Controlling attainment of spontaneous ordering in many-body interacting systems

Shamik Gupta

Tata Institute of Fundamental Research, Mumbai, INDIA

Collaborators:

- Theory: A Acharya, R Majumder & R Chattopadhyay (TIFR); M Sarkar (Heidelberg)
- **Experiment:** P Parmananda & his group (IIT Bombay)

References:

- \bullet R Majumder, R Chattopadhyay and SG, Phys. Rev. E 109, 064137 (2024)
- M Aravind, V Pachaulee, M Sarkar, I Tiwari, SG, and P Parmananda, Phys. Rev. E (Letter) 109, L052302 (2024)

The main question

The main question

 \downarrow Phase transition between an ordered and a disordered phase

 \mathbf{I}

QUESTION: Can we induce order in the system by "minimally" tweaking the dynamics in a parameter regime in which the bare dynamics does not show order?

We address this question in the context of spontaneous synchronization

Spontaneous synchronization

Spontaneous coordination among interacting elements to act in unison

Photo Courtesy: Getty Images

- Synchronized firings of cardiac pacemaker cells
- Voltage oscillations in Josephson junctions arrays

 \circ

Minimal framework: The Kuramoto model

- ¹ N globally-coupled limit-cycle oscillators with distributed natural frequencies
- 2 θ_i : Phase
- 3) $\frac{d\theta_i}{dt} = \omega_i + \frac{K}{N} \sum_{j=1}^{N} \sin(\theta_j \theta_i)$
- ⁴ K: Coupling constant, ω_i 's: Natural frequencies, Unimodal distr. $g(\omega)$ with mean ω_0 (Kuramoto (1975))

Minimal framework: The Kuramoto model

- ¹ N globally-coupled limit-cycle oscillators with distributed natural frequencies
- 2 θ_i : Phase
- 3) $\frac{d\theta_i}{dt} = \omega_i + \frac{K}{N} \sum_{j=1}^{N} \sin(\theta_j \theta_i)$
- ⁴ K: Coupling constant, ω_i 's: Natural frequencies, Unimodal distr. $g(\omega)$ with mean ω_0 (Kuramoto (1975))

- $\circ \ N \to \infty$, $t \to \infty$ limit:
	- **1** Define $R = re^{i\psi} \equiv \frac{1}{N} \sum_{j=1}^{N} e^{i\theta_j}$
	- High K: Synchronized phase, $r \neq 0$
	- Low K: Incoherent phase, $r = 0$
	- ⁴ "Phase transition" (Bifurcation) on tuning K

$$
6 \quad K_c = \frac{2}{\pi g(\omega_0)}
$$

The Kuramoto steady state

Phase-Coupled Oscillators

QUESTION: Can we modify the dynamics in a "simple" manner so that for a given $K < K_c$, we can induce order $(r \neq 0)$ in the system?

QUESTION: Can we modify the dynamics in a "simple" manner so that for a given $K < K_c$, we can induce order $(r \neq 0)$ in the system?

YES!!, via

Stochastic Shuffling, or, Subsystem Resetting,

QUESTION: Can we modify the dynamics in a "simple" manner so that for a given $K < K_c$, we can induce order $(r \neq 0)$ in the system?

YES!!, via

Stochastic Shuffling, Stochastic Shuffling, Subsystem Resetting,

¹ requiring no external potential, and

QUESTION: Can we modify the dynamics in a "simple" manner so that for a given $K < K_c$, we can induce order $(r \neq 0)$ in the system?

YES!!, via

Stochastic Shuffling, or, Subsystem Resetting,

¹ requiring no external potential, and

² requiring to manipulate only a few oscillators

QUESTION: Can we modify the dynamics in a "simple" manner so that for a given $K < K_c$, we can induce order $(r \neq 0)$ in the system?

YES!!, via

Stochastic Shuffling, or, Subsystem Resetting,

¹ requiring no external potential, and

² requiring to manipulate only a few oscillators

QUESTION: Can we modify the dynamics in a "simple" manner so that for a given $K < K_c$, we can induce order $(r \neq 0)$ in the system?

YES!! via

Stochastic Shuffling, Stochastic Shuffling, Subsystem Resetting, ¹ requiring no external potential, and ² requiring to manipulate only a few oscillators

REST OF THE TALK: WHAT are these protocols? HOW do they work? WHY do they work?

Stochastic Shuffling and Subsystem Resetting **Stochastic shuffling**:

An ode to resetting

Restart is a simple and natural mechanism that has emerged as an overreaching topic in physics, chemistry, biology, ecology, engineering and economics. Since the inaugural work of Evans and Majumdar (Evans M R and Majumdar S N 2011, Phys. Rev. Lett. 106, 160601) a substantial amount of research has been carried out on stochastic resetting and its applications. This work spans different contexts starting from first-passage and search theory, stochastic thermodynamics, optimization theory, and all the way to quantum mechanics. Further connections have been made to animal foraging, protein-DNA interactions, coagulation-diffusion processes, chemical reaction processes, as well as to stock-market and population dynamics which display colossal crashes, i.e., resetting events.

... J Phys. A Special Issue (2023)

Stochastic Resetting:

MAJUMDAR, Mallick, Rosso, Schehr, ADhar, Sengupta, Das, Basu, Krishnamurthy, Kundu, Pal, Sabhapandit, Kulkarni, many (all?) others (surely) in this room...

