
Systems of many forms with differing degrees

Simon L. Rydin Myerson Download these slides:

2 September 2024 maths.fan/ICTS.pdf

Warwick Mathematics Institute

1

maths.fan/ICTS.pdf


Diophantine equations maths.fan/ICTS.pdf

Systems of polynomial equations to be solved in integers. Ubiquitous in

mathematics; relatively few general results.

No completely general result

possible: Matiyasevich (1970), unsolvability of Hilbert’s tenth problem.

Notation (density of solutions)

• f⃗ (x⃗) ∈ Z[x1, . . . , xs ]R will be a system of R homogenous forms of

degrees di in s >
∑

di variables with integer coefficients.

• We count solutions of f⃗ = 0⃗ in integers of size B, where B is big.

• α⃗ · f⃗ =
∑R

αi fi is nonzero and indefinite for all α⃗ ∈ RR \ {⃗0}.
• We study Nf⃗ (B) = #{x⃗ ∈ Zs ∩ [−B,B]s \ {⃗0} : f⃗ (x⃗) = 0⃗}.

• f⃗ takes about B
∑

di values; maybe it is zero about 1
B

∑
di
of the time.

• That would mean about Bs−
∑

di solutions.

• Also need to consider the number of solutions modulo m for m ∈ N.

• Let’s make this rigorous.
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Notation (density of solutions)

• f⃗ (x⃗) ∈ Z[x1, . . . , xs ]R will be a system of R homogenous forms of

degrees di in s >
∑

di variables with integer coefficients.

• We count solutions of f⃗ = 0⃗ in integers of size B, where B is big.

• α⃗ · f⃗ =
∑R

αi fi is nonzero and indefinite for all α⃗ ∈ RR \ {⃗0}.
• We study Nf⃗ (B) = #{x⃗ ∈ Zs ∩ [−B,B]s \ {⃗0} : f⃗ = 0⃗} ≤ (2B + 1)s .

Heuristics

• Model x⃗ by a random real vector X⃗ , and model fi (x⃗) by ⌊fi (X⃗ )⌋.
• That is, let X⃗ be a uniform random variable on [−B,B]s . Maybe

Nf⃗ (B) ≍ (2B)s · P[⃗f (X⃗ ) ∈ [0, 1)R ], which is typically ∼ νf⃗ B
s−

∑
di .

• But: if f (x⃗) = x21 + x22 − 3x23 , then Nf (B) = 0 as x⃗ = 0⃗ “mod 2∞”.

• Fix: let X⃗p be uniformly distributed on Zs
p. Predict

Nf⃗ (B) = (1 + o(1))(2B)sP[⃗f (X⃗ ) ∈ [0, 1)R ]

·
∏
p

lim
N→∞

pNRP[pN | f⃗ (X⃗p)].

2



Notation (density of solutions)

• f⃗ (x⃗) ∈ Z[x1, . . . , xs ]R will be a system of R homogenous forms of

degrees di in s >
∑

di variables with integer coefficients.

• We count solutions of f⃗ = 0⃗ in integers of size B, where B is big.

• α⃗ · f⃗ =
∑R

αi fi is nonzero and indefinite for all α⃗ ∈ RR \ {⃗0}.
• We study Nf⃗ (B) = #{x⃗ ∈ Zs ∩ [−B,B]s \ {⃗0} : f⃗ = 0⃗} ≤ (2B + 1)s .

Heuristics

• Model x⃗ by a random real vector X⃗ , and model fi (x⃗) by ⌊fi (X⃗ )⌋.
• That is, let X⃗ be a uniform random variable on [−B,B]s . Maybe

Nf⃗ (B) ≍ (2B)s · P[⃗f (X⃗ ) ∈ [0, 1)R ], which is typically ∼ νf⃗ B
s−

∑
di .

• But: if f (x⃗) = x21 + x22 − 3x23 , then Nf (B) = 0 as x⃗ = 0⃗ “mod 2∞”.

