt) dr, + Mdt (1 — r);

d;ir‘lr - drnr;
di, = (1 — Adt) dib, — Adtih,;
d¢nr = dwnr

o Exact evolution equation for realization-averaged order parameters of reset
and non-reset subsystems:

9 — G+ M1 —F) + K7+ (1 — F)rr s (Yr — Unr) —
frs’ _(1 - f)rr2rr1r cos ('(/)r - wnr)];

dhw _ 7
Tt = O+

K [ cos (B — thur) + (1= )7 — FrerZcos (b — ) — (1= N7, ;
d'l/}r =wy — K(l — f)Sin (wr - 7/’111") <1;,:r2) hr — A&r;
d'l/)m = w + Kf —_ 1+r‘2]r

s — o KFsin (b, — o) (525

o X large but finite: r.r2, ~ F72,;

nr_ _nr?

05 (1r — Wnr) ~ cos (Y — Pny)

2= 3 3 . 3.
r2 Far &2 F2 P G?I AP P,

—



Finite resetting rate: The case wy # 0

Q % = —ol + B B ) )
K[ffR+ (1 — )R cos (r — thny) — FF2 — (L — £)P2Fyy cos (Y — tnr)] +
A1 —7);

I

=
Q
e
=
_|_

%d[ff_r cos (wr wnr) + (1 o f)Fnr - fFrF2 cos (&r - '(;nr) - (1 - f)FI?T:Iv

90 — o — K(1 = F)sin (P — Pnr) (”f ) Fox — N
d,

- - =2
Vor — (o + KF sin (6 — D) (1;7) 7.



Finite resetting rate: The case wy # 0
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o (i) for K < K. Lorentzian g(w) with unit variance

theory and simulations agree — synchronized stationary state for all f
(i) for K > K.:
@ large f: theory = synchronized stationary state; qualitative
agreement with simulations for large f
@ small f: theory = oscillatory synchronized state at long times
simulations = £y, oscillating with decaying amplitude and eventually
settling to a synchronized stationary state



Finite resetting rate: The case wy # 0
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K . . . .
o (i) for K < K. Lorentzian g(w) with unit variance

theory and simulations agree — synchronized stationary state for all f
(i) for K > K.:
@ large f: theory = synchronized stationary state; qualitative
agreement with simulations for large f
@ small f: theory = oscillatory synchronized state at long times
simulations = £y, oscillating with decaying amplitude and eventually

settling to a synchronized stationary state ) ]
Also studied subsystem resetting for Gaussian g(w), using an extension of

OA-ansatz (Campa (2022)), and obtaining qualitatively similar results



Conclusions

o Stochastic Shuffling and Subsystem Resetting: Two efficient
mechanisms to induce order in many-body interacting systems

Stochastic Shuffling
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A: shuffling rate;
K. =~ 1.6 for bare model

Subsystem Resetting
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f: fraction of oscillators being
reset;
A — oo limit;
K. = 2 for bare model



Conclusions

o Subsystem Resetting: Allows to access phase diagrams without having to

tune coupling constants (A Acharya, R Majumder, SG (in preparation))

H=KY L, 2= kSN 185 Si=0+1 K>0
(Blume, Emery, Griffiths (1971))
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o Future directions: Stochastic shuffling in spin-glass systems, Subsystem
resetting in quantum systems