Review: Evans, Majumdar and Schehr, J. Phys. A 53, 193001 (2020)

Stochastic Shuffling and Subsystem Resetting **Stochastic shuffling**:

Stochastic Shuffling & Subsystem Resetting: Results

Subsystem Resetting

Stochastic Shuffling

¹ Relaxation to stationary state:

¹ Relaxation to stationary state:

¹ Relaxation to stationary state:

¹ Relaxation to stationary state:

¹ Relaxation to stationary state:

Stochastic Shuffling: Analysis

1 $N \to \infty$; Initial condition: $\theta_i(0) = \theta_0 \ \forall i$

2
$$
R^{(s)}(t)|_{\{\theta_j(0)\}} = e^{-\lambda t} R(t)|_{\{\theta_j(0)\}} + \lambda \int_0^t d\tau e^{-\lambda \tau} R(t)|_{\{\theta_j(t-\tau)\}}
$$

Most shuffling at $t-\tau$

Inspired from *(Evans and Majumdar (2011))*

- First term: Result of dynamical evolution according to the bare Kuramoto model and with $\{\theta_i(0)\}\$ as the initial condition
- Second term: Result of dynamical evolution according to the bare Kuramoto model and with $\{\theta_i(t-\tau)\}\$ as the initial condition

Stochastic Shuffling: Analysis

 $1 \text{ N} \rightarrow \infty$; Initial condition: $\theta_i(0) = \theta_0 \ \forall j$

$$
(2 \tR^{(s)}(t)|_{\{\theta_j(0)\}} = \underbrace{e^{-\lambda t}R(t)|_{\{\theta_j(0)\}}}_{\text{No shuffling since }t=0} + \underbrace{\lambda \int_0^t d\tau \ e^{-\lambda \tau}R(t)|_{\{\theta_j(t-\tau)\}}}_{\text{Last shuffling at }t-\tau}
$$

Inspired from $(Evans$ and Majumdar (2011))

- First term: Result of dynamical evolution according to the bare Kuramoto model and with $\{\theta_i(0)\}\$ as the initial condition
- Second term: Result of dynamical evolution according to the bare Kuramoto model and with $\{\theta_i(t-\tau)\}\$ as the initial condition
- 3 $t \to \infty$: stationary state $R_{\rm st}^{\rm (s)}=r_{\rm st}^{\rm (s)}e^{{\rm i}\psi_{\rm st}^{\rm (s)}}= {\lim}_{t\to\infty}\,\lambda \int_0^t{\rm d}\tau\,\,e^{-\lambda\tau}R(t)|_{\{\theta_j(t-\tau)\}}$
- **4** Requires θ_i as a function of t under dynamics of bare Kuramoto evolution interspersed with shuffling \rightarrow Analytical solution not known \implies { $\theta_i(t-\tau)$ } from simulations for large N

Stochastic Shuffling: Analysis

$$
\mathbf{I} \quad R_{\rm st}^{(\rm s)} = r_{\rm st}^{(\rm s)} e^{i\psi_{\rm st}^{(\rm s)}} = \lim_{t \to \infty} \lambda \int_0^t \mathrm{d}\tau \ e^{-\lambda \tau} R(t) |_{\{\theta_j(t-\tau)\}}
$$

2 Requires θ_i as a function of t under dynamics of bare Kuramoto evolution interspersed with shuffling \rightarrow Analytical solution not known \implies { $\theta_i(t-\tau)$ } from simulations for large N

Gaussian $g(\omega)$:

Experiments with network of Wien Bridge oscillators: Qualitative agreement

Subsystem Resetting

Dynamical realization 2:

Order parameters of reset and non-reset oscillators

- \circ N oscillators: Reset oscillators labelled $j = 1, 2, \ldots, n$; $j = (n + 1), (n + 2), \ldots, N$: Only Kuramoto evolution; $f \equiv n/N$: fraction of oscillators undergoing reset
- **Initial configuration:** $\theta_i = 0 \ \forall j$; reset oscillators undergoing reset to $\theta_i = 0$

Order parameters of reset and non-reset oscillators

 \circ N oscillators: Reset oscillators labelled $j = 1, 2, \ldots, n$; $j = (n + 1), (n + 2), \ldots, N$: Only Kuramoto evolution; $f \equiv n/N$: fraction of oscillators undergoing reset

r

 $f = 0.5, \lambda = 0.5$

Initial configuration: $\theta_i = 0 \ \forall j$; reset oscillators undergoing reset to $\theta_i = 0$ $r_{\rm r}(t) e^{i\psi_{\rm r}(t)} \equiv \frac{1}{n} \sum_{j=1}^n e^{i\theta_j(t)}$ $r_{\text{nr}}(t)e^{i\psi_{\text{nr}}(t)} \equiv \frac{1}{N-n}\sum_{j=n+1}^{N}e^{i\theta_{j}(t)}$ $r = \sqrt{f^2 r_{\rm r}^2 + (1 - f)^2 r_{\rm nr}^2 + 2f(1 - f)r_{\rm r} r_{\rm nr} \cos(\psi_{\rm r} - \psi_{\rm nr})}$ 0 5 10 15 20 25 30 t $0.0\frac{1}{0}$ 0.2 0.4 0.6 0.8 1.0 0 2 4 6 8 t 0.0 0.2 0.4 0.6 | $\sqrt{ }$ 0.8 ||||| 1.0 ₁₁ r^r 0 2 4 6 8 t 0.0 0.2 θ . 0.6 0.8 1.0 ₁ r_{nr} 0 2 4 6 8 t 0.0 0.2 0.4 0.6 0.8 1.0 rLorentzian $g(\omega)$ with zero mean and unit variance, $K = 1.5$ ($K_c = 2.0$),

N oscillators:

Reset oscillators labelled $j = 1, 2, \ldots, n;$ $j = (n + 1), (n + 2), \ldots, N$: Only Kuramoto evolution; $f \equiv n/N$: fraction of oscillators undergoing reset

