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Introduction: Type II Scattering

Consider type II string compactifications of the form
Rp ×M where M is an internal manifold. E.g.
p = 4 and M = a CY manifold.
Such a compactification defines a quantum theory of
gravity on Rp. Spectrum includes p dimensional gravitons.
The scattering amplitudes of these gravitons are given by
the following schematic formula

A =
∑

g

∫
dτidzi < V1(z1) . . .Vn(zn) >

where Vn are the graviton vertex operators, zi are their
insertion locations, and τi are the moduli of the genus g
Reimann surface. Expectations values are taken in the
sigma model on Rp ×M.

Shiraz Minwalla



Introduction: Type II Scattering loop amplitudes

As graviton vertex operators all lie in the Rp part of the
CFT, the formula above can be simplified to

A =
∑

g

∫
dτi ZM(τi) CRp (τi)

CRp (τi) =

∫
dzi < V1(z1) . . .Vn(zn) > |Rp

where ZM(τi) is partition function of the sigma model on M
on the Reimann surface. The vertex operator expectation
values are taken purely in the Rp part of the CFT.
Even though CRp (τi) are universal - independent of M -
ZM(τi) - and hence the integral over τi above - clearly
depends on M. It follows that graviton scattering
amplitudes at generic values of g depend on details of the
compactification manifold M (e.g. are intricate functions
the CY moduli).
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Introduction: Type II Scattering Tree Amplitudes

The story above holds for generic g. Let us now, however,
focus on the special case g = 0. As the Reimann sphere
has no moduli, the integral over τi is absent at g = 0. It
follows that

Ag=0 = Z S2

M CS2

Rp

Here Z S2

M is the partition function of the M CFT on the 2
sphere. Z S2

M is a multiplicative factor for all scattering
amplitudes. It is an overall number that sets the value of
the effective p dimensional Newton constant.
CS2

Rp , the nontrivial part of the scattering amplitude is
universal (i.e. independent of M). It is not hard to convince
oneself that CS2

Rp is the same for type IIA, IIB and Type I
theory.
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Introduction: Aside on Consistent Truncations

Recall that a spacetime theory with two groups of degrees
of freedom - {ai} and {bj} is said to admit a consistent
truncation to a if its action takes the form
S = S(a) + Sint (a,b) where every term in Sint is of
quadratic or higher order in bi . In this situation the theory
admits solutions with bi = 0. These simple solutions obey
the equations of motion derived from the action S(a).
Simple situation in which we find consistent truncations:
System has symmetry under some group G. ai are G
singlets while bi transform in a nontrivial representation of
G.
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Introduction: Universal Sector

Spacetime implication of worldsheet discussion above:
Classical type II theory on Rp ×M admits a consistent
truncation to a universal (i.e. M independent) theory which
describes the interaction of gravitons and an infinite
number of additional fields.
The ai type fields here are the gravitons as well as an
infinite number of other fields. These are the fields whose
vertex operators lie completely in the Rp sector (and have
(−1)FL = (−1)FR = 1. These are the fields that appear as
poles in graviton S matrices. The b type fields are those
associated with vertex operators on M + ...
The consistent truncation to this universal sector is a
remarkable fact as there is no known spacetime symmetry
explanation.
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Introduction: Other consistent S matrices

Heterotic (and Bosonic) compactifications also admit
consistent truncations to their own universal sectors.
Finally, there is another, more elementary example of a
‘classical’ S matrix (defined as having only poles and no
cuts). This is the classical Einstein S matrix.
As far as I am aware, these examples exhaust the set of
classical S matrices that emerge in any parameteric limit of
string theory. The parametric limits relevant to the
enumerated examples is gs → 0 (with no restriction on
energy) for the string S matrices and E/mp → 0 with no
restrictions on gs for the Einstein S matrix.
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Intro: A set of Bold (Crazy?) Conjectures

The observations of the previous transparency motivate
the following bold conjecture.
Conjecture I: The classical Einstein S matrix, the tree level
type II S matrix, and the tree level Heteroitic S matrix
constitute the exhaustive list of ‘consistent’ tree level S
matrices of gravity. Restated, every ‘consistent’ classical
gravitational theory admits a consistent truncation to one of
these three universal sectors.
‘Tree level’: no singularities apart from poles corresponding
to the exchange of a massive or massless particle
transforming in some representation of the Little group.
‘Consistent’: means emerges as the parametric limit of a
consistent quantum theory. Implies, in particular, that it as
all good properties expected of classical theories including
causality and boundedness of energy, ....(see below).
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Intro: Attribution

The conjectures above were cleanly formulated (and
motivated) in [1].
That something like Conjecture I should hold has been
suggested on several occasions by Nima Arkani Hamed
(though perhaps not in print).
The validity - or otherwise - of conjecture was also one of
my “Two Questions About Gravity” in the talk by that title
that I gave in the 50th Anniversary of String Theory
session at Strings 2018.
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Intro: Implications

The provocative Conjecture I implies the following two
successively weaker subconjectures.
Conjecture II: The only consistent tree level gravitational S
matrix with poles of bounded spin is the Einstein S matrix
Conjecture III: The only consistent tree level gravitational S
matrix with only gravitational poles is the Einstein S matrix.
This is a heirarchy of Russian dolls of conjectures.
I =⇒ II =⇒ III but the reverse implications do not hold.
In these lectures I will attempt to say something more
concrete about conjecture II. III is a special case of II. I will
have nothing further to say about the strongest - and most
interesting conjecture, namely conjecture I, which has
been included just for motivation.
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Intro: No conjecture II for photons

Could something like conjecture II be true for Maxwel
Electrodynamics (or Yang Mills theory)? Obviously not.
Simple counterexample: coupling with a scalar field via∫

φFµνFµν .

This is an allowed coupling in a perfectly ordinary 2
derivative theory. Should be an allowed coupling. Leads to
a tree level scalar exchange contribution to 4 photon
scattering. Could have many such couplings with different
masses. Also could have couplings to non scalar fields.
Thus there clearly are infinitely many ‘consistent’ tree level
4 photon S matrices.
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Intro: Conjecture II for gravitons

Might initially think it would be easy to construct similar
counter examples to Conjecture II for gravity in the space
of manifestly good 2 derivative theories. However this is
not the case.
As one attempt to construct a two derivative (so manifestly
good) counter example to Conjecture II consider the
coupling

∫
φR

Might at first think that this coupling leads yields a new
pole contribution to 4 graviton scattering. Not the case.
Coupling modifies propagators as well as 3 pt function.
Need field redefinition to diagonalize propagators. Same
field redefinition removes φhh coupling. ‘Going to Einstein
Frame’
In lecture 2 we will show this example generalizes. No 2
derivative counter example to Conjecture II for 4 graviton
scattering.
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Causality and Scattering

To make the conjectures above useful we need to
ennumerate a set of mathematically precise consequences
of ‘consistency’. Theories that do not meet these criteria
will then be ruled out as inconsistent.
In these lectures I will list two such criteria. The first of
these is simply causality.
In a relativistic quantum field theory, causality implies
commutator of any two spatially separated gauge invariant
operators must vanish.
In a gravitational theory, local operators do not exist in
gravity. E.g consider∫

DgµνDφe−
∫ √

gR−√gJ(x)φ(x)

Tµν ∝ gµνφ(x)J(x). Not conserved for generic J(x) (the
way to make this conserved is to make J dynamical - in
which case it is no longer a source). Rel to diff inv.
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Low Energy Constraints: Causality

Given this, one might wonder what it even means to assert
that a classical theory of gravity respects causality.? Can’t
demand that‘the response to a source lies within its
lightcone’ (because there are sources).
One criterion for cauasality goes as follows. Consider a
spacetime S generated by the initial data D. Then consider
a second spacetime generated by new data D′, which
agrees precisely with D outside a compact region R. Our
theory is causal provided S and S′ agree with each other
outside the lightcone of R. GR is causal by this criterion.
In these lectures we employ another criterion - better
suited for the study of quantum theories (also for effective
field theories).
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Low Energy Constraints: Causality and scattering

Consider an asymptotically flat spacetime. Send some
gravitational pulses into this spacetime from I− and watch
them emerge at I+. Compare the time of emergence of
the outgoing pulse with the lightcones emanating out of the
ingoing pulses of an auxilliary pure flat space spacetime
obtained by filling in the flat shells of spacetime around
infinity (such an auxilliary flat spacetime can be uniquely
constructed is true only in D ≥ 5) If the outgoing pulse
emerges outside its lightcone then the theory is acausal.
In other words, our theory is acausal if interactions speed
particles up rather than slowing them down, i.e. if
interactions cause a time advance rather than a time delay.
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Causality and 3 graviton scattering

The conjectures of the previous subsection apply to the
scattering of n gravitons, for all n = 3,4,5 . . .. The case
n = 3 is especially simple.
This simplicity has its root in the fact that 3 graviton S
matrices are highly kinematically constrained. The most
general 3 graviton S matrix - classical or quanutm - is
necessrily a linear combination of three structures.

T1 = (ε1.ε2ε3.p1 + perm)2 2 der : Einstein

T2 = (ε1 ∧ ε2 ∧ ε3 ∧ p1 ∧ p2)2 4 der : GaussBonnet

T3 = tr(f1f2)tr(f2f3)tr(f1f3) 6 der : Reimann3

fµνi = pµi ε
ν
i − pνi ε

µ
i . The formulae above are actually valid only for D ≥ 5. In D = 4, T2

vanishes but a new parity odd structure appears.)

Note in particular that all 3 graviton scattering amplitudes -
classical or quantum - are always analytic in momenta.
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CEMZ result on 3 graviton scattering from causality

The most general 3 graviton S matrix takes the form

aT1 + bT2 + cT3

where a, b and c are numbers (they have mass
dimensions but are independent of momenta).
CEMZ demonstrated that any theory in which either b or c
is nonzero is necessarily acausal unless it couples to
higher spin particles of arbitrarily high spin.
I very briefly describe outline the nature of the argument
that gives this result. Consider the contribution to four
graviton scattering from a graviton pole exchange. The non
analytic (pole) contribution to this amplitude is completely
determined by the 3 graviton scattering amplitude.
Using the explicit form of the exchange amplitude, CEMZ
were able to show that when b and c are both nonzero,
there always exist choices of polarizations for the intial
graviton for which scattering at high enough energies leads
to a time advance.
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CEMZ from causality

This acausality cannot be cured by adding contact terms to
the Lagrangian. This is because contact terms only affect
the scattering amplitude at zero impact parameter, while
pole exchanges affect the amplitude even at nonzero
impact parameter.
CEMZ showed that the acuasaility is of a nature that also
cannot be cured by the additional exchanges of a finite
number of higher spin particles.
On the other hand exchanges with an infinite number of
higher spins can cure this problem. This happend in
classical string theory. Loop diagrams can also cure the
problem. This happens in, e.g. M theory.
In other words classical gravitational theories with bounded
spin are only causal if their 3 graviton scattering amplitude
is that of Einstein gravity
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CEMZ and Conjecture 2

It follows that the CEMZ argument has already established
conjecture 2 for the special case of three graviton
scattering.
This is very encouraging. However note that 3 graviton
scattering is special as it is parameterized by finite data
(there were only 3 allowed structures).
Scattering with 4 or more gravitons has qualitatively greater
complexity; scattering amplitudes are parameterized my
infinite amount of data. Consequently, conjecture 2 is a
much more dramatic statement for 4 or higher gravitational
scattering amplitudes. Topic of rest of these lectures.
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Boundedness of scattering amplitudes

Two ingredients went into the CEMZ proof of conjecture 2
for the case n = 3. The first, and most important element
was the physical principle (causality in that case). The
second element was the complete kinematic classification
of possibilities. Together these two ingredients gave us our
result.
In order to argue for Conjecture 2 for four graviton
scattering, we will need anlogues of both these elements.
We will first argue for a physical principle that can be used
to constrain scattering amplitudes. We will then turn to the
second element - namely find a complete kinematical
classification of classical 4 gravitation amplitudes. Right at
the end of these lectures we will put these two elements
together to obtain our final results.
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Regge Boundedness

The physical principle we will use to constrain 4 graviton
scattering is the following Classical Regge Growth or CRG
conjecture
The CRG conjecture states that “A classical theory whose
scattering grows faster than s2 at fixed t is physically
unacceptable.
There are many intuitive reasons to believe that the CRG
conjecture is true. The simplest (but also weakest)
argument for this conjecture comes from the fact that it is
true in all classical theories that we know for sure to be
consistent (i.e. to emerge as parametrically exact
descriptions in a controlled limit of a good quantum theory
).
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CRG: Argument from examples

Most classical theories that we know for sure to be
consistent are two derivative theories.
It follows immediately from dimensional analysis that
contact diagrams in such theories cannot grow faster than
s at fixed t , and that exchange diagrams cannot grow faster
than s2

t . Thus two derivative theories, almost trivially, obey
the CRG conjecture. Note Einstein gravity saturates CRG.
The only non two derivative classical theory that I feel I
know for sure to be consistent is classical string theory. In
string theory the S matrix in the Regge limit scales like
s2+at where a is a positive number. As t is negative in
physical scattering, classical string theory also obeys CRG.
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CRG: CEMZ argument I