• Fix: let X⃗p be uniformly distributed on Zs
p. Predict

Nf⃗ (B) = (1 + o(1))(2B)sP[⃗f (X⃗ ) ∈ [0, 1)R ]

·
∏
p

lim
N→∞

pNRP[pN | f⃗ (X⃗p)].
2



Density of solutions maths.fan/ICTS.pdf

• Let X⃗ be a uniform random variable on [−B,B]s . Maybe

Nf⃗ (B) ≍ (2B)s · P[⃗f (X⃗ ) ∈ [0, 1)R ], which is typically ∼ νf⃗ B
s−

∑
di .

• But: if R = 1, f (x⃗) = x21 + x22 − 3x23 , then Nf⃗ (B) = 0.

• Fix: let X⃗p be uniformly distributed on Zs
p. Perhaps

Nf⃗ (B) = (1 + o(1))(2B)s · P[⃗f (X⃗ ) ∈ [0, 1)R ]
∏
p

lim
N→∞

pNRP[pN | f⃗ (X⃗p)].

• This is the analytic Hasse principle; the Manin-Peyre conjecture is a

more sophisticated version needed for s ≤ 2
∑

di or f⃗ singular.

Notation

• f⃗ (x⃗) ∈ Z[x1, . . . , xs ]R is a system of R forms in s >
∑

di variables

with integer coefficients, and Nf⃗ (B) =
∑

x⃗∈Zs∩[−B,B]s\{⃗0},⃗f (⃗x)=0⃗ 1.

• We say a = O(b) iff a ≪ b iff |a| < Cb for some constant C . Also

write a ≍ b iff a ≪ b ≪ a. And put a ∼ b iff a/b → 1 as B → ∞.

And put a = o(b) iff a/b → 0 as B → ∞.
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Notation

• f⃗ (x⃗) ∈ Z[⃗x ]R is a system of R forms in s variables of degrees di ≥ 2.

• Set Nf⃗ (B) := #{x⃗ ∈ Zs : f⃗ (x⃗) = 0⃗, ∥x⃗∥ ≤ B}, α⃗ · f⃗ =
∑R

αi fi .

Nf⃗ (B) =

∫ 1

0

· · ·
∫ 1

0

∑
x⃗∈Zs

∥x⃗∥≤B

e2πi⃗ t ·⃗f (⃗x) dt⃗

|
∑50

x=1 e(tx
2/500)|
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Nf⃗ (B) =

∫ 1

0

· · ·
∫ 1

0

∑
x⃗∈Zs

∥x⃗∥≤B

e2πi⃗ t ·⃗f (⃗x) dt⃗

|
∑50

x=1 e(tx
2/500)|

Some peaks bigger than 12 or so. Random noise ≤ 12.

Repulsion: pick points t, t + β. If both are at peaks, |β| < 1 or |β| > 4.

So each peak has width 1, and they are at least 4 apart. Consequently

the measure of t lying on peaks is small. 4
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Notation

• f⃗ (x⃗) ∈ Z[⃗x ]R is a system of R forms in s variables of degrees di ≥ 2.

• We set Nf⃗ (B) := #{x⃗ ∈ Zs : f⃗ (x⃗) = 0⃗, ∥x⃗∥ ≤ B}.
• f⃗ is smooth if f⃗ = 0 defines a smooth s − R dimensional complex

manifold in Cs \ {⃗0}(away from the origin).

Theorem (Birch 1962)

We have Nf⃗ (B) ∼ c⃗f B
s−dR as above if f⃗ smooth, d1 = · · · = dR = d ,

s ≥ (d − 1)2d−1R(R + 1) + R.

Hope for s > 2dR. Much work on the range for s if R = 1. For R ≥ 2:

• (d ,R, s) = (2, 2, 11) by Munshi (2015) - s = 10, Li-RM-Vishe, soon!

• d = 2, s ≥ 9R, RM (2018);

• d = 3, s ≥ 25R, RM (2019);

• (d ,R, s) = (3, 2, 39) by Northey and Vishe (2024).

