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The main question

Many-body interacting systemsy
Phase transition between an ordered and a disordered phase

QUESTION: Can we induce order in the system by “minimally” tweaking
the dynamics in a parameter regime in which the bare dynamics does not

show order?

We address this question in the context of spontaneous synchronization
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Spontaneous synchronization

Spontaneous coordination among interacting elements to act in unison

Photo Courtesy: Getty Images

Synchronized firings of cardiac pacemaker cells

Voltage oscillations in Josephson junctions arrays

....



Minimal framework: The Kuramoto model

1 N globally-coupled limit-cycle oscillators
with distributed natural frequencies

2 θi : Phase

3 dθi
dt = ωi +

K
N

∑N
j=1 sin(θj − θi )

4 K : Coupling constant,
ωi ’s: Natural frequencies,
Unimodal distr. g(ω) with mean ω0

(Kuramoto (1975))

oscillator
i-th

θi

N → ∞, t → ∞ limit:

1 Define R = re iψ ≡ 1
N

∑N
j=1 e

iθj

2 High K : Synchronized phase, r ̸= 0
3 Low K : Incoherent phase, r = 0
4 “Phase transition” (Bifurcation) on

tuning K
5 Kc = 2

πg(ω0)
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The Kuramoto steady state



Main queries

QUESTION: Can we modify the dynamics in a “simple” manner so that for a
given K < Kc , we can induce order (r ̸= 0) in the system?

YES!!, via

Stochastic Shuffling, or, Subsystem Resetting,

1 requiring no external potential, and

2 requiring to manipulate only a few oscillators

REST OF THE TALK: WHAT are these protocols? HOW do they work?
WHY do they work?
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Stochastic Shuffling and Subsystem Resetting

Time
t = 0

Stochastic shuffling:

Kuramoto evolution Kuramoto evolution Kuramoto evolution

Shuffle the frequencies (“colors”) among the oscillators at time intervals τ
distributed as p(τ) = λe−λτ

Reset a fixed subset of oscillator phases at time intervals τ with p(τ) = λe−λτ



An ode to resetting

Restart is a simple and natural mechanism that has emerged as an over-
reaching topic in physics, chemistry, biology, ecology, engineering and
economics. Since the inaugural work of Evans and Majumdar (Evans
M R and Majumdar S N 2011, Phys. Rev. Lett. 106, 160601) a
substantial amount of research has been carried out on stochastic re-
setting and its applications. This work spans different contexts starting
from first-passage and search theory, stochastic thermodynamics, opti-
mization theory, and all the way to quantum mechanics. Further con-
nections have been made to animal foraging, protein-DNA interactions,
coagulation-diffusion processes, chemical reaction processes, as well as
to stock-market and population dynamics which display colossal crashes,
i.e., resetting events.

. . . J Phys. A Special Issue (2023)
Stochastic Resetting:
MAJUMDAR, Mallick, Rosso, Schehr, ADhar, Sengupta, Das, Basu,
Krishnamurthy, Kundu, Pal, Sabhapandit, Kulkarni, many (all?) others
(surely) in this room...

Review: Evans, Majumdar and Schehr, J. Phys. A 53, 193001 (2020)
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Stochastic Shuffling & Subsystem Resetting: Results
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Stochastic Shuffling
Dynamical realization 1:

Time
t = 0

Stochastic shuffling:

Kuramoto evolution Kuramoto evolution Kuramoto evolution

Dynamical realization 2:

Time
t = 0

Stochastic shuffling:

Kuramoto evolution Kuramoto
 Kuramoto evolution

evolution



Results for Gaussian g(ω)

1 Relaxation to stationary state:
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2 Stationary-state fluctuations and phase diagram:

χ(N) ≡ N[⟨(r (s)st )2⟩ − ⟨r (s)st ⟩2]
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Synchronization under shuffling gets easier in every practical sense:
lower coupling and less time to achieve synchrony;

similar results for any g(ω) with finite variance and also with shuffling done at
fixed time intervals
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Stochastic Shuffling: Analysis

1 N → ∞; Initial condition: θj(0) = θ0 ∀ j

2 R(s)(t)|{θj (0)} = e−λtR(t)|{θj (0)}︸ ︷︷ ︸
No shuffling since t=0

+λ

∫ t

0

dτ e−λτR(t)|{θj (t−τ)}︸ ︷︷ ︸
Last shuffling at t−τ

Inspired from (Evans and Majumdar (2011))