- **Initial configuration:** $\theta_i = 0 \forall j$; reset oscillators undergoing reset to $\theta_i = 0$
- $\circ \lambda \to \infty$: $\theta_i(t) = 0 \ \forall t$ and $i = 1, 2, ..., n$

^O N oscillators:

Reset oscillators labelled $j = 1, 2, \ldots, n;$ $j = (n + 1), (n + 2), \ldots, N$: Only Kuramoto evolution; $f \equiv n/N$: fraction of oscillators undergoing reset

- **Initial configuration:** $\theta_i = 0 \forall j$; reset oscillators undergoing reset to $\theta_i = 0$
- $\circ \lambda \to \infty$: $\theta_i(t) = 0 \ \forall t$ and $i = 1, 2, \dots, n$
- **Q** Non-reset oscillators:

$$
\frac{d\theta_j}{dt} = \omega_j + \frac{K}{N} \sum_{l=1}^{N} \sin(\theta_l - \theta_j)
$$

$$
\downarrow
$$

$$
\frac{d\theta_j}{dt} = \omega_j - Kf \sin \theta_j + \frac{K}{N} \sum_{l=1}^{N} \sin(\theta_l - \theta_j)
$$

• In terms of respective order parameters: $\frac{d\theta_j}{dt} = \omega_j - Kf \sin\theta_j + K(1-f)r_{\rm nr} \sin(\psi_{\rm nr}-\theta_j),$ $r_r = 1, \psi_r = 0$ at all times

^O N oscillators:

Reset oscillators labelled $j = 1, 2, \ldots, n;$ $j = (n + 1), (n + 2), \ldots, N$: Only Kuramoto evolution; $f \equiv n/N$: fraction of oscillators undergoing reset

- **Initial configuration:** $\theta_i = 0 \ \forall j$; reset oscillators undergoing reset to $\theta_i = 0$
- $\circ \lambda \to \infty$: $\theta_i(t) = 0 \ \forall t$ and $i = 1, 2, ..., n$
- Non-reset oscillators:

$$
\frac{d\theta_j}{dt} = \omega_j + \frac{K}{N} \sum_{l=1}^{N} \sin(\theta_l - \theta_j)
$$

$$
\downarrow
$$

$$
\frac{d\theta_j}{dt} = \omega_j - Kf \sin \theta_j + \frac{K}{N} \sum_{l=1}^{N} \sin(\theta_l - \theta_j)
$$

- In terms of respective order parameters: $\frac{d\theta_j}{dt} = \omega_j - Kf \sin\theta_j + K(1-f)r_{\rm nr} \sin(\psi_{\rm nr}-\theta_j),$ $r_{\rm r} = 1, \psi_{\rm r} = 0$ at all times
- Non-Hamiltonian dynamics of non-reset oscillators; Absence of noise \rightarrow no Langevin-Fokker-Planck description

 \circ $N \to \infty$, $n \to \infty$ for fixed and finite f

 \circ $F(\theta, \omega, t)$: probability density to obtain an oscillator with phase θ and frequency ω ; $\int_0^{2\pi} d\theta \, F(\theta,\omega,t) = g(\omega)$, $\int d\omega \int_0^{2\pi} d\theta \, F(\theta,\omega,t) = 1$

- \circ $N \to \infty$, $n \to \infty$ for fixed and finite f
- \circ $F(\theta, \omega, t)$: probability density to obtain an oscillator with phase θ and frequency ω ;

 $\int_0^{2\pi} d\theta \, F(\theta,\omega,t) = g(\omega)$, $\int d\omega \int_0^{2\pi} d\theta \, F(\theta,\omega,t) = 1$

- Number of oscillators with a given ω conserved by dynamics \implies
	- **1** Continuity equation: $\frac{\partial F}{\partial t} + \frac{\partial}{\partial \theta} (F \frac{d\theta}{dt}) = 0$ 2 $\frac{d\theta}{dt} = \omega + \frac{1}{2i} [(K(1-f))_{\text{Z}_{\text{nr}}} + Kf) e^{-i\theta} - (K(1-f))_{\text{Z}_{\text{nr}}} + Kf) e^{i\theta}]$ 3 $z_{\rm nr} = r_{\rm nr} e^{i\psi_{\rm nr}} = \int_{-\infty}^{\infty} \int_{0}^{2\pi} e^{i\theta} F(\theta,\omega,t) d\theta d\omega$

- \circ $N \to \infty$, $n \to \infty$ for fixed and finite f
- \circ $F(\theta, \omega, t)$: probability density to obtain an oscillator with phase θ and frequency ω ;

 $\int_0^{2\pi} d\theta \, F(\theta,\omega,t) = g(\omega)$, $\int d\omega \int_0^{2\pi} d\theta \, F(\theta,\omega,t) = 1$ • Number of oscillators with a given ω conserved by dynamics \implies

1 Continuity equation: $\frac{\partial F}{\partial t} + \frac{\partial}{\partial \theta} (F \frac{d\theta}{dt}) = 0$ 2 $\frac{d\theta}{dt} = \omega + \frac{1}{2i} [(K(1-f))_{\text{Z}_{\text{nr}}} + Kf) e^{-i\theta} - (K(1-f))_{\text{Z}_{\text{nr}}} + Kf) e^{i\theta}]$ 3 $z_{\rm nr} = r_{\rm nr} e^{i\psi_{\rm nr}} = \int_{-\infty}^{\infty} \int_{0}^{2\pi} e^{i\theta} F(\theta,\omega,t) d\theta d\omega$