In Appendix D of their now classic paper, CEMZ used a
‘signal model’ to intuitively argue for the CRG conjecture.
As both Juan has reviewed it, and Simone will also touch
on it, my review will be brief.
First suppose an effect is related to a cause via the linear
relation

E(t) =

∫
dt ′G(t − t ′)C(t ′)

Define E(t) =
∫ dω

2π e−iωt Ẽ(ω), etc, so that

Ẽ(ω) = G̃(ω)C(ω)

Now causality is the requirement that G(t) = 0 for t < 0. It
implies that

G̃(ω) =

∫
dt eiωtG(t)

is analytic in the upper half ω plane.
Shiraz Minwalla



CRG: CEMZ argument II

Note that the effect at time t only depends on the cause at
times t ′ < t . The upper half of the ω complex plane is
singled out becuase this is where the cause

C(t) =

∫
dωC̃(ω)e−iωt ′

is bounded for all t ′ < t (the same is not true in the lower
half of the complex plane).
Now let us supppose that we know, for some reason, that
|G(ω)|2 ≤ 1, for all real ω. This tells us that∫

dt |E(t)|2 =

∫
dω
2π
|E(ω)|2 ≤

∫
dω
2π
|C(ω)|2 =

∫
dt |C(t)|2

In other words the integrated output ‘flux’ is smaller than
the integrated input ‘flux’.
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CRG: CEMZ argument III

Let us now specialize to the study of the response, E(t), to
a cause that is zero for t < 0. It follows that E(t) also
vanishes for t < 0. For any such response ω in the upper
half plane

|Ẽ(ω)|2 =

∣∣∣∣∫ ∞
0

dteiωtE(t)
∣∣∣∣2 ≤ ∫ ∞

0

∣∣∣eiωt
∣∣∣2 ∫ ∞

0
|E(t)|2 (1)

where we have used the Cauchy Shwarz inequality for the
inner product on the space of square integrable functions
〈g|f 〉 =

∫
g∗f .

Now∣∣∣∣∫ ∞
0

eiωt
∣∣∣∣2 =

1
2Im(ω)

=⇒ |Ẽ(ω)|2 ≤ 1
2Im(ω)

∣∣∣∣∫ ∞
0
|E(t)|2

∣∣∣∣2
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CRG: The CEMZ argument IV

The arguments above apply for the response to any
source, whatsoever, provided it vanishes for t < 0. In order
to find an upper bound for the function |G̃(ω)|2 = |Ẽ(ω)|2

|C̃(ω)|2
we

need an upper bound on |C̃(ω)|2 in one cleverly chosen
example.
CEMZ realized we could make the following clever choice.
For the purpose of bounding G̃(ω) at ω = ω0 + iγ (γ > 0), it
is useful to use the source function

C(t) = e−γte−iω0tθ(t).

For this choice of function

C̃(ω) =

∫ ∞
0

eiω0t−γte−γte−iω0t =
1

2γ
=

1
2Im(ω)∫

dt |C(t)|2 =
1

2Im(ω)

(2)
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CRG: The CEMZ argument V

It follows that

|G̃(ω)|2 =

∣∣∣∣∣ Ẽ(ω)

C̃(ω)

∣∣∣∣∣
2

≤ 2Im(ω)

∫ ∞
0
|E(t)|2 ≤ 2Im(ω)

∫ ∞
0
|C(t)|2 = 1

(3)

It follows that causality upgrades the (assumed) ‘unitarity
relation into one that applies everywhere in the entire
upper half plane.
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CRG: The CEMZ argument VI

What does any of this have to do with scattering? Consider
a two graviton partial wave scattering amplitude. Atleast in
channels with unit degeneracy (see below for what this
means) the unitarity tells us that |S̃(ω))|2 ≤ 1 for all real
ω > 0.
Moreover, atleast intuitively, the S matrix is the response
(final state) to a cause (initial state) and so plausibly obeys
the constraints of causality (however it is confusing here
that, in the physical situation, both cause and response
have ω > 0, preventing pulses from being completely
localized)
If we ignore subtleties, its a small step from here to show
that a perturbative partial wave (or fixed impact parameter)
S matrix is cannot grow faster than s at large s (because
|1 + igAsb|, when expanded at order g, cannot be less than
unity for any choice of sign of A when b > 1. This
observation translates to the CRG conjectue.
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CRG: Argument from the chaos bound

The third stream of arguments in support of the CRG
conjecture is the suspicion that, in the context of the
AdS/CFT correspondence, the bulk CRG conjecture
follows from the boundary chaos bound.
This suggestion has been made by many people, including
the authors of the original chaos bound paper. Juan
alluded to this connection in his lectures at this school.
While its nice to have intuitive arguments, it is safer (and
more satisfying) to have precise results - results you are
sure are true. In other words it would be nice to turn one of
these sets of intuitive arguments into a proof. It would be
very interesting to turn the intuitive signal model argument
into a clear proof of the CRG conjecture. However I dont
(atleast yet) know how to do this.
It has, however, proved possible to make the chaos bound
argument, atleast in a particular context. I will explain how
that has been done (reviewing the paper [3]).
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Kinematics I: Insertion points

Consider four operators inserted at the boundary of global
AdSD+1 space at the following two parameter set of
locations.

P1 = (cos τ, sin τ,1,0, ~0)

P3 = (cos τ, sin τ,−1,0, ~0)

P2 = (−1,0,− cos θ,− sin θ,~0)

P4 = (−1,0, cos θ, sin θ,~0)

(4)

We study these insertions assuming that

0 ≤ τ ≤ π, 0 ≤ θ ≤ π

2
(5)
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Kinematics II: Insertion diagram

These insertion points may be visualized as follows:

P1 t = τP3

t = π

t

P4

P2

θ

Figure: Insertion points in global AdS
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Kinematics III: Three causal configurations

Our insertion points are causally related in the following
way:

τ > π − θ Causally Euclidean,

π − θ > τ > θ Causally Regge (P4 > P1, and P2 > P3)

τ < θ Causally Scattering (P4,P2) > (P1,P3)

(6)

These three different causal configurations lie on three
different sheets in conformal cross ratio space (more
below)
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Kinematics IV: iε corrected insertions and cross ratios

The iε corrected insertions

P1 = (cos(τ − iετ), sin(τ − iετ),1,0)

P3 = (cos(τ − iετ), sin(τ − iετ),−1,0)

P2 = (cos(π − iπε), sin(π − iπε),− cos θ,− sin θ)

P4 = (cos(π − iπε), sin(π − iπε), cos θ, sin θ)

(7)

Yield the following conformal cross ratios

z =
1
2

(1− cos(θ − τ − i(π − τ)ε)),

z̄ =
1
2

(1− cos(θ + τ + i(π − τ)ε)),

(8)

For some purposes useful to define new cross ratios

z = σeρ, z̄ = σe−ρ (9)

σ and ρ easily determined on for our configurtion.
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Kinematics V: Passage in cross ratio space

Figure: The path traversed in the complex plane by the variables z
(purple) and z̄ (green) as we lower τ from π to 0 at fixed θ. The
vertical scale in these graphs is greatly exaggerated.
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Kinematics VI: τ → 0 limit

Two limits will play an important role in our analysis. The first of
these is the limit τ → 0 with σ held fixed. This limit lies on the
Causally Scattering sheet.

z = sin
θ

2

(
sin

θ

2
− τ cos

θ

2

)
+O(τ2)

z̄ = sin
θ

2

(
sin

θ

2
+ τ cos

θ

2

)
+O(τ2)

σ = sin2 θ

2
+O(τ2)

ρ = −τ cot
θ

2
+O(τ3)

(10)

Note that ρ→ 0 in this limit
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Kinematics VII: τ → 0 as bulk point

τ = 0 is special for the following reason. The four
boundary points Pa (a = 1 . . . 4) are generically linearly
independent vectors in embedding space SO(D,2). The
space they span is generically either an R3,1 or an R2,2.
A one parameter tuning of cross ratios, however, can
sometimes make the 4 Pa linearly dependent. In the
current context this happens when τ = 0 at which point

P1 + P2 + P3 + P4 = 0

Whenever this happens it can be shown on general
grounds that ρ always vanishes. If, in additon, some other
causal constraints are met, it can be shown that the
correlator develops a bulk point singularity - i.e. diverges
like an inverse power of ρ.
Our correlator develops a bulk point singularity in the
τ → 0 limit (more below).
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Kinematics VIII: Regge limit

The second limit of interest to us is the (generalized)
Regge limit defined by

τ → 0, θ → 0,
τ

θ
= a = fixed (11)

In this limit

z =
(θ − τ − iε)2

4
=
θ2

4
(1− a− iε)2 +O(θ4)

z̄ =
(θ + τ + iε)2

4
=
θ2

4
(1 + a + iε)2 +O(θ4)

σ2 =
θ4(1− a2)

16
+O(θ6)

e2ρ =

(
1− a− iε
1 + a + iε

)2

+O(θ2)

(12)

Note that in this limit z → 0, z̄ → 0, σ → 0 but e2ρ is
nontrivial.
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Kinematics IX: Regge limit significance

When a < 1 the Regge limit lies on the Causally Scattering
sheet (same as the τ → 0 limit). However when a > 1, it
lies on the Causally Regge sheet. At a = 1 z = 0.
The part of the Regge limit that lies on Causally Regge
sheet has recently been extensively studied. This is most
usually done by studying the following path integral in R1,1

Figure:Shiraz Minwalla



Aside: Chaos Bound

We choose to normalize the path integral of the previous
slide it by a suitable product of two point functions. As is
usual, the operator interpretation of the path integral -in
usual quantization - is the time ordered correlator

〈O2O3O4O1〉
〈O2O1〉〈O4O3〉

(13)

However there is another operator interpretation of the
same path integral which makes it clear that this
normalized path integral is constrained by the chaos
bound, as we now explain. This operator interpretation
works in so called angular quntization - a slicing of the
Euclidean path integral in which the angular coordinate is
regarded as time.
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Within angular quantization, the path integral above
computes an OTOC

〈O1O4O2O3〉
〈O2O1〉〈O4O3〉

(14)

Note that the boost in Minkowski space is simply time
translation in (analytically continued) angular time.

Figure:

Specializing to a large N field theory, the chaos bound applies
to this new correlator. It tells us that the normalized correlator
cannot grow faster than 1

σ as σ → 0 at every fixed ρ.
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Kinematics X: Overlap of Regge and τ → 0.

It will be of importance to this paper that the τ → 0 limit
and the Regge limit overlap.
This statement can be quantified as follows. If we take the
cross ratios computed in the τ → 0 limit and expand them
to leading order in θ, we get the same cross ratios that we
do upon first taking the Regge limit and then working to
leading order in a.
In other words the τ → 0 and Regge limits overlap. We can
access one corner of the the τ → 0 limit by working within
the Regge limit. The importance of this fact will become
clear below.
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Scaling in the Regge Limit

In the rest of this talk we focus attention on boundary
theories with a local bulk dual. We further focus on the
computation of boundary four point functions obtained by
the rules of AdS/CFT via a local bulk contact term. We
discuss possible generalizations at the end of this talk.
Such correlators are all of given by experessions of the
form∫

dD+1X
N

(−P1.X + iε)ã1 (−P2.X + iε)ã2 (−P3.X + iε)ã3 (−P4.X + iε)ã4

(15)
where N = N(Zi ,X ) is a polynomial function of Zi and X
and ãi are positive numbers (not necessarily integers).
We now follow the classic analysis of HPPS to study such
correlators of the form (15) in the Regge limit.
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Regge Limit II: Small quantities

In the strict Regge limit

P1 + P2 = P3 + P4 = 0

The collection of points Pa span an R1,1 in RD,2. The
subspace orthognal to this R1,1 is an RD−1,1.
It is thus useful to parameterize points on AdSD+1 as

X = (
u + v

2
, y0,

v − u
2

, y1, yi) (16)

with
− (yµ)2 + uv = 1 (17)

When u = v = 0 gives the intersection of the orthogonal
RD−1,1 with the AdSD+1 hyperboloid. In other words
Pa.X = 0 for all a when u = v = 0.
It is thus intuitive (and may be shown) that the dominant
contribution to the integral in the Regge limit comes from
the neighbourhood of u = v = 0; infact from u and v that
are of the same order as τ and θ.
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Regge Limit III: Taylor Expansion

In fact the correlator can be systematically expanded in a
power series in θ by expanding the integrand in the four
small parameters, θ, τ , u and v , and then performing the
integral, first over u and v and then over yi and y1.
In our paper we have studied this expansion carefully and
established the following.