5
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Notation

• f⃗ (x⃗) ∈ Z[⃗x ]R is a system of R forms in s variables of degrees di ≥ 2.

• We set Nf⃗ (B) := #{x⃗ ∈ Zs : f⃗ (x⃗) = 0⃗, ∥x⃗∥ ≤ B}.
• smooth if f⃗ = 0 defines an s − R dimensional manifold in Cs \ {⃗0}.

Theorem (Birch 1962)

We have Nf⃗ (B) ∼ c⃗f B
s−dR as above if f⃗ smooth, d1 = · · · = dR = d ,

s ≥ (d − 1)2d−1R(R + 1) + R.

Hope for s > 2dR. Much work on the range for s if R = 1. For R ≥ 2:

• (d ,R, s) = (2, 2, 11) by Munshi (2015) - s = 10, Li-RM-Vishe, soon!

• d = 2, s ≥ 9R, RM (2018);

• d = 3, s ≥ 25R, RM (2019);

• (d ,R, s) = (3, 2, 39) by Northey and Vishe (2024).

For certain f⃗ : (d ,R, s) = (2, 2, 10) Heath-Brown–Pierce 2015; (2, 3, 20)

Pierce-Schindler-Wood 2016; (2,R, 6R) Browning-Pierce-Schindler 2024. 5
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Notation

• f⃗ (x⃗) ∈ Z[x1, . . . , xs ]R is a system of R forms in s >
∑

di variables

with integer coefficients, and Nf⃗ (B) =
∑

x⃗∈Zs∩[−B,B]s\{⃗0},⃗f (⃗x)=0⃗ 1.

Theorem (Birch 1962)

We have Nf⃗ (B) ∼ c⃗f B
s−dR as above if f⃗ smooth, d1 = · · · = dR = d ,

s ≥ (d − 1)2d−1R(R + 1) + R.

Generalisations to unequal di .

• Browning–Dietmann–Heath-Brown (2014), d1 = 2, d2 = 3, s ≥ 29.

• If d1, . . . , dR ≤ d , Browning–Heath-Brown (2017) handle around

d3R22d variables, improving on Schmidt (1985).

6
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Notation
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s ≥ (d − 1)2d−1R(R + 1) + R.

Generalisations to unequal di .

• Browning–Dietmann–Heath-Brown (2014), d1 = 2, d2 = 3, s ≥ 29.

• If d1, . . . , dR ≤ d , Browning–Heath-Brown (2017) handle around

d3R22d variables, improving on Schmidt (1985).

Theorem (RM 2024)

Nf⃗ (B) ∼ c⃗f B
s−dR if f⃗ smooth and s ≥ R +

∑R
i=1 di2

di32d(d−di ).

Typically this is about 32d
2

R variables; when d1 = · · · = dR = d it is

(1 + d2d)R variables. Improve both Birch’s result and, in big R, BHB. 6
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Notation

• f⃗ (x⃗) ∈ Z[x1, . . . , xs ]R is a system of R forms in s >
∑

di variables

with integer coefficients, and Nf⃗ (B) =
∑

x⃗∈Zs∩[−B,B]s\{⃗0},⃗f (⃗x)=0⃗ 1.

Theorem (Birch 1962)

We have Nf⃗ (B) ∼ c⃗f B
s−dR as above if f⃗ smooth, d1 = · · · = dR = d ,

s ≥ (d − 1)2d−1R(R + 1) + R.

• If d1, . . . , dR ≤ d , Browning–Heath-Brown (2017) handle around

d3R22d variables, improving on Schmidt (1985).

Theorem (RM 2024)

Nf⃗ (B) ∼ c⃗f B
s−dR if f⃗ smooth and s ≥ R +

∑R
i=1 di2

di32d(d−di ).

Typically this is about 32d
2

R variables; when d1 = · · · = dR = d it is

(1 + d2d)R variables. Improve both Birch’s result and, in big R, BHB.

d1 = 2, d3 = 3, s ≥ 5858, worse than BDHB s ≥ 29! Key ideas: p-adic

repulsion and a way to extract lower-order terms in exponential sums. 6
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Notation

• g⃗(x⃗) ∈ R[⃗x ]R is a system of R forms in s variables of degrees di ≥ 2.