 σ $F(\theta, \omega, t)$ is 2π periodic in $\theta \implies$ Fourier expansion $\mathcal{F}(\theta,\omega,t)=\frac{\mathcal{g}(\omega)}{2\pi}$ $\begin{bmatrix} 1 & \infty \\ 1 & \infty \end{bmatrix}$ $n=-\infty, n\neq 0$ $\tilde{F}_n(\omega, t) e^{in\theta}$

- \circ $N \to \infty$, $n \to \infty$ for fixed and finite f
- \circ $F(\theta, \omega, t)$: probability density to obtain an oscillator with phase θ and frequency ω ; $\int_0^{2\pi} d\theta \, F(\theta,\omega,t) = g(\omega)$, $\int d\omega \int_0^{2\pi} d\theta \, F(\theta,\omega,t) = 1$

• Number of oscillators with a given ω conserved by dynamics \implies

1 Continuity equation: $\frac{\partial F}{\partial t} + \frac{\partial}{\partial \theta} (F \frac{d\theta}{dt}) = 0$ 2 $\frac{d\theta}{dt} = \omega + \frac{1}{2i} [(K(1-f))_{\text{Z}_{\text{nr}}} + Kf) e^{-i\theta} - (K(1-f))_{\text{Z}_{\text{nr}}} + Kf) e^{i\theta}]$ 3 $z_{\rm nr} = r_{\rm nr} e^{i\psi_{\rm nr}} = \int_{-\infty}^{\infty} \int_{0}^{2\pi} e^{i\theta} F(\theta,\omega,t) d\theta d\omega$

 σ $F(\theta, \omega, t)$ is 2π periodic in $\theta \implies$ Fourier expansion

 $\mathcal{F}(\theta,\omega,t)=\frac{\mathcal{g}(\omega)}{2\pi}$ $\begin{bmatrix} 1 & \infty \\ 1 & \infty \end{bmatrix}$ $n=-\infty, n\neq 0$ $\tilde{F}_n(\omega, t) e^{in\theta}$

Special class of $F \to F_n(\omega, t) = [\alpha(\omega, t)]^n$. defined on and remaining confined to Ott-Antonsen (OA) manifold under evolution (Ott-Antonsen (2008))

Dividend: two coupled first-order ordinary differential equations for $r_{\text{nr}}(t)$ and $\psi_{\text{nr}}(t)$

OA ansatz $\implies \frac{\partial \alpha}{\partial t} = \frac{K}{2}[(1-f)z_{\text{nr}}^* + f] - i\omega\alpha - \frac{K}{2}[(1-f)z_{\text{nr}} + f]\alpha^2$ $z_{\rm nr}=\int_{-\infty}^{\infty}\alpha^*(\omega,t)g(\omega)d\omega$

OA ansatz $\implies \frac{\partial \alpha}{\partial t} = \frac{K}{2}[(1-f)z_{\text{nr}}^* + f] - i\omega\alpha - \frac{K}{2}[(1-f)z_{\text{nr}} + f]\alpha^2$ $z_{\rm nr}=\int_{-\infty}^{\infty}\alpha^*(\omega,t)g(\omega)d\omega$

Lorentzian $g(\omega)$: $z_{\text{nr}}(t) = \alpha^*(\omega_0 - i\sigma, t)$

 $\frac{dz_{\text{nr}}}{dt} = \frac{K}{2} [((1-f)z_{\text{nr}} + f) - ((1-f)z_{\text{nr}}^* + f)z_{\text{nr}}^2] - (\sigma - i\omega_0) z_{\text{nr}}$

- OA ansatz $\implies \frac{\partial \alpha}{\partial t} = \frac{K}{2}[(1-f)z_{\text{nr}}^* + f] i\omega\alpha \frac{K}{2}[(1-f)z_{\text{nr}} + f]\alpha^2$ $z_{\rm nr}=\int_{-\infty}^{\infty}\alpha^*(\omega,t)g(\omega)d\omega$
- Lorentzian $g(\omega)$: $z_{\text{nr}}(t) = \alpha^*(\omega_0 i\sigma, t)$
- $\frac{dz_{\text{nr}}}{dt} = \frac{K}{2} [((1-f)z_{\text{nr}} + f) ((1-f)z_{\text{nr}}^* + f)z_{\text{nr}}^2] (\sigma i\omega_0) z_{\text{nr}}$
- Rescaling: $t \to \sigma t$, $K \to K/\sigma$, and $\omega_0 \to \omega_0/\sigma$

$$
\begin{aligned}\n\text{o} \ \ r_{\text{nr}}' &= \frac{K(1-f)}{2} r_{\text{nr}} \left(1 - r_{\text{nr}}^2 \right) - r_{\text{nr}} + \frac{Kf}{2} \left(1 - r_{\text{nr}}^2 \right) \cos \psi_{\text{nr}}; \\
r_{\text{nr}} \psi_{\text{nr}}' &= - \left[-\omega_0 r_{\text{nr}} + \frac{Kf}{2} \left(1 + r_{\text{nr}}^2 \right) \sin \psi_{\text{nr}} \right]\n\end{aligned}
$$