The normalized correlator admits an expansion of the form

1
θ2A′−2a∆+r−3

( ∞∑
n=0

θnhn(a)

)

The functions hn(a) are analytic in the upper half complex a
plane, and all admit a power series expansion in a around
a = 0. In particular each of the functions hn(a) are well
behaved (either constant or zero) in the a→ 0 limit.
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Regge Limit IV: analyticity in a

At leading order in the Regge limit, , in particular, the
normalized four point correlators take the form

1
θ2A′−2a∆+r−3 h0(a) (18)

where h0(a) is an analytic function in the upper half a
plane.
Recall a < 1 lies on the Causally Scattering sheet, a > 1
lies on the Causally Regge sheet. On the real axis h0(a)
has a branch cut lightcone singularity at a = 1.
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Regge Limit V: Analytic continuation in a

When we take careful account of the iε in denominators we
find that, for physical purposes, h0(a) is evaluated at a with
a infinitesimal positive imaginary piece. In other words
physics instructs us to evaluate h0(a) on the real axis but
to continue past any singularities via the upper half of the
complex a plane

Figure:
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Regge Limit VI: Analytic continuation in cross ratios

Recall

e2ρ =

(
1− a− iε
1 + a + iε

)2
(19)

It follows that as a decreases from∞ to 0 e2ρ (and hence
z) traverses the path, in agreement with the ‘branch’
discussion early in this talk.

Figure: The path traversed in the complex plane by the cross ratio e2ρ

as a moves from greater to one to less than one. The vertical scale in
these graphs are greatly exaggerated in order to make it visible. The
actual curves should be thought of as hugging the real axis except in
the neighbourhood of the branch point at zero. The path followed by
e2ρ circles round the branch point at zero in a counter-clockwise
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Regge Limit: Summary

We have reached three important conclusions. First that
the leading small θ scaling of correlators in the Regge limit
is very simple; it takes the form 1

θ2A′−2 where A′ is a
constant rather than a function of a
Second that the the coefficient of this scaling, h0(a), while
not actually analytic in a at a = 1, is the boundary value of
an analytic function in the upper half plane, allowing us to
analytically continue from a < 1 to a > 1. This fact makes it
impossible for h0(a) to be proprtional to, e.g. θ(1− a). In
other words the constant A is the same in the Causally
Regge and Causally scattering sheets.
Third that all hn(a) are nonsingular in the a→ 0 limit.
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Bulk Point Limit : I

In a remarkable paper already in 2009, Gary, Giddings and
Penedones demonstrated that CFTs dual to local bulk
theories have unusual singularities in ρ in four point
functions. For the special case of external scalar operators
they also wrote down an explicit expression for the
coefficient of this ‘bulk point singularity’ in terms of the flat
space S matrix of bulk scalar fields.
As we are principally interested in the scattering of
gravitons, we needed to generalize the analysis of GGP to
the study of correlators of the stress tensor (and also
conserved currents). The generalization involves a few
extra element (having to do with polarizations) that had no
counterpart in the GGP study. To perform the
generalizations we employed the method of the ‘bulk point’
paper of Maldacena, David Simons Duffin and Sasha
Zhibeodov. The details are a bit involved and are
presented in our paper in detail.
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Bulk Point Limit II: Formula

With our kinematics in the τ → 0 limit we find that the
leading bulk point singularity is given by the expression

Gsing =i
(

2π3 (C̃∆,J
)4
)

Γ(∆ + r − 3)e−
i(∆+r)

2

√
1− σ(∆+r−4)

σ
∆+r−2

2 ρ∆+r−3
×∫

HD−2

dΩD−3dζ
sinhD−3 ζ

cosh ζ∆+r−3

(
SX (ω)

ωr

)
(20)

The HD−2 is the intersection of the AdSD+1 hyperboloid
and the RD−2,1 orthogonal to the R2,1 spanned by the
insertion points.
SX (ω) is the flat space S matrix generated by the bulk local
interaction term (assumed to be of r order in derivatives),
where the scattering waves for the S matrix are given by
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Bulk Point Limit III: Formula

φ = eik .x Scalar

AM = Z⊥M eik .x Vector

hMN =

(
Z⊥M1

Z⊥M2
−

(X .Z )2 (ηM1M2 + XM1XM2

)
D − 1

)
eik .x Graviton

(21)

And where the scattering momenta are given by

k1 = ω(1,0,1,0, ~0)

k3 = ω(1,0,−1,0, ~0)

k2 = −ω(1,0, cos θ, sin θ,~0)

k4 = −ω(1,0,− cos θ,− sin θ,~0)

(22)
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The Bulk Point limit IV: Regge scaling

The formulae above capture the leading small ρ behaviour
of the correlator. The coefficient of this ρ singularity is a
function of σ. Using the explicit expression given above, it
is not difficult to demonstrate that (after normalizing the
correlator) the coefficient of this singularity scales with σ
like

Gnorm
sing ∝

1
σA−1 (23)

whenever the flat space S matrix generated by the same
contact term scales like

sA

in the Regge limit.
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CRG conjecture and the chaos bound

With all these results in place, it is now easy to argue that -
in the context studied in this paper (i.e. S matrices for
scalars, photons or gravitons generated by local bulk
contact terms) - the CRG conjecture follows from the
chaos bound.
Recall that we found that in the σ → 0 Regge limit at
generic values of e2ρ, the scaling of the correlator with σ is
proportional to 1

σA′−1 .
When we first took the ρ→ 0 bulk point limit, on the other
hand, we found that the correlator scaled with σ like 1

σA−1

where A is the CRG scaling coefficient of the flat space S
matrix.
We will now examine the relationship betwen the variables
A and A′.
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Relationship between A and A′

Recall that our correlator takes the form

1
θ2A′−2a∆+r−3

( ∞∑
n=0

θnhn(a)

)

When we take the θ → 0 limit first, we find the scaling
1

θ2A′−2 ∼ 1
σA′−1 .

On the other hand if we take the a→ 0 limit first and then
take θ to zero we find the scaling 1

σA−1 = 1
σ

A′−1− n
2

where n is
the smallest value such that hn(a) 6= 0. Generically we
expect n = 0, in which case A′ = A. However even if this
generic expectation is not met, we find A′ = A + n

2 and so it
is always true that A′ ≥ A.
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CRG conjecture from the chaos bound

Our central result now follows immediately. It follows from
the chaos bound that

A′ ≤ 2

On the other hand we have demonstrated that

A ≤ A′

It follows that
A ≤ 2

In other words the CRG conjecture follows from the chaos
bound.
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Lecture 2

Contents
The road forward
Kinematics of 4 graviton scattering. Momenta and
Polarizations.
Classification of Pole contributions. Classification of ggP
couplings
Relation to partial waves for gravitons
Mathematical statement of the problem of classification of
polynomial 4 graviton S matrices.
Module Structure of Polynomial S matrices.
The mathematical structure of modules
Z2 × Z2, S3 and quasi invariant modules.
S3 representation theory, and Verma Modules of primaries
in different S3 representations.

Shiraz Minwalla



The road forward

At the end of the previous lecture we decided what our
criterion we would impose to rule out classical S matrices
as unphysical. Any classical S matrix that scales faster
than s2 at fixed t is unphysical.
We will now proceed as follows. In imitation of the strategy
adopted by CEMZ, we will first proceed to kinematically
ennumerate all possible structures in the four graviton
scattering S matrix. Unlike for 3 graviton scattering, four
graviton scattering is parameterized by infinite data.
However we will find a way to usefully organize this data
Once we have the most general gravitational S matrix
parameterized, we proceed to constrain the data in this S
matrix by imposing the CRG cut.
Remarkably enough we will find that this criterion is hugely
constraining, leaving us with only a finite number of
possibilities. Indeed, in D ≤ 6, the only possibility that
remains is the Einstein S matrix.
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Scattering Momenta

Consider scattering of 4 massless particles in
D-dimensional Minkowski space. Let pµi be momentum of
the i th particle. The masslessness of the scattering
particles and momentum conservation means

p2
i = 0,

4∑
i=1

pµi = 0. (24)

Mandelstam variables:

s := −(p1 + p2)2 = −(p3 + p4)2 = −2p1.p2 = −2p3.p4

t := −(p1 + p3)2 = −(p2 + p4)2 = −2p1.p3 = −2p2.p4

u := −(p1 + p4)2 = −(p2 + p3)2 = −2p1.p4 = −2p2.p3.

s + t + u = 0
(25)
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Polarizations: Photons

Aµ = εiµe−ik i .x , i = particle index

Adopt Lorentz gauge (to maintain manifest Lorentz
invariance)

k i .εi = 0

Residual gauge invariance

εµi → εµi + ζ(pi)p
µ
i (26)

As pi different, amplitude invariant under

εµi → εµi + ζip
µ
i (27)

separately for each i
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Polarizations: Gravitons

hµν(x) = hi
µνe−ik i .x

Lorentz gauge and Einstein equation

hµνi pνi = 0, (hi)
µ
µ = 0 (28)

Residual gauge invariance

hµνi → hµνi + ζµi pνi + ζνi pµi , where ζi · pi = 0. (29)

Choice of polarization (no loss of generality):

hi
µν = εiµε

i
ν where ki · εi = 0, εi · εi = 0 (30)
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Polarizations: Gravitons

Polarization form preserved by gauge transformation of the
form ζµi = ζiε

i
µ.

Induced effective transformation

εµi → εµi + ζip
µ
i . (31)

Same as for gauge field.
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Poles

In these lectures we will focus on local classical theories.
By definition these are theories with a finite number of
fields, and where interactions have no more than finitely
many derivatives. 4 graviton S matrices in such theories
consist of a finite number of poles
can probably be extended to S matrices with an infinite number of particles provided these are all bounded

in spin plus a polynomial of finite degree.
The pole contribution to the S matrix is given by sewing
two copies of the ggR three particle S matrix through an R
propagator (R is some other particle). If we can enumerate
all kinematically allowed ggR couplings, we will have
effectively classified all pole contributions to gggg
scattering. This classification is easy to do.
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Detail: Three particle scattering, Counting 1

Consider the scattering of 2 gravitons and a massive
particle in a representation R of the little group SO(D − 1).
Spacetime can be divided up into the ‘scattering 2 plane’ -
spanned by k1, k2 - together with its orthogonal
compliment.
The polarization ε1 of the graviton with momentum k1
obeys k1.ε1 = 0. Implies ε1 = ε⊥1 + a1k1 where ε⊥1 lies in
the orthogonal compliment. As far as gauge invariant
amplitudes go, ε1 = ε⊥1 . Sim for ε2. It follows that graviton
polarization states are labelled by traceless symmetric
tensors of SO(D − 2) that stabilizes the scattering two
plane.
On the other hand the representation R of SO(D − 1)
(which stabilizes k1 + k2) descends, via SO(D − 1)
branching rules, to a finite set of representations of the
SO(D − 2) that also stabilizes k1 − k2, and so the full
scattering two plane
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Detail: Three particle scattering: Counting 2

In order to enumerate all possible ggP three point functions we
Enumerate all SO(D − 2) singlets in the product of two
SO(D − 2) tranceless symmetric tensors and one copy of
any of the SO(D − 2) reps that descend from R.
Retain only those singlets that respect the Bose symmetry
of gravitons.

This exercise is not difficult to undertake. Once we have
enumerated all structures it is also easy to explicitly construct
them all, and also to list the Lagrangians from which they follow.
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Detail: 3 particle scattering, Listing 1

It is also not difficult to explicitly construct all relevant 3 point
functions. For instance for D ≥ 8. Yellow boxes denote indices
effectively contracted with k1 − k2 in order to facilitate
comparison with counting outlined above.

a b : ∇a∇bRcdef Rcdef Sab
a b : RefgaRefgbSab

a b α β : RcadbRcαdβSabαβ

a b
c

: ∇d Racef Rbdef S[ac]b
a b c d
e

: ∇hRaedi Rhbci S[ae]bcd

a b c
d

: Refch∇b∇hRefad S[ad ]bc
a b c d e
f

: ∇βRαbch∇h∇e∇αRβdaf S[af ]bcde

a
b
c

: ∇f RabdeRcfdeS[abc]
a d e
b
c

: ∇hRabdf Rchef S[abc]de
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Detail: 3 point structures, Listing 2

r t
s u

and r t
s u

: RpqrsRpqtuS[rs][tu] and Rprqt RpsquS[rs][tu]

a c e f
b d

: RabehRcdfhS[ab][cd ]ef

c i d
a j

: Rabdk∇k Rbcij S[ca][ij]d

a d f i
b e
c

: ∇i Rabfj RcjdeS[abc][de]fi

a d f
b e
c

: Rabfi RcideS[abc][de]f

a d
b e
c f

: RabdhRchef S[abc][def ]
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Detail: 3 point structures, Listing 3

c i k e
a j d

: Rabkd∇eRbcij S[ca][ij][kd ]e

a b c d e
f i j

: ∇k Rafcj∇eRbidk S[af ][bi][cj]de

a d f
b e i
c

: ∇j RabdeRcjfi S[abc][de][fi]

a c e i
b d f j

: Rabcd Refij S[ab][cd ][ef ][ij]
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Three Point Couplings: Important take away