• The function M(B) := #{x⃗ ∈ Zs \ {⃗0} : ∥g⃗(x⃗)∥ ≤ 1, ∥x⃗∥ ≤ B}.
• g⃗ is nonsingular if the R × s Jacobian matrix (∂gi (x⃗)/∂xj)ij has rank

R at every nontrivial complex solution x⃗ to g⃗(x⃗) = 0⃗.

• If g⃗ is nonsingular and the number of variables s is very large, can

we estimate M(B)?

• In the case R = 1, d = 2 the breakthrough work of Margulis, which

introduced ideas from ergodic theory, led to:

Theorem (Eskin, Margulis and Mozes 1998)

Let g be a single quadratic form. Suppose g is nonsingular, and not a

multiple of a form with rational coefficients.

If s ≥ 5, then M(B) ∼ νgB
s−2 as B → ∞ for some ν ≥ 0.

If X⃗ is a uniform RV on [−B,B]s , then νgB
s−2 ∼ BsP[|g(X⃗ )| ≤ 1].

7
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Notation

• g⃗(x⃗) ∈ R[⃗x ]R is a system of R forms in s variables of degrees di ≥ 2.

• The function M(B) := #{x⃗ ∈ Zs \ {⃗0} : ∥g⃗(x⃗)∥ ≤ 1, ∥x⃗∥ ≤ B}.
• g⃗ is nonsingular if the R × s Jacobian matrix (∂gi (x⃗)/∂xj)ij has rank

R at every nontrivial complex solution x⃗ to g⃗(x⃗) = 0⃗.

• g⃗(x⃗) is irrational if no α⃗ ∈ RR \ {⃗0} satisfies α⃗ · g⃗(x⃗) ∈ Z[⃗x ].

• Bentkus and Götze (1999) used the circle method to give a new

proof of EMM’s result M(B) ∼ νgB
s−2 when s ≥ 9.

Theorem (Müller, 2008, slightly rephrased)

If d1 = · · · = dR = 2, g⃗ is nonsingular and irrational, and s ≥ 9R, then

we have M(B) ∼ νg⃗B
s−2 as P → ∞ for some ν ≥ 0.

• Freeman (2000, 2001): Standardised this form of the circle method.

• Buterus-Götze-Hille-Margulis (2022): EMM’s R = 1, s ≥ 5, explicit,

by circle method! Exp sums ≪ nice functions on 1-param groups
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Notation

• g⃗(x⃗) ∈ R[⃗x ]R is a system of R forms in s variables of degrees di ≥ 2.

• The function M(B) := #{x⃗ ∈ Zs \ {⃗0} : ∥g⃗(x⃗)∥ ≤ 1, ∥x⃗∥ ≤ B}.
• g⃗ is nonsingular if the R × s Jacobian matrix (∂gi (x⃗)/∂xj)ij has rank

R at every nontrivial complex solution x⃗ to g⃗(x⃗) = 0⃗.

• g⃗(x⃗) is irrational if no α⃗ ∈ RR \ {⃗0} satisfies α⃗ · g⃗(x⃗) ∈ Z[⃗x ].

• Bentkus and Götze (1999) used the circle method to give a new

proof of EMM’s result M(B) ∼ νgB
s−2 when s ≥ 9.

Theorem (Müller, 2008, slightly rephrased)

If d1 = · · · = dR = 2, g⃗ is nonsingular and irrational, and s ≥ 9R, then

we have M(B) ∼ νg⃗B
s−2 as P → ∞ for some ν ≥ 0.

• Freeman (2000, 2001): Standardised this form of the circle method.