First term: Result of dynamical evolution according to the bare
Kuramoto model and with {θj(0)} as the initial condition
Second term: Result of dynamical evolution according to the bare
Kuramoto model and with {θj(t − τ)} as the initial condition

3 t → ∞: stationary state

R
(s)
st = r

(s)
st eiψ

(s)
st = limt→∞ λ

∫ t

0
dτ e−λτR(t)|{θj (t−τ)}

4 Requires θj as a function of t under dynamics of bare Kuramoto evolution
interspersed with shuffling → Analytical solution not known
=⇒ {θj(t − τ)} from simulations for large N
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Subsystem Resetting
Dynamical realization 1:

Dynamical realization 2:

Time
t = 0

Subsystem resetting:

Kuramoto evolution Kuramoto evolutionKuramoto evolution



Order parameters of reset and non-reset oscillators

N oscillators:
Reset oscillators labelled j = 1, 2, . . . , n;
j = (n + 1), (n + 2), . . . ,N: Only Kuramoto evolution;
f ≡ n/N: fraction of oscillators undergoing reset

Initial configuration: θj = 0 ∀ j ; reset oscillators undergoing reset to θj = 0

rr(t)e
iψr(t) ≡ 1

n

∑n
j=1 e

iθj (t)

rnr(t)e
iψnr(t) ≡ 1

N−n

∑N
j=n+1 e

iθj (t)

r =
√

f 2r2r + (1− f )2r2nr + 2f (1− f )rrrnr cos(ψr − ψnr)
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The case of infinite resetting rate

N oscillators:
Reset oscillators labelled j = 1, 2, . . . , n;
j = (n + 1), (n + 2), . . . ,N: Only Kuramoto evolution;
f ≡ n/N: fraction of oscillators undergoing reset

Initial configuration: θj = 0 ∀ j ; reset oscillators undergoing reset to θj = 0

λ→ ∞: θj(t) = 0 ∀ t and j = 1, 2, . . . , n

Non-reset oscillators:

dθj
dt = ωj +

K
N

∑N
l=1 sin(θl − θj)y

dθj
dt = ωj − Kf sin θj +

K
N

∑N
l=1 sin(θl − θj)

In terms of respective order parameters:
dθj
dt = ωj − Kf sin θj + K (1− f )rnr sin(ψnr − θj),
rr = 1, ψr = 0 at all times

Non-Hamiltonian dynamics of non-reset oscillators;
Absence of noise → no Langevin-Fokker-Planck description
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The case of infinite resetting rate

N → ∞, n → ∞ for fixed and finite f

F (θ, ω, t): probability density to obtain an oscillator with phase θ and
frequency ω;∫ 2π

0
dθ F (θ, ω, t) = g(ω),

∫
dω

∫ 2π

0
dθ F (θ, ω, t) = 1

Number of oscillators with a given ω conserved by dynamics =⇒
1 Continuity equation: ∂F

∂t + ∂
∂θ

(
F dθ

dt

)
= 0

2 dθ
dt = ω + 1

2i [(K (1− f )znr + Kf )e−iθ − (K (1− f )z∗nr + Kf )e iθ]

3 znr = rnre
iψnr =

∫∞
−∞

∫ 2π

0
e iθF (θ, ω, t)dθdω

F (θ, ω, t) is 2π periodic in θ =⇒ Fourier expansion

F (θ, ω, t) = g(ω)
2π

[
1 +

∞∑
n=−∞,n ̸=0

F̃n(ω, t)e
inθ

]
Special class of F → F̃n(ω, t) = [α(ω, t)]n:
defined on and remaining confined to
Ott-Antonsen (OA) manifold under evolution
(Ott-Antonsen (2008))
Dividend: two coupled first-order ordinary
differential equations for rnr(t) and ψnr(t)
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The case of infinite resetting rate

OA ansatz =⇒ ∂α
∂t = K

2 [(1− f )z∗nr + f ]− iωα− K
2 [(1− f )znr + f ]α2

znr =
∫∞
−∞ α∗(ω, t)g(ω)dω

Lorentzian g(ω): znr(t) = α∗(ω0 − iσ, t)
dznr
dt = K

2 [((1− f )znr + f )− ((1− f )z∗nr + f )z2nr]− (σ − iω0) znr

Rescaling: t → σt, K → K/σ, and ω0 → ω0/σ

r
′

nr =
K(1−f )