Observation: Every coupling on our list is of fourth or
higher order in derivatives. To start with this result gives us
a proof of a fact we had suspected above - namely that
graviton scattering amplitudes in 2 derivative theories of
gravity interacting with additional fields never have massive
exchange pole contributions.
The fact that all couplings are of 4th or higher order in
derivatives has a simple physical interpretation. Every
genuine ggS interaction term is constructed out of a
product of (derivatives of) two Reimann tensors with the
field S.
Recall mechanism for removal of two derivative hhP
interactions is field redefinitions that are forced on us by
the need to diagonalize the quadratic part of the action.
Consistent truncation to Einstein gravity at 2 derivative
level.
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Aside: Partial Waves I

With all ggP S matrices in hand, all pole exchange S
matrices (one might think of these as scattering blocks)
generated by these three particle scattering amplitudes
are, in principle, completely determined
Unfortunately, no one has ever, as yet, explicitly listed all
relevant structures (atleast in higher than 4 dimensions -
there is a sense in which the spinor helicity formalism
makes gravitons as easy as scalars in 4 dimensions).
Luckily, for the purposes of my lectures, we will be able to
get away without this explicit knowledge. For other
applications (like those Simone is telling you about) we will
not be so lucky.
These structures are basic kinematical data for 4 graviton
scattering. With two students (Shoaib and Suman) I am in
the process of explicitly constructing them.
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Aside: Partial Waves II

As we do not really need the details these structures for
these lectures (and as their construction is not yet
complete) I describe them very briefly.
Let us continue to work in the rest frame of the massive
particle (as above). Then ‘final state’ of the ggP scattering
process, above, has a definite angular momentum, namely
the spin of the massive particle. As all interactions
conserve angular momentum, it is clear that only that part
of the two graviton state that has the same angular
momentum as our massive particle can interact with it.
The three point functions we have constructed may be
thought of as the projection of our plane wave two graviton
initial states onto states of definite centre of mass energy
and angular momentum.
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Aside: Partial Waves III

We have studied the scattering of two particle states to a
massive spin state with a definite polarization. For the
purposes of the scattering block, however, we must sum
over all intermediate polaraizations.
Once we perform that summation, the structure we are left
over with is the overlap between the part of the initial state
that transforms in a particular angular momentum, and the
part of the final state that transforms in the same angualar
momentum
These projected overlaps are not difficult to compute
explicitly using group theory - for any given three point
couplings - give rise to definite angular dependences in
scattering. These angular dependences are captured by
functions that appear in the study of (vector, tensor, ...)
spherical harmonics in higher dimensions.
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Aside: Partial Waves IV

Once we view the ‘scattering blocks’ in these terms, we
realize that these scattering blocks will be useful in
contexts that have nothing to do with the exchange of
massive particles.
Indeed any two particle S matrix can be expanded in a
basis of these blocks. These blocks have a name in
scattering theory. They are called partial waves.
The general untility of partial waves is the following: in the
partial wave basis the 2→ 2 S matrix becomes diagonal
(in the case of scalar scattering) or a finite S matrix (in the
case of phton or graviton scattering). For this reason the
constraints of unitarity are very easy to impose in this
basis. I’m sure you will here much more about this in
Simone’s lectures. I end my aside here. We now turn from
the study of exchange S matrices to contact S matrices.
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Polynomial 4 particle S matrices

The most general polynomial S matrix is simply the most
general polynomial built out of polarizations and momenta that
is

1: Lorentz Invariant
2: Separately quadratic in all polarzations
3: Gauge Invariant
4: Bose symmetric, i.e. invariant under S4 permutations.

Moreover the polynomials above are evaluated only onshell.
Two polynomials that agree onshell but differ otherwise are
counted as the same S matrix. It is possible to obtain a
completely explicit listing of all such S matrices. Next several
slides, explain in detail..
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Contact S matrices

The most general polynomial S matrix is simply the most
general polynomial built out pi

µ and εiµ that is
1: Lorentz Invariant.
2: Separately quadratic in each εµi where pi .ε

i = 0 and
εi .εi = 0.
3: Invariant under εµi → εµi + ζip

µ
i . separately for each εi .

4: Bose symmetric, i.e. invariant under S4 permutations.
Moreover the polynomials above are evaluated only onshell, i.e.
when all momenta obey

p2
i = 0, pi .εi = 0, εi .εi = 0.

Two polynomials that agree when these conditions are imposed
but difer otherwise are counted as the same polynomial S
matrix.
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Module Structure

To begin with let us put aside the requirement of S4
invariance. Let us call the most general polynomial of
momenta and polarizations that obeys conditions 1-3 (but
not necessarily condition 4) of the previous page as the
space of ‘unsymmetrized polynomial S matrices’.
Let M be any unsymmetrized polynomial S matrix. It is
then obvious that P(s, t)M is also such an S matrix (here P
is any polynomial of the Mandlestam variables).
In mathematical language, the space of unsymmetrized
polynomial S matrices is a ‘module over the the ring of
polynomials of Mandlestam variables’.
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Modules

Recall that vector spaces are defined over a ‘field’ F . A
field is an abstract space within which one can perform
several operations. Two field elements can be added,
subtracted, multiplied and divided to yield another field
element. E.g. real or complex numbers
Modules are defined over a ‘Ring’ R. A ring is an abstract
space within which one can perform all the operations one
can perform within a field except division. The space of
polynomials of s, t ,u is an example of a ring.
Consider two module elements a and b and a nontrivial
ring element r . If b = ra we say b is a descendent of a. A
module element that is not the descendent of any other
module element is said to be a generator of the module
(think Virasoro generator).
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More about modules I

The ‘generators’ (think Virasoro primaries) of a module
play the same role that basis elements play for a vector
space.
A subset G = {gi} of the module M is said to generate M if
the smallest submodule which contains G is M itself. In
other words, the union of spans of all descendants of gi is
M itself.
A module M is said to be finitely generated if it has a finite
generator set (i.e. a generator set with a finite number of
elements).
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More about modules II

A generator set G is said to generate M freely if the
following condition holds,∑

i

ri · gi = 0 iff all ri = 0. (32)

In other words if every element of M has a unique
decomposition in terms of descendents of generators.
A module M is a free module if there exists a G set that
generates it freely. In this case the generator set G is
called the basis of M.
A free module is a very simple structure. Understanding its
structure is equivalent to understanding its basis elements.
In this case the full module is the (nonoverlapping) linear
sum of the ‘Verma Modules’ of its generators.
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More about modules III

When the module is not free, by definition, it has a
collection of nontrivial ‘relations’ (think null states).
Let ∑

i

ri · gi = 0

Clearly it is also true that

r

(∑
i

ri · gi

)
= 0.

Thus the set of all relations themselves form a module.
A general module can be thought of as the linear sum of
the ‘Verma Modules’ built on top of each of its generators,
minus the relation module.
The relation module in term is the sum of ‘Verma modules’
of its generators minus its relation module. The complete
specification of the relations, and relations for relations ...
is called the free resolution of a module.
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‘Quasi Invariant’ S matrices

Now it is not difficult to verify that the Z2 × Z2 subgroup of
S4, consisting of I, P12P34, P13P24 and P14P23 leaves the
Mandlestam variables s, t and u invariant.
E.g. under P12P34

s = −(p1 + p2)2 → s, t = −(p1 + p3)2 → −(p2 + p4)2 = t ,

u = −(p1 + p4)2 → −(p2 + p3)2 = u.
(33)

Let us call the collections of polynomials of polarizations
and momenta that obey conditions 1-3 above - but are also
Z2 × Z2 invariant - the space of ‘Qasi Invariant’ polynomial
S matrices.
The Z2 × Z2 invariance of Mandlestam variables
immeditely tells us that the space of Quasi Invariant
Polynomial S matrices is also a module over the ring of
polynomials of s, t and u.
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Action of S3

The space of Quasi Invariant S matrices can be
decomposed into irreps of S4/(Z2 × Z2) = S3.
Can check that this S3 coset group acts on s, t and u by
permutations. S3 has 3 irreps; the one dimensional
completely symmetric irrep S, the one dimensional
completely antisymmetric irrep A. And the two dimensional
mixed representation M. The 3 dimensional defining
representation of S3 is not irreducible. It decomposes into
on S and one M
Our strategy to enumerate all S matrices is the following.
First we construct module of quasi invariant S matrices.
The space of polynomial S matrices is simply the
projection of the quasi invairant module onto the space of
S3 singlets. Over the next several slides we will try to
implement this strategy. First some technical details.
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Counting polynomials of s, t and u

Like module elements, generators of a module also appear
in representations of S3.
The ‘Verma Module’ built over a singlet generator is simply
the collection of all polynomials built out of s, t and u.
We will now count all such polynomials graded by scaling
dimension (∆[s] = ∆[t ] = ∆[u] = 2) as well as S3 reps.
Let the number of S3 representations of type α at degree n
(so dimension 2n) be denoted as nα(n). Can show

Let Zα(x) =
∑

n

nα(n)x2n,

ZS(x) = D, ZA(x) = x6D, ZM(x) = (x2 + x4)D,

D =
1

(1− x4)(1− x6)

Interpretation: s2 + t2 + u2 → x4, stu → x6.
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Verma Module of a A or M generator

The Verma Module of a generator in the A or M
representations is given by the tensor product of the
generator states and the set of polynomials made out of s,
t and u.
This tensor product is easily decomposed into S3

representations using the fusion rules

S× R = R, A× A = S, A× S = A, A×M = M,
M×M = S + A + M

(34)

(34) together with the equations on the previous slide allow
us to evaluate the partition function of the Verma modules
of a generator in either the A or M.
In particular the partition function over singlets in a Verma
Module whose representation transforms in the
representation R is simply given by the functions ZR(x)
evaluated above. Because S appears on the RHS of the fusion rules only of identical reprs.
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Unconstrained Polarizations

With Verma Modules under complete control, all that
remains is to characterize the generators of the Local S
matrix module, and also the generators of its relations,
relations for relations, etc. To do this it is useful to view the
Local module as a submodule of a simpler ‘Bare Module’.
The main difficulty in classifying and ennumerating
polynomial S matrices is in implementing the gauge
invariance condition, which, in turn, reflects the fact that
the D component vector εµ is a redundant specification of
the D − 2 components of polarization data.
For this reason it is useful, for some purposes, to use
‘independent data’ to characterize polarizations. We find it
useful to do this as follows.
Consider the 3 dimensional timelike subspace of Minkoski
space that is spanned by the vectors pµi . We refer to this
subspace as the ‘scattering 3 plane’.
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Unconstrained Polarizations

Every polarization vector can be decomposed as

εi = ε⊥i + ε
‖
i (35)

where ε⊥i is orthogonal to the scattering 3 plane, and ε‖i lies
within this 3 plane.

ε⊥i is completely free data. The same is not true of ε‖i .
εi .pi = ε

‖
i .pi = 0 forces ε‖i to lie in a two dimensional

subspace of the scattering plane. Moreover the constraint
that S-matrices are invariant under the shifts ε‖i → ε

‖
i + pi
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Lecture 3

Contents
Unconstrained Polarizations. Bare Modules. Physical
module as a submodule of the bare module.
Counting and constructing the generators of bare modules.
Condition for the submodule of physical S matrices to be
freely generated.
Two way map between Lagrangins and S matrices. Two
way map between module generators and Lagrangians.
Generators and complete characterizatin of 4 photon
scattering modules
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Unconstrained Polarizations

ε
‖
1 = α1

√
st
u

(p2

s
− p3

t

)
+ a1p1

ε
‖
2 = α2

√
st
u

(p1

s
− p4

t

)
+ a2p2

ε
‖
3 = α3

√
st
u

(p4

s
− p1

t

)
+ a3p3

ε
‖
4 = α4

√
st
u

(p3

s
− p2

t

)
+ a4p4.

(36)

ai pure gauge. αi physical.

ε
‖
i .(ε
‖
i )∗ = |αi |2 (37)
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Unconstrained Polarizations

For photons, pair (ε⊥i , αi) are unconstrained data. For
gravitons single constraint

ε⊥i .ε
⊥
i + α2

i = 0 (38)

In enumerating contraction structures we simply omit all
terms containing factors of ε⊥i .ε

⊥
i . For counting purposes,

therefore, ε⊥i can effectively be treated as null.
S matrix function of (ε⊥i , αi) and (s, t). Separately
quadratic in each (ε⊥i , αi). Note explicit momentum
dependence only through (s, t) (follows from ε⊥i .pj = 0).
Also any such expression is a good S matrix using
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Unconstrained to→ Lorentz Invariant

α1 = 2
p2.F 1.p3√

stu
, α2 = 2

p1.F 2.p4√
stu

,

α3 = 2
p4.F 3.p1√

stu
, α4 = 2

p3.F 4.p2√
stu

.