• Buterus-Götze-Hille-Margulis (2022): EMM’s R = 1, s ≥ 5, explicit,

by circle method! Exp sums ≪ nice functions on 1-param groups 8
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Diophantine inequalities: d > 2 maths.fan/ICTS.pdf

Notation

• g⃗(x⃗) ∈ R[⃗x ]R is a system of R forms in s variables of degrees di ≥ 2.

• The function M(B) := #{x⃗ ∈ Zs \ {⃗0} : ∥g⃗(x⃗)∥ ≤ 1, ∥x⃗∥ ≤ B}.
• g⃗(x⃗) is irrational if no α⃗ ∈ RR \ {⃗0} satisfies α⃗ · g⃗(x⃗) ∈ Z[⃗x ].

• Diagonal case, di = d , indefinite: M(B) > 0 for R = 1 and

s ≫ cd log d by Davenport-Heilbronn-Roth-. . . ; M(B) > 0 for

s ≥ R⌈Rd2 log 3Rd⌉ by Nadesalingam-Pitman (1989).

• Schmidt (1980) gave a lower bound for M(B) when s is (very) large.

• Cubic case: Freeman (2004) got M(B) > 0 for s > (10R)(10R)5 .

Chow (2014) took R = 1 and s ≥ 358 823 708.

• Asymptotics? Diagonal case: Freeman (’03), Wooley (’03).

• Ergodic (EMM-like) methods? Special cases only, see overview of

Yukie (arxiv:9710214).
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• Diagonal case, di = d , indefinite: M(B) > 0 for R = 1 and

s ≫ cd log d by Davenport-Heilbronn-Roth-. . . ; M(B) > 0 for

s ≥ R⌈Rd2 log 3Rd⌉ by Nadesalingam-Pitman (1989).

• Schmidt (1980) gave a lower bound for M(B) when s is (very) large.

• Cubic case: Freeman (2004) got M(B) > 0 for s > (10R)(10R)5 .

Chow (2014) took R = 1 and s ≥ 358 823 708.

• Asymptotics? Diagonal case: Freeman (’03), Wooley (’03).

• Ergodic (EMM-like) methods? Special cases only, see overview of

Yukie (arxiv:9710214).

Theorem (RM 2024)

Let di ≤ d . Suppose that g⃗ is nonsingular and irrational, and that

s ≥ R +
R∑
i=1

dimax{di − 2, 1}2di32d(d−di ).

Then M(B) ∼ νg⃗B
n−

∑
di where νg⃗ = limB

∑
diP[g⃗(X⃗ ) ∈ [0, 1)R ].
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• g⃗(x⃗) ∈ R[⃗x ]R is a system of R forms in s variables of degrees di ≥ 2.

• The function M(B) := #{x⃗ ∈ Zs \ {⃗0} : ∥g⃗(x⃗)∥ ≤ 1, ∥x⃗∥ ≤ B}.
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∑
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Setup for repulsion

• e(t) = 22πit , ∆h⃗f (x⃗) = f (x⃗ + h⃗)− f (x⃗), ∆h⃗1,...,⃗hr
= ∆h⃗1

· · ·∆h⃗r

• f [k] is the degree k part of f , with |f [k]| = |biggest coefficient|.
• NB ∆h⃗1,...,⃗hk

f [k] is a multilinear form in the h⃗i , independent of x⃗

• m⃗f ,k

h⃗1,...,⃗hk−1
is the vector of coefficients of ∆h⃗1,...,⃗hk−1,( · )f

[k]

For w ∈ C∞
c (Rs), f , g ∈ R[⃗x ] with degree ≤ k , and 1 ≤ P ≤ B we have∣∣∣ ∑

x⃗∈Zs

B−sw(x⃗/B)e (g(x⃗))
∑
x⃗∈Zs

B−sw(x⃗/B)e (g(x⃗) + f (x⃗))
∣∣∣2k−1

≤
∣∣∣ ∑
h⃗∈Zs

∑
x⃗∈Zs

B−2sw(x⃗ + h⃗/B)w(x⃗/B)e
(
f (x⃗)−∆h⃗g(x⃗)