2 rnr
(
1− r2nr

)
− rnr +

Kf
2

(
1− r2nr
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The case of infinite resetting rate: ω0 = 0
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The case of infinite resetting rate: ω0 ̸= 0
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Lorentzian g(ω) with unit variance
1 Non-reset subsystem has a synchronized stationary state for any

K ≤ Kc and for any f
2 For K > Kc , non-reset subsystem at long times has

(i) for large f a synchronized stationary state, and
(ii) for small f an oscillatory synchronized state with a non-zero
time-independent time average

3 → Non-reset subsystem is synchronized at long times for any K and f
4 Agreement between theory and simulations



The case of infinite resetting rate

Main conclusion:
Non-reset subsystem may or may not have a stationary state depending on the
values of the dynamical parameters, even when resetting happens all the time

(λ→ ∞);
Non-reset subsystem always synchronized

Contrast with global resetting when the system always has a stationary state
independent of the value of λ
(Sarkar and Gupta (2022))



The case of finite resetting rate



No resetting: Two coupled subsystems r and nr
evolving according to bare Kuramoto dynamics

Oscillators in the individual subsystems on respective OA manifolds

N → ∞ : gr(ω) = gnr(ω) = g(ω)

Lorentzian g(ω)

1 Reset subsystem:
drr
dt = −σrr + K

(
1−r2r
2

)
[frr + (1− f )rnr cosψ];

dψr

dt = ω0 − K (1− f ) sinψ
(

1+r2r
2rr

)
rnr

2 Non-reset subsystem:
drnr

dt = −σrnr + K
(

1−r2nr

2

)
[frr cosψ + (1− f )rnr] ; ψ ≡ ψ1 − ψ2;

dψnr

dt = ω0 + Kf sinψ
(

1+r2nr

2rnr

)
rr



Finite resetting rate: The case ω0 = 0

(rr(t), ψr(t)) and (rnr(t), ψnr(t)): Random variables

With initial condition ψr(0) = ψnr(0) = 0, one has ψr(t) = 0 and
ψnr(t) = 0 for all times t
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2
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drnr
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1−r2nr

2

)
[frr + (1− f )rnr]

Realization average of change in order parameters in [t, t + dt]:
dr̃r = (1− λdt) drr + λdt (1− rr);
dr̃nr = drnr

Exact evolution equation for realization-averaged order parameters of reset
and non-reset subsystems:
dr̄r
dt = −σr̄r + K

2

[
f r̄r + (1− f )r̄nr − f r3r − (1− f )r2r rnr

]
+ λ (1− r̄r);

dr̄nr
dt = −σr̄nr + K

2

[
f r̄r + (1− f )r̄nr − f rrr2nr − (1− f )r3nr

]



Finite resetting rate: The case ω0 = 0

(rr(t), ψr(t)) and (rnr(t), ψnr(t)): Random variables

With initial condition ψr(0) = ψnr(0) = 0, one has ψr(t) = 0 and
ψnr(t) = 0 for all times t

During bare evolution between two resets:
drr
dt = −σrr + K

(
1−r2r
2

)
[frr + (1− f )rnr];

drnr
dt = −σrnr + K

(
1−r2nr

2

)
[frr + (1− f )rnr]

Realization average of change in order parameters in [t, t + dt]:
dr̃r = (1− λdt) drr + λdt (1− rr);
dr̃nr = drnr

Exact evolution equation for realization-averaged order parameters of reset
and non-reset subsystems:
dr̄r
dt = −σr̄r + K

2

[
f r̄r + (1− f )r̄nr − f r3r − (1− f )r2r rnr

]
+ λ (1− r̄r);

dr̄nr
dt = −σr̄nr + K

2

[
f r̄r + (1− f )r̄nr − f rrr2nr − (1− f )r3nr

]
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Finite resetting rate: The case ω0 = 0
Exact evolution equation for realization-averaged order parameters of reset
and non-reset subsystems:
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λ large but finite: rrr2nr ≈ r̄rr̄
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Lorentzian g(ω) with unit variance
Results similar to λ→ ∞ case:
Non-reset subsystem has a synchronized stationary state at long times,
Agreement between theory and simulations