(39)

ε⊥1 = −2
p2.F 1

s
+ 2

p2.F 1.p3

tu
p3 − 2

p2.F 1.p3

ts
p1 − 2

p2.F 1.p3

su
p2

ε⊥2 = −2
p1.F 2

s
+ 2

p1.F 2.p3

tu
p3 − 2

p1F 2.p3

us
p2 − 2

p1.F 2.p3

ts
p1

ε⊥3 = −2
p2.F 3

u
+ 2

p2.F 3.p1

ts
p1 − 2

p2.F 3.p1

tu
p3 − 2

p2.F 3.p1

su
p2

ε⊥4 = −2
p2.F 4

t
+ 2

p2.F 4.p3

su
p3 − 2

p2.F 4.p3

ts
p4 − 2

p2.F 4.p3

tu
p2.

F i
µν = pi

µε
i
ν − pi

νε
i
µ (40)
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Action of permutations on αi

How do (pi , ε
⊥
i , αi) transform under S4? Let

B = (p1,p2,p3,p4), C = (α1, α2, α3, α4) and
D = (ε⊥1 , ε

⊥
2 , ε
⊥
3 , ε
⊥
4 ). Let P be any permutation in S4. Let

M(P) denote the representation of S4 in its ‘defining’
(reducible) 4 dimensional representation.
Clearly

B → M(P)B, D → M(P)D. (41)

αi , however, characterizes not just the vector εi but its
projection onto the scattering 3 plane. Explicit computation
using (39) gives

C → (−1)sgn(P)M(P)C. (42)

Parity even S matrices are even functions of αi . ‘Anomaly’
above important only for parity odd.
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Bare Module

We now come to a crucial point. By performing a long set
of comptuations we have shown that any polynomial parity
and gauge invariant S matrix is a polynomial in momenta,
αi and ε⊥i . There is probably an elegant proof of this fact
but we have not found it.
Define the ‘Bare’ module as the collection of all Z2 × Z2
invariant polynomials of (ε⊥i , αi) and s, t that are separately
quadratic in each (ε⊥i , αi).
This Bare Module over the ring of polynomials of s and t is
very simple. Its generators are all polynomials of (ε⊥i , αi) -
but not of s, t - of appropriate homogeniety. The module is
freely generated.
We have just argued that the physical module of Local S
matrices is a submodule of this Bare Module.
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Embedding

Our aim is to characterize the physical ‘Local’ module. We
can now break this up into two steps. First completely
understand the bare module (i.e. enumerate its generators)
Second, completely characterize the embedding of the
physical Local module into the Bare module. That is find
the expressions

EJ(pi , εi) =
∑
eI∈B

pIJ(s, t)eI(αi , ε
⊥
i ). (43)

for the generators EJ(pi , εi) of the Local module in terms of
the generators eI(αi , ε

⊥
i ) of the Bare Module. We turn to

these tasks one by one.
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Counting Generators of the Bare Module I

The first task- characterizing the Bare module - is relatively
simple. The generators of the bare module are simply
Z2 × Z2 and SO(D − 3) invariant polynomials in (ε⊥i , αi )
that are separately linear in each group (for photons) or
separately quadratic in each group and also obey (38) (for
gravitons)
Working with SO(D − 3) representations, the number of
generators of the Bare module equals

(s⊕v)⊗4|Z2×Z2 for photons, (s⊕v⊕t)⊗4|Z2×Z2 for gravitons
(44)

where the notation |G stands for projection onto G
invariants (we also only count SO(D − 3) invariants).
Ennumerating SO(D − 3) invariants is a straightforward
exercise in Clebsh Gordans. The only tricky thing is that
we wish to keep only Z2 × Z2 invariants. Not too tough.
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Counting Generators of the Bare Module II

Consider any ‘single particle Hilbert space’ with a basis
single particle eigenstates |i〉 with definite values of the
commuting charges Jm and a single particle partition
function

Trρ

(∏
m

yJm
m

)
=
∑

i

〈i |
∏
m

yJm
m |i〉 = z(ym) (45)

Next consider the Hilbert space of two identical
bosons/fermions, each of whose single particle Hilbert
space is ρ. Let the corresponding Hilbert spaces be
denoted by S2ρ and ∧2ρ respectively.
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Counting Generators of the Bare Module III

TrS2ρ

(∏
m

yJm
m

)
=
∑
i1,i2,

〈ii i2|

(∏
m

yJm
m

)(
1 + P(12)

2

)
|i1i2〉 =

z2(ym) + z(y2
m)

2

TrΛ2ρ

(∏
m

yJm
m

)
=
∑
i1,i2,

〈ii i2|

(∏
m

yJm
m

)(
1− P(12)

2

)
|i1i2〉 =

z2(ym)− z(y2
m)

2

(46)

We have used

〈i1i2|

(∏
m

yJm
m

)
P(12)|i1i2〉 = 〈i1i2|

(∏
m

yJm
m

)
|i2i1〉 = δi1,i2〈i1|

(∏
m

(y2
m)Jm

)
|i1〉

(47)
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Counting Generators of the Bare Module IV

Next consider the Hilbert space ρ of four distinguishable
particles, each of whose single particle state space is
spanned by |i〉. The partition function over this Hilbert
space is, of course, given by

Trρ⊗4

(∏
m

yJm
m

)
=

∑
i1,i2,i3,i4

〈ii i2i3i4|
∏
m

yJm
m |i1i2i3i4〉 = z4(ym)

(48)
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Counting Generators of the Bare Module V

Trρ⊗4|Z2×Z2

(∏
m

yJm
m

)

=
∑

i1,i2,i3,i4

〈ii i2i3i4|

(∏
m

yJm
m

)(
1 + P(2143) + P(3412) + P(4321)

4

)
|i1i2i3i4〉

=
1
4

∑
i1,i2,i3,i4

(
〈i1i2i3i4|

∏
m

yJm
m |i1i2i3i4〉+ 〈i1i2i3i4|

∏
m

yJm
m |i2i1i4i3〉

+ 〈i1i2i3i4|
∏
m

yJm
m |i3i4i1i2〉+ 〈i1i2i3i4|

∏
m

yJm
m |i4i3i2i1〉

)
=

z4(ym) + 3z2(y2
m)

4

=z4(ym)− 3
(

z2(ym) + z(y2
m)

2

)
×
(

z2(ym)− z(y2
m)

2

)
(49)
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Counting Generators of the Bare Module VI

Trρ⊗4|Z2×Z2

(∏
m

yJm
m

)
= Trρ⊗4

(∏
m

yJm
m

)

− 3TrS2ρ

(∏
m

yJm
m

)
TrΛ2ρ

(∏
m

yJm
m

)
(50)

Schematically

ρ⊗4|Z2×Z2 = ρ⊗4 − 3S2ρ⊗ Λ2ρ (51)

It is now a simple matter to project onto SO(D−3) singlets.
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Counting Generators of the Bare Module: Results

Results:

photons even odd
D ≥ 8 7 0
D = 7 7 1
D = 6 7 1
D = 5 7 0
D = 4 5 2
D = 3 1 1

gravitons even odd
D ≥ 8 29 0
D = 7 29 7
D = 6 28 9
D = 5 22 3
D = 4 5 2
D = 3 - -

Table: Number of parity even and parity odd index structures for
4-photon and 4-graviton S-matrix as various dimensions.

We have also explicitly constructed all these basis elements
and have thereby grouped them into S3 multiplets.
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Counting Generators of the Bare Module: Results 2

photons even odd
n1S n2M n1A n1S n2M n1A

D ≥ 8 3 2 0 0 0 0
D = 7 3 2 0 1 0 0
D = 6 3 2 0 0 0 1
D = 5 3 2 0 0 0 0
D = 4 3 1 0 2 0 0
D = 3 1 0 0 0 0 1

gravitons even odd
n1S n2M n1A n1S n2M n1A

D ≥ 8 10 9 1 0 0 0
D = 7 10 9 1 3 2 0
D = 6 9 9 1 0 3 3
D = 5 7 7 1 0 1 1
D = 4 3 1 0 2 0 0
D = 3 - - - - - -

Table: Number of parity even and parity odd index structures for
4-photon and 4-graviton S-matrix as various dimensions.
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When is the embedding Freely Generated? - I

In D ≥ 5 it turns out that there are exactly as many
generators of in the Local module as in the Bare module.
In such a situation the Local module has relations if and
only if the equation∑

EJ∈L

r J(s, t)EJ(pi , εi) = 0, (52)

has non-trivial solutions for polynomials r J(s, t).
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When is the embedding is Freely Generated? -II

Plugging (43) into (52) and equating coefficients of eI , it
follows there exist module relations if and only if∑

J

pIJ(s, t)r J(s, t) = 0. (53)

has nontrivial solutions, i.e. iff

Det [pIJ(s, t)] = 0. (54)

This is an extremely stringent condition, and we find it is
never met. Consequently the Local modules in D ≥ 5 are
all freely generated.
On the other hand when the number of EI exceeds the
number of eI (this turns out to be the case in D ≤ 4), the
Local module always has relations. We will completely
uncover and understand these. For this we now discuss
the relationship between Local Modules and Lagrangians.
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Local S Matrices and Local Lagrangians I

Local S matrices are in one to one correspondence with
Local Lagrangians modulo total derivatives and field
redefinition. I will explain this relationship in the simplest
case of a scalar theory.
Consider a Z2 invariant scalar field theory. If this theory
describes a single massless at mass m, as we require,
then its Lagrangian at quadratic order takes the form

S2 = −1
2

∫
dDx ∂µφ∂µφ. (55)

At quartic order

S4 =

∫
dDxL4, L4 =

∑
am1,m2,m3,m4∂

m1φ ∂m2φ ∂m3φ ∂m4φ

(56)

schematic summation runs over number of derivatives as
well as ways of contracting the derivative indices.
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Local S Matrices and Local Lagrangians II

Consider an field redefinition of the schematic form

φ→ φ+ δφ

δφ =
(∑

bm1,m2,m3∂
m1φ ∂m2φ ∂m3φ

) (57)

Up to terms of sextic and higher terms, (57) shifts L4 by

δL4 = ∂2φ
(∑

bm1,m2,m3∂
m1φ ∂m2φ ∂m3φ

)
(58)

Also the addition of total derivatives to the Lagrangian shift
L4 schematically by

δL4 = ∂
(∑

am1,m2,m3,m4∂
m1φ ∂m2φ ∂m3φ ∂m4φ

)

Shiraz Minwalla



Local S Matrices and Local Lagrangians III

In momentum space

φ(x) =

∫
ddk

(2π)d eik .x φ̃(k)

L4 =

∫ ∏
i

ddk
(2π)d ei(

∑
j kj xj) L̃4(k1, k2, k3, k4) φ̃(k1)φ̃(k2)φ̃(k3)φ̃(k4)

(59)

Clearly the equivalence classes of Lagrangians modulo
field redefinitions and total derivatives are labelled by
L̃4(k1, k2, k3, k4) at values s.t. k2

i = 0 and
∑

i ki = 0, i.e. the
S matrix.
Moreover this map is invertible (given an S matrix, an
arbitrary offshell extension of the same gives a local
Lagrangian). This establishes the one to one map.
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Lagrangians, the Local Module, and Descendents I

Recall that any set of not necessarily S3 symmetric
generators Ma of the local module is naturally associated
with an infinite class of genuine (S3 invariant) S-matrices
S(Ma)as follows.
S(Ma) is defined as the restriction of the span of Ma to S3
singlets. In other words S(Ma) are all the S3 invariant
descendants of the generators.
Similarly any Lagrangian L can be associated with an
infinite class of Lagrangians C(L) defined as follows. C(L)
is defined as the set of Lagrangians obtained by taking
derivatives the fields that appear in the Lagrangian and
contracting the indices of these derivatives in pairs.
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Lagrangians, the Local Module, and Descendents II

We say that a Lagrangian L is associated with the
generators Ma if the set of S-matrices obtained from the
Lagrangians C(L) coincide with S(Ma).
This association allows us to use Lagrangians to label
generators (and more generally elements) of the local
module. As an example consider the photon Lagrangian
Tr(F 2)Tr(F 2). The corresponding generators of the local
Module are Tr(F1F2)Tr(F3F4), Tr(F1F3)Tr(F2F4) and
Tr(F1F4)Tr(F3F2); this set of generators transforms in the 3
of S3.
Note that as a Lagrangian Tr(F 2)Tr(F 2) transforms in the
S because the S matrix corresponding to this Lagrangian -
like every other S matrix- is S3 invariant. But the
generators it labels transforms in the 3.
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The embedding of Local in Bare I

In determining the embedding of the Local module in the
Bare module we made crucial use of the Lagrangian
picture.
Let us first start with the example of parity invariant
electromagnetism. From the Lagrangian viewpoint it is
obvious that the dimension 8 Lagrangians are
Tr(F 2)Tr(F 2) and Tr(F 4) are generators of the Local
module (they both transform in the 3).
It is also easy to show that all terms of dimension 14 or
higher (i.e. with 6 derivatives on 4 Fs) are necessarily
descendents.
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The embedding of Local in Bare II

For example consider

∂aFµν∂µFab∂b∂ν∂
pFmn∂

mFpn (60)