- OA ansatz $\implies \frac{\partial \alpha}{\partial t} = \frac{K}{2}[(1-f)z_{\text{nr}}^* + f] i\omega\alpha \frac{K}{2}[(1-f)z_{\text{nr}} + f]\alpha^2$ $z_{\rm nr}=\int_{-\infty}^{\infty}\alpha^*(\omega,t)g(\omega)d\omega$
- Lorentzian $g(\omega)$: $z_{\text{nr}}(t) = \alpha^*(\omega_0 i\sigma, t)$
- $\frac{dz_{\text{nr}}}{dt} = \frac{K}{2} [((1-f)z_{\text{nr}} + f) ((1-f)z_{\text{nr}}^* + f)z_{\text{nr}}^2] (\sigma i\omega_0) z_{\text{nr}}$
- Rescaling: $t \to \sigma t$, $K \to K/\sigma$, and $\omega_0 \to \omega_0/\sigma$
- $r_{\text{nr}}' = \frac{K(1-f)}{2}$ $\frac{(1 - t)}{2} r_{\rm nr} \left(1 - r_{\rm nr}^2 \right) - r_{\rm nr} + \frac{Kf}{2} \left(1 - r_{\rm nr}^2 \right) \cos \psi_{\rm nr};$
	- $r_{\rm nr}\psi^{'}_{\rm nr}=-\left[-\omega_0r_{\rm nr}+\frac{Kf}{2}\left(1+r_{\rm nr}^2\right)\sin\psi_{\rm nr}\right]$
- \circ $r_{\text{nr}} = 0$ never a stationary solution as soon as $f \neq 0$
	- ¹ Resetting a vanishing fraction synchronizes the nonreset subsystem
	- ² Synchronization transition of the bare model becomes a crossover

- OA ansatz $\implies \frac{\partial \alpha}{\partial t} = \frac{K}{2}[(1-f)z_{\text{nr}}^* + f] i\omega\alpha \frac{K}{2}[(1-f)z_{\text{nr}} + f]\alpha^2$ $z_{\rm nr}=\int_{-\infty}^{\infty}\alpha^*(\omega,t)g(\omega)d\omega$
- Lorentzian $g(\omega)$: $z_{\text{nr}}(t) = \alpha^*(\omega_0 i\sigma, t)$
- $\frac{dz_{\text{nr}}}{dt} = \frac{K}{2} [((1-f)z_{\text{nr}} + f) ((1-f)z_{\text{nr}}^* + f)z_{\text{nr}}^2] (\sigma i\omega_0) z_{\text{nr}}$
- Rescaling: $t \to \sigma t$, $K \to K/\sigma$, and $\omega_0 \to \omega_0/\sigma$
- $r_{\text{nr}}' = \frac{K(1-f)}{2}$ $\frac{(1 - t)}{2} r_{\rm nr} \left(1 - r_{\rm nr}^2 \right) - r_{\rm nr} + \frac{Kf}{2} \left(1 - r_{\rm nr}^2 \right) \cos \psi_{\rm nr};$
	- $r_{\rm nr}\psi^{'}_{\rm nr}=-\left[-\omega_0r_{\rm nr}+\frac{Kf}{2}\left(1+r_{\rm nr}^2\right)\sin\psi_{\rm nr}\right]$
- \circ $r_{\text{nr}} = 0$ never a stationary solution as soon as $f \neq 0$
	- ¹ Resetting a vanishing fraction synchronizes the nonreset subsystem
	- ² Synchronization transition of the bare model becomes a crossover
- Long-time state depends on mean ω_0 of $g(\omega)$ (unlike the bare model)

1 $\omega_0 = 0$: Stationary state \implies $\left(r^{\rm st}_{\rm nr}\right)^3+\left(\frac{f}{1-f}\right)\left(r^{\rm st}_{\rm nr}\right)^2+\left[\frac{2}{K(1-f)}-1\right]r^{\rm st}_{\rm nr}-\left(\frac{f}{1-f}\right)=0$ $2 \omega_0 \neq 0: \; \frac{1}{1-(r_{\rm nr}^{\rm st})^2} = \frac{K(1-f)}{2} + \sqrt{\frac{K^2f^2}{4}\frac{1}{(r_{\rm nr}^{\rm st})^2}}$ $\frac{1}{(r^{\rm st}_{\rm nr})^2} - \frac{\omega_0^2}{\left(1\!+\! (r^{\rm st}_{\rm nr})^2\right)^2};$ Stationary state provided $f > f_c$, with $K\left(\frac{f_c^2}{1-f_c}\right) = \omega_0^2 \frac{K(1-f_c)-2}{(K(1-f_c)-1)^2}$

The case of infinite resetting rate: $\omega_0 = 0$

• Lorentzian $g(\omega)$ with unit variance

- Non-reset subsystem has a synchronized stationary state at long times for any K and f
- 2 Synchronization transition as a function of K of the bare dynamics becomes a crossover in presence of subsystem resetting
- Agreement between theory and simulations

- \circ Lorentzian $g(\omega)$ with unit variance
1) Non-reset subsystem has a synchronized stationary state for any $K \leq K_c$ and for any f
- For $K > K_c$, non-reset subsystem at long times has
	- (i) for large f a synchronized stationary state, and

(ii) for small f an oscillatory synchronized state with a non-zero time-independent time average

 \rightarrow Non-reset subsystem is synchronized at long times for any K and f

Agreement between theory and simulations

Main conclusion:

Non-reset subsystem may or may not have a stationary state depending on the values of the dynamical parameters, even when resetting happens all the time

$(\lambda \rightarrow \infty)$:

Non-reset subsystem always synchronized

Contrast with global resetting when the system always has a stationary state independent of the value of λ (Sarkar and Gupta (2022))

No resetting: Two coupled subsystems r and nr evolving according to bare Kuramoto dynamics