Finite resetting rate: The case ω0 = 0
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Finite resetting rate: The case ω0 ̸= 0
Realization average of change in order parameters in [t, t + dt]:
dr̃r = (1− λdt) drr + λdt (1− rr);
dr̃nr = drnr;
dψ̃r = (1− λdt) dψr − λdtψr;
dψ̃nr = dψnr

Exact evolution equation for realization-averaged order parameters of reset
and non-reset subsystems:
dr̄r
dt = −σr̄r + λ(1− r̄r) +

K
2 [f r̄r + (1− f )rnr cos (ψr − ψnr)−

f r3r −(1− f )r2r rnr cos (ψr − ψnr)
]
;

dr̄nr
dt = −σr̄nr +
K
2

[
f rr cos (ψr − ψnr) + (1− f )r̄nr − f rrr2nr cos (ψr − ψnr)− (1− f )r3nr

]
;

dψ̄r

dt = ω0 − K (1− f )sin (ψr − ψnr)
(

1+r2r
2rr

)
rnr − λψ̄r;

dψ̄nr

dt = ω0 + Kf sin (ψr − ψnr)
(

1+r2nr

2rnr

)
rr

λ large but finite: rrr2nr ≈ r̄rr̄
2
nr; r2r rnr ≈ r̄2r r̄nr; r3nr ≈ r̄3nr; r3r ≈ r̄3r ;

cos (ψr − ψnr) ≈ cos (ψ̄r − ψ̄nr)
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Finite resetting rate: The case ω0 ̸= 0

dr̄r
dt = −σr̄r +
K
2

[
f r̄r + (1− f )r̄nr cos (ψ̄r − ψ̄nr)− f r̄3r − (1− f )r̄2r r̄nr cos (ψ̄r − ψ̄nr)

]
+

λ(1− r̄r);

dr̄nr
dt = −σr̄nr +
K
2

[
f r̄r cos (ψ̄r − ψ̄nr) + (1− f )r̄nr − f r̄rr̄

2
nr cos (ψ̄r − ψ̄nr)− (1− f )r̄3nr

]
;

dψ̄r

dt = ω0 − K (1− f ) sin (ψ̄r − ψ̄nr)
(

1+r̄2r
2r̄r

)
r̄nr − λψ̄r;

dψ̄nr

dt = ω0 + Kf sin (ψ̄r − ψ̄nr)
(

1+r̄2nr

2r̄nr

)
r̄r



Finite resetting rate: The case ω0 ̸= 0
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Lorentzian g(ω) with unit variance
(i) for K ≤ Kc :
theory and simulations agree → synchronized stationary state for all f
(ii) for K > Kc :

1 large f : theory =⇒ synchronized stationary state; qualitative
agreement with simulations for large f

2 small f : theory =⇒ oscillatory synchronized state at long times
simulations =⇒ r̄nr oscillating with decaying amplitude and eventually
settling to a synchronized stationary state

Also studied subsystem resetting for Gaussian g(ω), using an extension of
OA-ansatz (Campa (2022)), and obtaining qualitatively similar results



Finite resetting rate: The case ω0 ̸= 0
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(i) for K ≤ Kc :
theory and simulations agree → synchronized stationary state for all f
(ii) for K > Kc :

1 large f : theory =⇒ synchronized stationary state; qualitative
agreement with simulations for large f

2 small f : theory =⇒ oscillatory synchronized state at long times
simulations =⇒ r̄nr oscillating with decaying amplitude and eventually
settling to a synchronized stationary state

Also studied subsystem resetting for Gaussian g(ω), using an extension of
OA-ansatz (Campa (2022)), and obtaining qualitatively similar results



Conclusions

Stochastic Shuffling and Subsystem Resetting: Two efficient
mechanisms to induce order in many-body interacting systems
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f : fraction of oscillators being
reset;

λ→ ∞ limit;
Kc = 2 for bare model



Conclusions

Subsystem Resetting: Allows to access phase diagrams without having to
tune coupling constants (A Acharya, R Majumder, SG (in preparation))

H = K
∑N

i=1 S
2
i − 1

2N

∑N
i,j=1 SiSj ; Si = 0,±1; K > 0

(Blume, Emery, Griffiths (1971))

Future directions: Stochastic shuffling in spin-glass systems, Subsystem
resetting in quantum systems