Using the Bianchi identity

∂aFµν = −∂µFνa − ∂νFaµ

we re express the first field field strength in (60) as a sum
of two other terms. Both of these new terms have a pair of
derivatives with contracted indices, and so are
descendents.
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The embedding of Local in Bare III

Working a bit harder in the same way one can also show
that all dimension 12 terms (4 derivatives on 4 field
strengths) are descendents, but that there is exactly one
Lagrangian at dimension 10 (2 derivatives on 4 field
strengths) that is not a descendent.
In summary the generators of the Local module are dual to
the Lagrangians

Tr(F 2)Tr(F 2), Tr(F 4), −F ab∂aFµν∂bF νρF ρµ (61)
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The embedding of Local in Bare III

Explicitly the generators are

E (1)
3,1 = 8Tr(F1F2)Tr(F3F4), E (2)

3,1 = 8Tr(F1F3)Tr(F2F4),

E (3)
3,1 = 8Tr(F1F4)Tr(F3F2),

E (1)
3,2 = 8Tr(F1F3F2F4), E (2)

3,2 = 8Tr(F1F2F3F4),

E (3)
3,2 = 8Tr(F1F3F4F2),

ES ' −6F ab
1 ∂aFµν

2 ∂bF νρ
3 F ρµ

4 |Z2×Z2

(62)
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The embedding of Local in Bare IV

For D ≥ 5 the generators of the Bare module are

e(1)
3,1(αi , ε

⊥
i ) = (ε⊥1 · ε⊥2 )(ε⊥3 · ε⊥4 ),

e(2)
3,1(αi , ε

⊥
i ) = (ε⊥1 · ε⊥3 )(ε⊥2 · ε⊥4 ),

e(3)
3,1(αi , ε

⊥
i ) = (ε⊥1 · ε⊥4 )(ε⊥3 · ε⊥2 )

e(1)
3,2(αi , ε

⊥
i ) = (ε⊥1 .ε

⊥
2 α3α4 + ε⊥3 .ε

⊥
4 α1α2),

e(2)
3,2(αi , ε

⊥
i ) = (ε⊥1 .ε

⊥
3 α2α4 + ε⊥2 .ε

⊥
4 α1α3),

e(3)
3,2(αi , ε

⊥
i ) = (ε⊥1 .ε

⊥
4 α3α2 + ε⊥3 .ε

⊥
2 α1α4)

eS(αi , ε
⊥
i ) = α1α2α3α4. (63)
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The embedding of Local in Bare V

We can explicitly express the 7 generators of Local as
descendents of the 7 generators of Bare.

E (1)
3,1 − 8s2e(1)

3,1 + 8s2e(1)
3,2 − 8s2eS,

E (2)
3,1 = −8t2e(2)

3,1 + 8t2e(2)
3,2 − 8t2eS,

E (3)
3,1 = −8u2e(3)

3,1 + 8u2e(3)
3,2 − 8u2eS,

E (1)
3,2 = −2(u2e(2)

3,1 + t2e(3)
3,1) + 2(u(s − t)e(2)

3,2 + t(s − u)e(3)
3,2)− 2(t2 + u2)eS,

E (2)
3,2 = −2(s2e(3)

3,1 + u2e(1)
3,1) + 2(s(t − u)e(3)

3,2 + u(t − s)e(1)
3,2)− 2(u2 + s2)eS,

E (3)
3,2 = −2(t2e(1)

3,1 + s2e(2)
3,1) + 2(t(u − s)e(1)

3,2 + s(u − t)e(2)
3,2)− 2(s2 + t2)eS,

ES = 3 stu (e(1)
3,2 + e(2)

3,2 + e(3)
3,2 − 2eS).

Det [pIJ(s, t)] = 393216s5t5u5. Nonzero so Freely Generated!
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The embedding of Local in Bare VI

The generators of the Local module are the same in every
dimension. Howevever the explicit counting of the Bare
module presented earlier shows that it has only 5
generators in D = 4 (similar story in D = 3).

We can also see this explicitly. The three generators e(i)
3,1,

which are all distinct in D ≥ 5, are all the same in D = 4 (in
this dimension ε⊥i are numbers rather than vectors)
It follows that the Bare module is not freely generated. The
generators of the relation module can be found. In D = 4,
for instance, they turn out to be

sẼ (1) + tẼ (2) + uẼ (3) = 0

(s2 + 2ut)Ẽ (1) + (t2 + 2us)Ẽ (2) + (u2 + 2st)Ẽ (3) = 0
(64)

The relation module turns out to be freely generated. This
completes our characterization of the Local module
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Lecture 4

Contents
Explicit listing of all parity invariant 4 photon polynomial S
matrice in D ≥ 5.
Gravity Lagrangians with 1, 2, 3 and 4 factors of Reimann.
Generators of the parity even gravitational scattering
module in D ≥ 7. Explicit listing of the corresponding S
matrices.
Tabulation of S matrix partition functions in various
dimensions.
Counting from Plethystics.
CRG allowed contact S matrices.
CRG constraints on exchange S matrices.
Conjecture II for 4 graviton scattering.
Discussion and Conclusions.
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Review: Parity even photon S matrices in D ≥ 5.

For D ≥ 5 the most general local parity invariant S matrix
for 4 photons is freely generated.
The most general S matrix parameterized by by three
polynomials in the S representation and two in the M
representations. Equivalently - and more conveniently for
some purposes, these set of polynomials may be shown to
be characterized by 2 Z2 invariant functions (i.e. functions
that are symmetric under u goes to t interchange)
A0,1(t ,u) and a single S3 invariant function A2,1(s, t ,u).
A0,1 and A0,2 parameterize descendents of the four
derivative structures (TrF 2)2 and Tr(F 4) respectively while
A1,2 parameterizes descendents of the six derivative term

FabTr(∂aF∂bFF )
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Explicit parameterization of 4 photon S matrices 1

Explicitly the most general parity even 4 photon S matrix in
D ≥ 5 is given by the sum of

A0,1(t ,u)
(
p1
µε

1
ν − p1

νε
1
µ

) (
p2
µε

2
ν − p2

νε
2
µ

) (
p3
αε

3
β − p3

βε
3
α

) (
p4
αε

4
β − p4

βε
4
α

)
+A0,1(s,u)

(
p1
µε

1
ν − p1

νε
1
µ

) (
p3
µε

3
ν − p3

νε
3
µ

) (
p2
αε

2
β − p2

βε
2
α

) (
p4
αε

4
β − p4

βε
4
α

)
+A0,1(t , s)

(
p1
µε

1
ν − p1

νε
1
µ

) (
p4
µε

4
ν − p4

νε
4
µ

) (
p3
αε

3
β − p3

βε
3
α

) (
p2
αε

2
β − p2

βε
2
α

)
(65)

and

A0,2(t ,u)
(
p1
µε

1
ν − p1

νε
1
µ

) (
p3
νε

3
α − p3

αε
3
ν

) (
p2
αε

2
β − p2

βε
2
α

) (
p4
βε

4
µ − p4

µε
4
β

)
+A0,2(s,u)

(
p1
µε

1
ν − p1

νε
1
µ

) (
p2
νε

2
α − p2

αε
2
ν

) (
p3
αε

3
β − p3

βε
3
α

) (
p4
βε

4
µ − p4

µε
4
β

)
+A0,2(t , s)

(
p1
µε

1
ν − p1

νε
1
µ

) (
p3
νε

3
α − p3

αε
3
ν

) (
p4
αε

4
β − p4

βε
4
α

) (
p2
βε

2
µ − p2

µε
2
β

)
(66)
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Explicit parameterization of 4 photon S matrices 2

(
A2,1(s, t) + A2,1(t ,u) + A2,1(u, s)

)
×[(

p1
aε

1
b − p1

bε
1
a
)

p2
a
(
p2
µε

2
ν − p2

νε
2
µ

)
p3

b
(
p3
νε

3
α − p3

αε
3
ν

) (
p4
αε

4
µ − p4

µε
4
α

)
+
(
p2

aε
2
b − p2

bε
2
a
)

p1
a
(
p1
µε

1
ν − p1

νε
1
µ

)
p4

b
(
p4
νε

4
α − p4

αε
4
ν

) (
p3
αε

3
µ − p3

µε
3
α

)
+
(
p3

aε
3
b − p3

bε
3
a
)

p4
a
(
p4
µε

4
ν − p4

νε
4
µ

)
p1

b
(
p1
νε

1
α − p1

αε
1
ν

) (
p2
αε

2
µ − p2

µε
2
α

)
+
(
p4

aε
4
b − p4

bε
4
a
)

p3
a
(
p3
µε

3
ν − p3

νε
3
µ

)
p2

b
(
p2
νε

2
α − p2

αε
2
ν

) (
p1
αε

1
µ − p1

µε
1
α

)]
(67)

The most general local S matrices are given by the form
listed above with A0,1, A0,2 and A1,2 polynomials of s, t and
u. We have counted the data in such S matrices above-
our photon S matrix has 7 degrees of freedom. The most
general S matrices - not necessarily local - are also given
by the forms above allowing for more general (not
necessarily polynomial) dependences of the unknown
functions.
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Gravity Lagrangians I

A key feature of the electromagnetic Lagrangian is that all
S matrices were generated by Lagrangians with
(derivatives on) atleast 4 field strengths.
The situation is a bit more involved for gravity, as we now
describe.
It is convenient to categorize gravity Lagrangians by the
number of factors of (symmetrized derivatives of) the
Reimann tensor they contain.
The unique diffeomorphism invariant action that is linear in
Riemann tensors is, of course, the Einstein action

SE =

∫ √
−gR. (68)
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Gravity Lagrangians II

Now consider Lagrangians quadratic in Reimann tensors.
It is possible to demonstrate that the field redefinition

δgµν = H(1)
µν [Rαβγδ] (69)

may be used to cast the most general Lagrangian,
quadratic in Riemann tensors, into the form

S = SE + SGB +

∫
O(Rαβγδ)

3, (70)

where,

SGB =

∫ √
−g δ

g
[aδ

h
bδ

i
cδ

j
d ] R gh

ab R ij
cd

∝
∫ √
−g
(

R2 − 4RµνRµν + RµνρσRµνρσ

)
.

(71)
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Gravity Lagrangians III

In other words Einstein-Gauss-Bonnet is the most general
action quadratic in the Riemann tensor up to total
derivatives or terms terms that involve explicit factors of
Rµν and the Ricci scalar R
When evaluated in a spacetime of the form

gµν = ηµν + hµν (72)

it turns out that the Gauss-Bonnet term in (70) starts out at
order h3 (up to total derivatives). Thus the Gauss-Bonnet
term does not modify the Einstein propagator but does
contribute to three point scattering of gravitons. This
contribution is proportional to

AR2
= (ε1 ∧ ε2 ∧ ε3 ∧ p1 ∧ p2)2 (73)
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Gravity Lagrangians IV

Continuing, it is possible to show that field redefinitions of
the form

δgµν = H(2)
µν [Rαβγδ] (74)

can be used to cast the most general cubic correction to
the Einstein-Gauss-Bonnet action into the form

S = SE + SGB + aS(1)

R3 + bχ6 +

∫ √
−g
(
O(Rαβγδ)

4
)

(75)

S(1)

R3 =

∫ √
−g
(

RpqrsR tu
pq Rrstu + 2RpqrsR t u

p r Rqtsu

)
χ6 =

∫ √
−g
(

1
8
δ

g
[aδ

h
bδ

i
cδ

j
dδ

k
eδ

l
f ] R gh

ab R ij
cd R kl

ef

) (76)
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Gravity Lagrangians V

When evaluated on the metric (72), the term χ6 starts out
at order h4

µν (up to total derivatives). It follows in particular
that this term does not contribute to three graviton
scattering.
While the GB and R6 correct both pole as well as contact
corrections to the Einstein’s S matrix. However χ6 is yields
a purely contact correction to the Einstein S matrix.
It follows, in summary, that the most general contact
correction to the Einstein S matrix is given by χ6 plus
(derivatives of) 4 Reimann terms (can show that all
descenents of χ6 can themselves be written as
descendents of 4 Reimann terms). Note χ6 vanishes
identically in D ≤ 5 and is a total derivative in D = 6.
With this framework in place it is possible to perform an
analysis for gravity similar to that for electromagnetism
described above. We now describe the results for parity
invariant S matrices in D ≥ 7.

Shiraz Minwalla



S matrices for 4 identical gravitons

As another example we present the most general parity
even gravity S matrix in D ≥ 7.
This S matrix turns out to be parameterized by 7 Z2
invariant, one function that enjoys no permutation
symmetry and two functions that are completely
permutation symmetric. or a total of 29 degrees of
freedom.
In more detail we have one completely symmetric
generator at 6 derivatives (Riemann3) term

χ6 =

∫ √
−g
(

1
8
δ

g
[aδ

h
bδ

i
cδ

j
dδ

k
eδ

l
f ] R gh

ab R ij
cd R kl

ef

)
(77)

Second Lovelock term. One d.o.f.
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S matrices for 4 identical Gravitions: parity even
D ≥ 7.