- Oscillators in the individual subsystems on respective OA manifolds
- $\circ \ N \to \infty : g_r(\omega) = g_{nr}(\omega) = g(\omega)$
- \circ Lorentzian $g(\omega)$
- ¹ Reset subsystem: \circ $\frac{dr_{\rm r}}{dt}=-\sigma r_{\rm r}+K\left(\frac{1-r_{\rm r}^2}{2}\right)[fr_{\rm r}+(1-f)r_{\rm nr}\cos\psi];$ $\frac{d\psi_{\rm r}}{dt} = \omega_0 - \mathcal{K}(1-\mathit{f})\sin\psi\left(\frac{1+r_{\rm r}^2}{2r_{\rm r}}\right)\mathit{r}_{\rm nr}$ ² Non-reset subsystem: $\frac{dr_{\rm nr}}{dt}=-\sigma r_{\rm nr}+{\cal K}\left(\frac{1-r_{\rm nr}^2}{2}\right)[fr_{\rm r}\cos\psi+(1-f)r_{\rm nr}]: \;\;\psi\equiv\psi_1-\psi_2;$ $\frac{d\psi_{\rm nr}}{dt} = \omega_0 + \mathcal{K}f \sin\psi \left(\frac{1 + r_{\rm nr}^2}{2r_{\rm nr}}\right) r_{\rm rr}$

- \circ $(r_r(t), \psi_r(t))$ and $(r_{nr}(t), \psi_{nr}(t))$: Random variables
- With initial condition $\psi_r(0) = \psi_{nr}(0) = 0$, one has $\psi_r(t) = 0$ and $\psi_{\text{nr}}(t) = 0$ for all times t
- During bare evolution between two resets:

 $\frac{dr_{\rm r}}{dt}=-\sigma r_{\rm r}+{\cal K}\left(\frac{1-r_{\rm r}^2}{2}\right)[fr_{\rm r}+(1-f)r_{\rm nr}];$ $\frac{dr_{\rm nr}}{dt} = -\sigma r_{\rm nr} + K \left(\frac{1-r_{\rm nr}^2}{2} \right) \left[\textit{f} r_{\rm r} + (1-\textit{f}) r_{\rm nr} \right]$

- \circ $(r_r(t), \psi_r(t))$ and $(r_{nr}(t), \psi_{nr}(t))$: Random variables
- With initial condition $\psi_r(0) = \psi_{nr}(0) = 0$, one has $\psi_r(t) = 0$ and $\psi_{\text{nr}}(t) = 0$ for all times t
- During bare evolution between two resets: $\frac{dr_{\rm r}}{dt}=-\sigma r_{\rm r}+{\cal K}\left(\frac{1-r_{\rm r}^2}{2}\right)[fr_{\rm r}+(1-f)r_{\rm nr}];$ $\frac{dr_{\rm nr}}{dt} = -\sigma r_{\rm nr} + K \left(\frac{1-r_{\rm nr}^2}{2} \right) \left[\textit{f} r_{\rm r} + (1-\textit{f}) r_{\rm nr} \right]$
- Realization average of change in order parameters in $[t, t + dt]$: $d\tilde{r}_r = (1 - \lambda dt) dr_r + \lambda dt (1 - r_r);$ $d\tilde{r}_{nr} = dr_{nr}$

- \circ $(r_r(t), \psi_r(t))$ and $(r_{nr}(t), \psi_{nr}(t))$: Random variables
- With initial condition $\psi_r(0) = \psi_{nr}(0) = 0$, one has $\psi_r(t) = 0$ and $\psi_{\text{nr}}(t) = 0$ for all times t
- During bare evolution between two resets: $\frac{dr_{\rm r}}{dt}=-\sigma r_{\rm r}+{\cal K}\left(\frac{1-r_{\rm r}^2}{2}\right)[fr_{\rm r}+(1-f)r_{\rm nr}];$ $\frac{dr_{\rm nr}}{dt} = -\sigma r_{\rm nr} + K \left(\frac{1-r_{\rm nr}^2}{2} \right) \left[\textit{f} r_{\rm r} + (1-\textit{f}) r_{\rm nr} \right]$
- Realization average of change in order parameters in $[t, t + dt]$: $d\tilde{r}_r = (1 - \lambda dt) dr_r + \lambda dt (1 - r_r);$ $d\tilde{r}_{nr} = dr_{nr}$
- Exact evolution equation for realization-averaged order parameters of reset and non-reset subsystems:

$$
\frac{d\bar{r}_{\rm r}}{dt} = -\sigma \bar{r}_{\rm r} + \frac{\kappa}{2} \left[f \bar{r}_{\rm r} + (1-f) \bar{r}_{\rm nr} - f \bar{r}_{\rm r}^3 - (1-f) \bar{r}_{\rm r}^2 r_{\rm nr} \right] + \lambda (1-\bar{r}_{\rm r});
$$
\n
$$
\frac{d\bar{r}_{\rm nr}}{dt} = -\sigma \bar{r}_{\rm nr} + \frac{\kappa}{2} \left[f \bar{r}_{\rm r} + (1-f) \bar{r}_{\rm nr} - f \bar{r}_{\rm r} r_{\rm nr}^2 - (1-f) \bar{r}_{\rm nr}^3 \right]
$$

Exact evolution equation for realization-averaged order parameters of reset and non-reset subsystems:

$$
\frac{d\bar{r}_{\rm r}}{dt} = -\sigma \bar{r}_{\rm r} + \frac{\kappa}{2} \left[f \bar{r}_{\rm r} + (1 - f) \bar{r}_{\rm nr} - f \bar{r}_{\rm r}^3 - (1 - f) \bar{r}_{\rm r}^2 r_{\rm nr} \right] + \lambda (1 - \bar{r}_{\rm r});
$$
\n
$$
\frac{d\bar{r}_{\rm nr}}{dt} = -\sigma \bar{r}_{\rm nr} + \frac{\kappa}{2} \left[f \bar{r}_{\rm r} + (1 - f) \bar{r}_{\rm nr} - f \bar{r}_{\rm r} r_{\rm nr}^2 - (1 - f) \bar{r}_{\rm nr}^3 \right]
$$