At 8 derivative order we have 5 generators in the 3 and one
generator in the 6 rep of S3. Total 21 dofs.
At 10 derivative order there are 2 generators in the 3 rep. 6
degrees of freedom.
Finally at 12 derivative order there is a single generator in
the S rep. One d.o.f.
Note: If we set gµν(k) = ηµν + εµ(k)εν(k)eik .x with k2 = 0
then it turns out that Rabmn evaluated to linearized order is
proportional to Fab(k)Fmn(k) where Fmn = kmεn − knεn. In
our Lagrangian terms below we will sometimes replace
Rabmn with FabFmn.
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Explicit parameterization of the general 4 graviton S
matrix: 1

Explicitly, the most general 4 gravition S matrix is given by
the sum of

S1 = 3B0,0(s, t ,u) (ε1 ∧ ε2 ∧ ε3 ∧ ε4 ∧ p1 ∧ p2 ∧ p3)2 (78)

with B0,0(s, t ,u) completely symmetric (this is from
descendents of the Reimann3 structure) and

B0,1(s, t)
[(

p1
pε

1
q − p1

qε
1
p
) (

p2
pε

2
q − p2

qε
2
p
) (

p3
r ε

3
s − p3

sε
3
r
) (

p4
r ε

4
s − p4

sε
4
r
)(

p1
aε

1
b − p1

bε
1
a
) (

p2
bε

2
c − p2

cε
2
b
) (

p3
cε

3
d − p3

dε
3
c
) (

p4
dε

4
a − p4

aε
4
d
)]

+ B0,1(s,u) [3↔ 4] + B0,1(t , s) [2↔ 3] + B0,1(t ,u) [2↔ 3 then 2↔ 4]

+ B0,1(u, t) [2↔ 4] + B0,1(u, s) [2↔ 4 then 2↔ 3]

(79)

where B0,1 has no special symmetry property; this term is
from descendents of Tr(F 1F 2)Tr(F 3F 4)Tr(F 1F 2F 3F 4)
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Explicit parameterization of the gravity S matrix:2

B0,2(t ,u)
[(

p1
pε

1
q − p1

qε
1
p
) (

p2
pε

2
q − p2

qε
2
p
) (

p3
r ε

3
s − p3

sε
3
r
) (

p4
r ε

4
s − p4

sε
4
r
)(

p1
aε

1
b − p1

bε
1
a
) (

p3
bε

3
c − p3

cε
3
b
) (

p2
cε

2
d − p2

dε
2
c
) (

p4
dε

4
a − p4

aε
4
d
)]

+ B0,2(s,u) [3↔ 2] + B0,2(s, t) [2↔ 4]

(80)

where
B0,2(t ,u) = B0,2(u, t) (81)

From descendents of Tr(F 1F 2)Tr(F 3F 4)Tr(F 1F 3F 2F 4).

B0,3(s,u)
[(

p1
aε

1
b − p1

bε
1
a
) (

p2
bε

2
c − p2

cε
2
b
) (

p3
cε

3
d − p3

dε
3
c
) (

p4
dε

4
a − p4

aε
4
d
)(

p1
pε

1
q − p1

qε
1
p
) (

p2
qε

2
r − p2

r ε
2
q
) (

p3
r ε

3
s − p3

sε
3
r
) (

p4
sε

4
p − p4

pε
4
s
)]

+ B0,3(t ,u) [3↔ 2] + B0,3(s, t) [3↔ 4]

(82)

B0,3(s,u) = B0,3(u, s) (83)

(from descendents of Tr(F 1F 2F 3F 4)Tr(F 1F 2F 3F 4))
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Explicit parameterization of the Gravity S matrix: 3

B0,4(s, t)
[(

p1
aε

1
b − p1

bε
1
a
) (

p2
bε

2
c − p2

cε
2
b
) (

p3
cε

3
d − p3

dε
3
c
) (

p4
dε

4
a − p4

aε
4
d
)(

p1
pε

1
q − p1

qε
1
p
) (

p3
qε

3
r − p3

r ε
3
q
) (

p2
r ε

2
s − p2

sε
2
r
) (

p4
sε

4
p − p4

pε
4
s
)]

+ B0,4(s,u) [3↔ 4] + B0,4(u, t) [2↔ 4]

(84)

B0,4(s, t) = B0,4(t , s) (85)

from descendents of Tr(F 1F 2F 3F 4)Tr(F 1F 3F 2F 4)

B0,5(t ,u)
[(

p1
pε

1
q − p1

qε
1
p
) (

p2
pε

2
q − p2

qε
2
p
) (

p3
r ε

3
s − p3

sε
3
r
) (

p4
r ε

4
s − p4

sε
4
r
)(

p1
aε

1
b − p1

bε
1
a
) (

p2
aε

2
b − p2

bε
2
a
) (

p3
cε

3
d − p3

dε
3
c
) (

p4
cε

4
d − p4

dε
4
c
)]

+ B0,5(s,u) [3↔ 2] + B0,5(s, t) [2↔ 4]

(86)

B0,5(t ,u) = B0,5(u, t) (87)

from descendents of Tr(F 1F 2)Tr(F 3F 4)Tr(F 1F 2)Tr(F 3F 4)
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Explicit prameterization of the four graviton S matrix: 4

B0,6(s,u)
[(

p1
pε

1
q − p1

qε
1
p
) (

p4
pε

4
q − p4

qε
4
p
) (

p2
r ε

2
s − p2

sε
2
r
) (

p3
r ε

3
s − p3

sε
3
r
)(

p1
aε

1
b − p1

bε
1
a
) (

p2
aε

2
b − p2

bε
2
a
) (

p3
cε

3
d − p3

dε
3
c
) (

p4
cε

4
d − p4

dε
4
c
)]

+ B0,6(t ,u) [3↔ 2] + B0,6(s, t) [3↔ 4]

(88)

B0,6(s,u) = B0,6(u, s) (89)

from descendents of Tr(F 1F 2)Tr(F 3F 4)Tr(F 1F 4)Tr(F 2F 3)

This completes the listing of the S matrices of
denscendents of 6 and 8 derivative terms. We now turn to
the listing of S matrices that follow from descendents of the
two 10 derivative and one 12 derivative terms.
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Explicit prameterization of the general 4 graviton S
matrix: 5

+
(
B2,1(s,u)

(
p1

pε
1
q − p1

qε
1
p
) (

p2
qε

2
r − p2

r ε
2
q
) (

p3
r ε

3
s − p3

sε
3
r
) (

p4
sε

4
p − p4

pε
4
s
)

B2,1(t ,u)
(
p1

pε
1
q − p1

qε
1
p
) (

p3
qε

3
r − p3

r ε
3
q
) (

p2
r ε

2
s − p2

sε
2
r
) (

p4
sε

4
p − p4

pε
4
s
)

+ B2,1(t , s)
(
p1

pε
1
q − p1

qε
1
p
) (

p3
qε

3
r − p3

r ε
3
q
) (

p4
r ε

4
s − p4

sε
4
r
) (

p2
sε

2
p − p2

pε
2
s
))((

p1
aε

1
b − p1

bε
1
a
)

p2
a
(
p2
µε

2
ν − p2

νε
2
µ

)
p3

b
(
p3
νε

3
α − p3

αε
3
ν

) (
p4
αε

4
µ − p4

µε
4
α

)
+
(
p2

aε
2
b − p2

bε
2
a
)

p1
a
(
p1
µε

1
ν − p1

νε
1
µ

)
p4

b
(
p4
νε

4
α − p4

αε
4
ν

) (
p3
αε

3
µ − p3

µε
3
α

)
+
(
p3

aε
3
b − p3

bε
3
a
)

p4
a
(
p4
µε

4
ν − p4

νε
4
µ

)
p1

b
(
p1
νε

1
α − p1

αε
1
ν

) (
p2
αε

2
µ − p2

µε
2
α

)
+
(
p4

aε
4
b − p4

bε
4
a
)

p3
a
(
p3
µε

3
ν − p3

νε
3
µ

)
p2

b
(
p2
νε

2
α − p2

αε
2
ν

) (
p1
αε

1
µ − p1

µε
1
α

))
(90)

B2,1(s,u) = B2,1(u, s) (91)

from descendents of Tr(F 1F 2F 3F 4)F 1
abTr(p2

aF 2p3
bF 3F 4).
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Explicit parameterization of the general 4 graviton S
matrix: 6

(
B2,2(t ,u)

(
p1

pε
1
q − p1

qε
1
p
) (

p2
pε

2
q − p2

qε
2
p
) (

p3
r ε

3
s − p3

sε
3
r
) (

p4
r ε

4
s − p4

sε
4
r
)

+ B2,2(s,u)
(
p1

pε
1
q − p1

qε
1
p
) (

p3
pε

3
q − p3

qε
3
p
) (

p2
r ε

2
s − p2

sε
2
r
) (

p4
r ε

4
s − p4

sε
4
r
)

+ B2,2(t , s)
(
p1

pε
1
q − p1

qε
1
p
) (

p4
pε

4
q − p4

qε
4
p
) (

p3
r ε

3
s − p3

sε
3
r
) (

p2
r ε

2
s − p2

sε
2
r
))((

p1
aε

1
b − p1

bε
1
a
)

p2
a
(
p2
µε

2
ν − p2

νε
2
µ

)
p3

b
(
p3
νε

3
α − p3

αε
3
ν

) (
p4
αε

4
µ − p4

µε
4
α

)
+
(
p2

aε
2
b − p2

bε
2
a
)

p1
a
(
p1
µε

1
ν − p1

νε
1
µ

)
p4

b
(
p4
νε

4
α − p4

αε
4
ν

) (
p3
αε

3
µ − p3

µε
3
α

)
+
(
p3

aε
3
b − p3

bε
3
a
)

p4
a
(
p4
µε

4
ν − p4

νε
4
µ

)
p1

b
(
p1
νε

1
α − p1

αε
1
ν

) (
p2
αε

2
µ − p2

µε
2
α

)
+
(
p4

aε
4
b − p4

bε
4
a
)

p3
a
(
p3
µε

3
ν − p3

νε
3
µ

)
p2

b
(
p2
νε

2
α − p2

αε
2
ν

) (
p1
αε

1
µ − p1

µε
1
α

))
(92)

B2,2(t ,u) = B2,2(u, t) (93)

from descendents of
Tr(F 1F 2)Tr(F 3F 4)F 1

abTr(p2
aF 2p3

bF 3F 4)
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Explicit prameterization of the general 4 graviton S
matrix:7

(
B4,1(s, t) + B4,1(t ,u) + B4,1(u, s)

)
×[(

p1
aε

1
b − p1

bε
1
a
)

p2
a
(
p2
µε

2
ν − p2

νε
2
µ

)
p3

b
(
p3
νε

3
α − p3

αε
3
ν

) (
p4
αε

4
µ − p4

µε
4
α

)(
p1

pε
1
q − p1

qε
1
p
)

p2
p
(
p2
βε

2
γ − p2

γε
2
β

)
p3

q
(
p3
γε

3
δ − p3

δε
3
γ

) (
p4
δε

4
β − p4

βε
4
δ

)
+ (1↔ 2) + (1↔ 3) + (1↔ 4)]

(94)

B4,1(s, t) = B4,1(u, t) = B4,1(t , s) = B4,1(u, s) = B4,1(s,u) = B4,1(t ,u)
(95)

from descendents of
F 1

pqTr(p2
pF 2p3

qF 3F 4)F 1
abTr(p2

aF 2p3
bF 3F 4)
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Results: Counting

dimension Even partition function Odd partition function
D ≥ 10 x8(x−2 + 6 + 9x2 + 10x4 + 3x6)D 0
D = 9 x8(x−2 + 6 + 9x2 + 10x4 + 3x6)D 0
D = 8 x8(x−2 + 6 + 9x2 + 10x4 + 3x6)D 0
D = 7 x8(x−2 + 6 + 9x2 + 10x4 + 3x6)D x8(2x−1 + 3x + 2x3)D

D = 6 x8(6 + 9x2 + 10x4 + 3x6)D 3x10(x2 + x4 + x6)D

D = 5 x8(4 + 7x2 + 8x4 + 3x6)D x11(x2 + x4 + x6)D

D = 4 x8(2 + 2x2 + 3x4 − x6 − x8)D x8(1 + x2 + 2x4 − x6 − x8)D

Table: Partition function over 4 graviton S-matrices.
D = 1

(1−x4)(1−x6)
. The coefficient of xm in these expressions gives

the number of independent polynomial S matrices at m
derivative order.

See paper for analogeous results for electromagnetism.
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Tests- Plethystics

We believe we have achieved a complete classification of
polynomial 4 graviton S matrices. However the analysis
was long and complicated (each dimension had its own
detailed subtleties). To be sure there are no mistakes,
useful to have an independent check.
In order to check our results we reproduced the table of the
previous slide by a completely independent compuatation.
Our second independent computation proceeds by
explicitly ennumerating local Lagrangians upto field
refinitions and total derivatives rather than S matrices.
We enumerate by evaluating an SO(D) matrix integral that
projects the ‘four graviton letter’ partition function onto the
space of SO(D) singlets after removing total derivatives.
The computation is not completely trivial, but we managed
to carry it through. Both methods give exactly the same
final results, giving a highly nontrivial test of our module
constructions. Next few slides: some details.
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Plethystics I

Explain the procedure for scalars. Define the single letter
partition function i.e. partition function over all the
operators that involve a single field, modulo the free
equation of motion. Space spanned by

∂µ1∂µ2 . . . ∂µlφ, subject to ∂µ∂
µφ = 0. (96)

Not difficult to check

is(x , y) = Tr x∆yHi
i = (1− x2)D(x , y).

D(x , y) =
( D/2∏

i=1

(1− xyi )(1− xy−1
i )
)−1

for D even

=
(

(1− x)

bD/2c∏
i=1

(1− xyi )(1− xy−1
i )
)−1

for D odd.

Hi are Cartan elements of SO(D). Have kept track of the
Cartans because will eventually project to SO(D) singlets.
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Plethystics I

The partition function of polynomials of the expressions
(96) - the so called multi-letter partition function is given by
the formula of Bose statistics

∞∑
k=1

tk i(k)
s (x , y) = exp

( ∞∑
n=1

tn

n
is(xn, yn)

)
. (97)

i(k)
s to be the partition function over k -letter partition
function, i(1)

s = is.
The four-letter partition function - relevant for counting
quartic Lagrangians - is easily read off from equation (97):

i(4)
s (x , y) =

1
24

(
i4s(x , y) + 6i2s(x , y)is(x2, y2) + 3i2s(x2, y2)

+ 8is(x , y)is(x3, y3) + 6is(x4, y4)
)
.

(98)
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Plethystics II

This partition function over four particle states includes
operators that are total derivatives which we wish to
remove.
Atleast naively: The partition function over polynomials of
(96), modulo total derivatives is given by

i(4)
s (x , y)/D(x , y). (99)

(96) is exact for scalars, but turns out to have some
subtleties for gauge fields and gravitions in low
dimensions, which have to be dealt with in a case by case
manner. Ignore this subtlety here.
The partition function over scalar operators is now
obtained simply by projecting onto SO(D) invariant states.
This is achieved by integrating i(4)

s (x , y)/D(x , y) over the
Haar measure of the group.
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Plethystics III

Analysis easy to repeat for gauge fields and gravitons. For
photons have the same final formula as above but with
is → iv with

iv(x , y) = x χ +x2 χ +x3 χ +x4 χ +x5 χ +x6 χ . . . .
(100)

Summing we obtain

iv(x , y) = (((x − x3)χ − (1− x4))D(x , y) + 1)/x . (101)
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Plethystics IV

Similarly for gravitons we have the same formula with
is → it

it(x , y) = x2 χ +x3 χ +x4 χ +x5 χ +x6 χ +x7 χ . . . .
(102)

Summing we obtain

it(x , y) = x2 χ +x3 χ +x4 χ +x5 χ +x6 χ +x7 χ . . . .
(103)
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Plethystics V

What remains is to evaluate the integral over SO(D). Easy
to do analytically at large D using saddle points. Recover
precisely the tabulated results above for D ≥ 10
For lower dimensions there are two complications. First the
reasoning above not completely precise. E.g. misses out
Chern Simons terms. Also sometimes dividing out by the
derivative denomonator is an overkill. However both these
subtleties only occur for a small finite number of operators
that can be explicitly ennumerated in every dimension.
Results of integral have to be corrected in dimension
dependent way.
Other complication. Hard to evaluate Haar integrals
exactly. However have used mathematica to evaluate to
high order in Taylor expansion in x . Use results to guess
answer and verify by going to even higher order. End result
- perfect agreement with table above.
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Constraining Polynomial S matrices

Recall that the CEMZ programme for constraining 3
graviton scattering had 2 steps. The first step was to use
symmetry considerations to minimally parameterize the S
matrix. We are now done with the analogous step for the 4
graviton S matrix.
As you can see the result here is much more complicated;
as opposed to 3 numbers it is given in high enough
dimensions in terms of terms of 10 unknown functions of s
and t .
We now turn to the second step of the programme, namely
to use a physical principle to constrain the parameters that
appear in the S matrix.
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Implications of CRG: contact graviton interactions

We can now use our painstakingly constructed explicit
parameterization of polynomial graviton S matrices to list
the most general S matrid of this form that obeys CRG
scaling. We find that there is only one such S matrix
namely

a (ε1 ∧ ε2 ∧ ε3 ∧ ε4 ∧ p1 ∧ p2 ∧ p3)2

This 6 derivative S matrix - which, (roughly speaking)
scales like stu and so is CRG allowed is generate by the
Lagrangian

χ6 =

∫ √
−g
(

1
8
δ

g
[aδ

h
bδ

i
cδ

j
dδ

k
eδ

l
f ] R gh

ab R ij
cd R kl

ef

)
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Minimum Regge growth of contact interactions I

I give a brief sketch of the argument for the result
described in the previous slide. I present the argument for
parity even S matrices though in our paper we also
consider the parity even case.
We use only the obvious fact that every gravity S matrix is
some descendent of some generator of the Bare module.
If the generator |eS〉 in question is in the S representation
then its most general S3 invariant descendent takes the
form ∑

k ,m

ak ,m(stu)k (s2 + t2 + u2)m

 |eS〉 (104)

Let us define

PS =

∑
k ,m

ak ,m(stu)k (s2 + t2 + u2)m


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Minimum Regge growth of contact interactions II

If the generator |eA〉 in question is in the A representation,
its most general S3 invariant descendent is given by

PS
(
s2u − u2s + t2s − t2u − s2t + u2t

)
|eA〉 (105)

Finally if the generators |e(3)
M 〉 transform in the M then its

most general S3 invariant descendent is given by

PS

(
s|e(1)

M 〉+ t |e(2)
M 〉+ u|e(3)

M 〉
)

(106)

or

PS

((
t2 + u2 − 2s2

)
|e(1)

M 〉+
(

u2 + s2 − 2t2
)
|e(2)

M 〉

+
(

s2 + t2 − 2u2
)
|e(3)

M 〉
) (107)
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Minimum Regge growth of contact interactions III

A simple inspection of (104), (105), (106) and (107)
immediately reveals the following facts.
No S3 invariant descendent of the bare module at
dimension 8 or higher has Regge growth slower than s3.
There is only one kind of S3 invariant descendent of the
bare module at dimension 6 that has Regge growth slower
than s3. This is a descendent of the form |eS〉.
It is not difficult to verify that the generator corresponding
to the Lagrangian χ6 is of the form |eS〉.
It follows that χ6 is the unique gravitational contact
interaction that leads to CRG allowed growth. No such
interaction exists in dimensions in which χ6 vanishes or is
a total derivative.
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Gravitions: Implications

In summary, that the most general purely gravitational
CRG action (upto terms that cannot affect 4 graviton
scattering) is

a(Einstein) + b(GB) + c(Reimann3) + dχ6

Recall again

χ6 =

∫ √
−g
(

1
8
δ

g
[aδ

h
bδ

i
cδ

j
dδ

k
eδ

l
f ] R gh

ab R ij
cd R kl

ef

)
=

∫ √
−g
(

4R cd
ab R ef

cd R ab
ef − 8R c d

a b R e f
c d R a b

e f − 24RabcdRabc
eRde + 3RabcdRabcdR

+ 24RabcdRacRbd + 16R b
a R c

b R a
c − 12R b

a R a
b R + R3

)
(108)
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D ≤ 6

χ6 =

∫ √
−g
(

1
8
δ

g
[aδ

h
bδ

i
cδ

j
dδ

k
eδ

l
f ] R gh

ab R ij
cd R kl

ef

)

It is obvious that χ6 vanishes identially for D ≤ 5. In D = 6
this term is a total derivative. The term is classically
nontrivial only for D ≥ 7. This fact is already apparent from
the form of its S matrix.
In D ≤ 6 it thus follows that the most general CRG allowed
purely gravitational action (upto terms that cannot impact
the four graviton scattering) in D ≤ 6 is

a(Einstein) + b(GB) + c(Reimann3).
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Exchange Contributions: Graviton Exchange

So far we have considered the implications of the CRG
conjecture on the polynomial contributions to 4 graviton
scattering. As we have already discussed above the most
general contribution also has exchange contributions.
The exchange contributions relevant to Conjecture III are
graviton poles, so lets study those first.
These amplitudes can be thought of as a quadratic form in
the coefficients a, b and c (of the allowed 3 point structures
of 3 graviton scattering).
We have explicitly constructed the most general exchange
contribution of this nature (and also decomposed it in terms
of our ‘generator’ index structures above). The final answer
is a bit complicated. Main important result, however, is that
this pole contribution to the amplitude grows faster than s2

in the Regge limit unless b = c = 0. It follows that the most
general CRG allowed purely gravitational action in D ≤ 6 is
Einstein. In particular we CRG implies CEMZ + more.
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sJ?

In the last slide I claimed that exchange contributions from, e.g.,
two GB vertices grows faster than s2. On the other hand we
often hear the following claim: the contribution to the S matrix
from the exchange of paricles of spin J scales like sJ . Given that
GB exchange contributions capture only gravity exchange (i.e.
J = 2) don’t we have a contradiction?
The resolution is the following. The contribution of spin J
particles to the S matrix scales like sJ only in the t channel. The
contribution from the s and u channels is not universal. They
depend on the details of the three point couplings. These
contributions grow faster than s2 in for GB-GB exchange.
Note that t channel contributions are special. They are non
polynomial in t even in the Regge limit. These are thus the only
contributions that contribute to scattering at nonzero impact
parameter in the Regge limit. In other words GB 4 graviton
scattering violates the CRG conjecture - but not in a way that
can be seen at nonzero impact parameter.
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On the other hand s and u channel contributions are
typically analytic in t in the Regge limit, and (like contact
terms) contribute to scattering only at zero impact
parameter.
In order to conclude that a GB coupling is unphysical, it is
thus not sufficient to check that the exchange contribution
from two GB vertices grows faster than s2. We must also
check that this growth is of the form that that cannot be
cancelled by addition of a local counterterm. We have
indeed checked this.
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Regge Growth for Massive Exchange: Argument I

A sketch of the argument for the result described in the
previous transparency goes as follows.
A general massive exchange contribution to 4 graviton
takes the form

S =
|α1〉

s −m2 +
|α2〉

t −m2 +
|α3〉

u −m2 . (109)

where |α1〉 are local S matrices of dimension 8 or higher
(we use the fact that ggP 3 point functions are all of
dimension 4 or higher)
Define

A ≡ (s −m2)(t −m2)(u −m2)S (110)

A is local. The highest dimension part of A is of dimension
12 or greater. By inspecting (104), (105), (106) and (107)
we see that the minimum Regge growth of A is s4, and this
is achieved when A = (stu)2|eS〉.
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Regge Growth for Massive Exchange: Argument II

In this case at high energies

S ∼ stu|eS〉.

This CRG allowed behaviour only occurs if

|α1〉 = s(stu)|gS〉, |α2〉 = t(stu)|gS〉, |α3〉 = u(stu)|gS〉.
(111)

However |αi〉 are elements of the Local module of
dimension 8. We have a complete classification of such
elements, and the only ones of the form presented in (111)
are the descendents of χ6. In dimensions in which χ6
vanishes or is trivial there are no dimension 8 Local
module elements of the form (111). In such dimensions S
must grow faster than s2.
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Discussions and Conclusions

In this talk we first presented a complete classification of 4
graviton (and four photon) classical S matrices in the
theory whose Lagrangian has a finite number of derivatives
and has a finite number of fields.
We then presented a conjecture about the allowed growth
of S matrices in classical theories. We then used this
conjecture to completely classify allowed classical theories
of gravity, upto Lagrangian terms of order Riemann5 or
higher that do not impact 4 graviton scattering.
It would be very nice to understand our s2 conjecture
better - and if possible to replace it with a clear physical
argument directly in flat space. We have some ideas that
we are working on.
It would also be interesting to understand the status of the
ambiguity of the action in D ≥ 7. Is this a genuine
ambiguity, or does another physical argument set a to
zero?
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Discussions and Conclusions

Using AdS/CFT one can turn our results into a constraint
on stress tensor four point functions in the large N limit.
Our results suggest that the only Chaos bound allowed
large N TTTT four point function that receives
contributions from a finite number of single trace exchange
blocks (in addition to double stress tensor exchanges) is
the result generated by the pure Einstein action in the bulk.
It would be very interesting to generalize the results of this
talk to the scattering of more than 4 gravitions, and
complete the process of characterizing the most general
classical local theory of gravity consistent with general
principles.
Finally, if all this works out we could get more ambitious
and generalize the study of this talk beyond local S
matrices, with the hope of establishing Conjecture I: i.e the
uniqueness of string scattering.
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Rough Work
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