 λ large but finite: $r_r r_{\text{nr}}^2 \approx \bar{r}_r \bar{r}_{\text{nr}}^2$, $r_r^2 r_{\text{nr}} \approx \bar{r}_r^2 \bar{r}_{\text{nr}}$, $r_{\text{nr}}^3 \approx \bar{r}_{\text{nr}}^3$, $r_r^3 \approx \bar{r}_{\text{nr}}^3$

Exact evolution equation for realization-averaged order parameters of reset and non-reset subsystems:

$$
\frac{d\bar{r}_{\rm r}}{dt} = -\sigma \bar{r}_{\rm r} + \frac{\kappa}{2} \left[f\bar{r}_{\rm r} + (1-f)\bar{r}_{\rm nr} - f\bar{r}_{\rm r}^3 - (1-f)\bar{r}_{\rm r}^2 r_{\rm nr} \right] + \lambda (1-\bar{r}_{\rm r});
$$
\n
$$
\frac{d\bar{r}_{\rm nr}}{dt} = -\sigma \bar{r}_{\rm nr} + \frac{\kappa}{2} \left[f\bar{r}_{\rm r} + (1-f)\bar{r}_{\rm nr} - f\bar{r}_{\rm r}r_{\rm nr}^2 - (1-f)\bar{r}_{\rm nr}^3 \right]
$$

 λ large but finite: $r_r r_{\text{nr}}^2 \approx \bar{r}_r \bar{r}_{\text{nr}}^2$, $r_r^2 r_{\text{nr}} \approx \bar{r}_r^2 \bar{r}_{\text{nr}}$, $r_{\text{nr}}^3 \approx \bar{r}_{\text{nr}}^3$, $r_r^3 \approx \bar{r}_{\text{nr}}^3$

Results similar to $\lambda \to \infty$ case: $g(\omega)$ with unit variance Non-reset subsystem has a synchronized stationary state at long times, Agreement between theory and simulations

- Realization average of change in order parameters in $[t, t + dt]$: $d\tilde{r}_r = (1 - \lambda dt) dr_r + \lambda dt (1 - r_r);$ $d\tilde{r}_{nr} = dr_{nr}$ $d\tilde{\psi}_{\rm r} = (1 - \lambda dt) d\psi_{\rm r} - \lambda dt \psi_{\rm r}$; $\bm{d}\tilde{\psi}_{\rm nr}=\bm{d}\psi_{\rm nr}$
- Exact evolution equation for realization-averaged order parameters of reset and non-reset subsystems:

$$
\frac{d\bar{r}_{\rm r}}{dt} = -\sigma \bar{r}_{\rm r} + \lambda (1 - \bar{r}_{\rm r}) + \frac{K}{2} [\bar{r}\bar{r}_{\rm r} + (1 - \bar{r}) \bar{r}_{\rm nr} \cos (\psi_{\rm r} - \psi_{\rm nr}) -
$$
\n
$$
\bar{r}\bar{r}_{\rm r}^3 - (1 - \bar{r}) \bar{r}_{\rm r}^2 \bar{r}_{\rm nr} \cos (\psi_{\rm r} - \psi_{\rm nr})];
$$
\n
$$
\frac{d\bar{r}_{\rm nr}}{dt} = -\sigma \bar{r}_{\rm nr} + \frac{K}{2} \left[\bar{r}\bar{r}_{\rm r} \cos (\psi_{\rm r} - \psi_{\rm nr}) + (1 - \bar{r}) \bar{r}_{\rm nr} - \bar{r}\bar{r}_{\rm r} \bar{r}_{\rm nr}^2 \cos (\psi_{\rm r} - \psi_{\rm nr}) - (1 - \bar{r}) \bar{r}_{\rm nr}^3 \right];
$$
\n
$$
\frac{d\bar{\psi}_{\rm r}}{dt} = \omega_0 - K(1 - \bar{r}) \sin (\psi_{\rm r} - \psi_{\rm nr}) \left(\frac{1 + r_{\rm r}^2}{2r_{\rm r}} \right) r_{\rm nr} - \lambda \bar{\psi}_{\rm r};
$$
\n
$$
\frac{d\bar{\psi}_{\rm nr}}{dt} = \omega_0 + K \bar{r} \sin (\psi_{\rm r} - \psi_{\rm nr}) \left(\frac{1 + r_{\rm nr}^2}{2r_{\rm nr}} \right) r_{\rm r}
$$

- Realization average of change in order parameters in $[t, t + dt]$: $d\tilde{r}_r = (1 - \lambda dt) dr_r + \lambda dt (1 - r_r);$ $d\tilde{r}_{nr} = dr_{nr}$ $d\tilde{\psi}_{\rm r} = (1 - \lambda dt) d\psi_{\rm r} - \lambda dt \psi_{\rm r}$; $\bm{d}\tilde{\psi}_{\rm nr}=\bm{d}\psi_{\rm nr}$
- Exact evolution equation for realization-averaged order parameters of reset and non-reset subsystems:

$$
\frac{d\bar{r}_{\rm r}}{dt} = -\sigma \bar{r}_{\rm r} + \lambda (1 - \bar{r}_{\rm r}) + \frac{\kappa}{2} [\bar{r}_{\rm r} + (1 - \bar{r}) \bar{r}_{\rm nr} \cos (\psi_{\rm r} - \psi_{\rm nr}) -
$$
\n
$$
\bar{r}_{\rm r}^3 - (1 - \bar{r}) \bar{r}_{\rm r}^2 r_{\rm nr} \cos (\psi_{\rm r} - \psi_{\rm nr})];
$$
\n
$$
\frac{d\bar{r}_{\rm nr}}{dt} = -\sigma \bar{r}_{\rm nr} + \frac{\kappa}{2} \left[\bar{r}_{\rm r} \cos (\psi_{\rm r} - \psi_{\rm nr}) + (1 - \bar{r}) \bar{r}_{\rm nr} - \bar{r}_{\rm r} \bar{r}_{\rm nr}^2 \cos (\psi_{\rm r} - \psi_{\rm nr}) - (1 - \bar{r}) \bar{r}_{\rm nr}^3 \right];
$$
\n
$$
\frac{d\bar{\psi}_{\rm r}}{dt} = \omega_0 - K (1 - \bar{r}) \sin (\psi_{\rm r} - \psi_{\rm nr}) \left(\frac{1 + \bar{r}_{\rm r}^2}{2r_{\rm r}} \right) r_{\rm nr} - \lambda \bar{\psi}_{\rm r};
$$
\n
$$
\frac{d\bar{\psi}_{\rm nr}}{dt} = \omega_0 + K \bar{r} \sin (\psi_{\rm r} - \psi_{\rm nr}) \left(\frac{1 + \bar{r}_{\rm nr}^2}{2r_{\rm nr}} \right) r_{\rm r}
$$
\n
$$
\lambda \text{ large but finite: } \bar{r} \bar{r}^2 \approx \bar{r} \bar{r}^2, \qquad \bar{r}^2 \bar{r} \approx \bar{r}^3, \qquad \bar{r}^3 \approx \bar{r}^3.
$$

 λ large but finite: $\overline{r_r r_{\rm nr}^2} \approx \overline{r_r} \overline{f_{\rm nr}^2}$, \overline{r} $\overline{r_{\rm r}^2 r_{\rm nr}} \approx \overline{r_{\rm r}^2} \overline{r_{\rm nr}}$; $\overline{r_{\rm nr}^3} \approx \overline{r_{\rm r}^3}$ $\frac{1}{n}$ r 3 $\bar{r_{\rm r}}^3 \approx \bar{r_{\rm i}}$ r ; $\overline{\cos\left(\psi_{\rm r}-\psi_{\rm nr}\right)}\approx\cos\left(\overline{\psi}_{\rm r}-\overline{\psi}_{\rm nr}\right)$

$$
\begin{aligned}\n&\frac{d\bar{r}_{\rm r}}{dt} = -\sigma \bar{r}_{\rm r} + \\
&\frac{K}{2} \left[f \bar{r}_{\rm r} + (1 - f) \bar{r}_{\rm nr} \cos \left(\bar{\psi}_{\rm r} - \bar{\psi}_{\rm nr} \right) - f \bar{r}_{\rm r}^3 - (1 - f) \bar{r}_{\rm r}^2 \bar{r}_{\rm nr} \cos \left(\bar{\psi}_{\rm r} - \bar{\psi}_{\rm nr} \right) \right] + \\
&\lambda (1 - \bar{r}_{\rm r}); \\
&\frac{d\bar{r}_{\rm nr}}{dt} = -\sigma \bar{r}_{\rm nr} + \\
&\frac{K}{2} \left[f \bar{r}_{\rm r} \cos \left(\bar{\psi}_{\rm r} - \bar{\psi}_{\rm nr} \right) + (1 - f) \bar{r}_{\rm nr} - f \bar{r}_{\rm r} \bar{r}_{\rm nr}^2 \cos \left(\bar{\psi}_{\rm r} - \bar{\psi}_{\rm nr} \right) - (1 - f) \bar{r}_{\rm nr}^3 \right]; \\
&\frac{d\bar{\psi}_{\rm r}}{dt} = \omega_0 - K (1 - f) \sin \left(\bar{\psi}_{\rm r} - \bar{\psi}_{\rm nr} \right) \left(\frac{1 + \bar{r}_{\rm r}^2}{2 \bar{r}_{\rm r}} \right) \bar{r}_{\rm nr} - \lambda \bar{\psi}_{\rm r}; \\
&\frac{d\bar{\psi}_{\rm nr}}{dt} = \omega_0 + K f \sin \left(\bar{\psi}_{\rm r} - \bar{\psi}_{\rm nr} \right) \left(\frac{1 + \bar{r}_{\rm nr}^2}{2 \bar{r}_{\rm nr}} \right) \bar{r}_{\rm r}\n\end{aligned}
$$

theory and simulations agree \rightarrow synchronized stationary state for all f (ii) for $K > K_c$:

- 1 large f: theory \implies synchronized stationary state; qualitative agreement with simulations for large f
- 2 small f: theory \implies oscillatory synchronized state at long times simulations $\implies \bar{r}_{nr}$ oscillating with decaying amplitude and eventually settling to a synchronized stationary state

theory and simulations agree \rightarrow synchronized stationary state for all f (ii) for $K > K_c$:

- 1 large f: theory \implies synchronized stationary state; qualitative agreement with simulations for large f
- 2 small f: theory \implies oscillatory synchronized state at long times simulations $\implies \bar{r}_{nr}$ oscillating with decaying amplitude and eventually settling to a synchronized stationary state

Also studied subsystem resetting for Gaussian $g(\omega)$, using an extension of OA-ansatz *(Campa (2022))*, and obtaining qualitatively similar results

Conclusions

• Stochastic Shuffling and Subsystem Resetting: Two efficient mechanisms to induce order in many-body interacting systems

Subsystem Resetting

Conclusions

Subsystem Resetting: Allows to access phase diagrams without having to tune coupling constants (A Acharya, R Majumder, SG (in preparation))

• Future directions: Stochastic shuffling in spin-glass systems, Subsystem resetting in quantum systems