) ∣∣∣2k−1

≪ B−(k−1)s#{(⃗h1, . . . , h⃗k−1, u⃗) ∈ Zks : |⃗hi | ≤ B, |m⃗f ,k

h⃗1,...,⃗hk−1
− u⃗| ≤ B−1}

≪ 1

P(k−1)s
#{(⃗h1, . . . , h⃗k−1, u⃗) ∈ Zks : |⃗hi | ≤ P, |m⃗f ,k

h⃗1,...,⃗hk−1
− u⃗| ≤ Pk−1

Bk
}

If PB−k ≤ |f [k]| ≤ P1−k , this is

<
1

P(k−1)s
#{(⃗h1, . . . , h⃗k−1) ∈ Z(k−1)s : |⃗hi | ≤ P, |m⃗f ,k

h⃗1,...,⃗hk−1
| ≤ |f [k]|Pk−2}. 10



Setup for repulsion

• e(t) = 22πit , ∆h⃗f (x⃗) = f (x⃗ + h⃗)− f (x⃗), ∆h⃗1,...,⃗hr
= ∆h⃗1

· · ·∆h⃗r

• f [k] is the degree k part of f , with |f [k]| = |biggest coefficient|.
• m⃗f ,k

h⃗1,...,⃗hk−1
is the vector of coefficients of ∆h⃗1,...,⃗hk−1,( · )f

[k]

• The normalised sum Sw (B; f ) =
∑

x⃗∈Zs B−sw(x⃗/B)e (f (x⃗))

For f , g ∈ R[⃗x ] with degree ≤ k , and PB−k ≪ |f [k]| ≪ P1−k we have

|Sw (B; f )Sw (B; g + f )|2
k−1

≪ P−(k−1)s

·#{(⃗h1, . . . , h⃗k−1) ∈ Z(k−1)s : |⃗hi | ≤ P, |m⃗f ,k

h⃗1,...,⃗hk−1
| ≤ Pk−2|f [k]|}.

If k = 3, f [3] smooth get ≪ P−s by ideas of Davenport; else, pigeonhole.

Repulsion: suppose that, whenever PB−k ≤ |β⃗ · f⃗
[k]
| ≤ P1−k , we have

Sw (B; α⃗ · f⃗ )Sw
(
B; (α⃗+ β⃗

)
· f⃗ ) ≪ P−2E(k),

then meas{α⃗ ∈ [0, 1)R : |Sw (B; α⃗ · f⃗ )| ≍ B−A} ≪ B
∑R di (A/E(di )−1) (A > 0)

⃝: If
∑R di/E (di ) < 1 then

{
Nf⃗ (B) ∼ c⃗f B

s−
∑R di if f⃗ ∈ Z[⃗x ]R , or

M(B) ∼ νf⃗ B
s−

∑R di if f⃗ is irrational. 11



Setup for p-adic repulsion

• e(t) = 22πit , ∆h⃗f (x⃗) = f (x⃗ + h⃗)− f (x⃗), ∆h⃗1,...,⃗hr
= ∆h⃗1

· · ·∆h⃗r

• f [k] is the degree k part of f , with |f [k]| = |biggest coefficient|.
• m⃗f ,k

h⃗1,...,⃗hk−1
is the vector of coefficients of ∆h⃗1,...,⃗hk−1,( · )f

[k]

• The normalised sum Sw (B; f ) =
∑

x⃗∈Zs B−sw(x⃗/B)e (f (x⃗))

For f ∈ Z[⃗x ], g ∈ R[⃗x ] with degree ≤ k , and P prime with PM ≪ Bk ,

such that P1−M ≤ |f [k]|P ≤ P1−k we have

|Sw (B; f )Sw (B; g + 1
PM f )|2

k−1

≪ P−(k−1)s

·#{(⃗h1, . . . , h⃗k−1) ∈ Z(k−1)s : |⃗hi | ≤ P, |m⃗f ,k

h⃗1,...,⃗hk−1
|P ≤ P−1|f [k]|P}.

For f [k] smooth this is ≪ P−s (Fp-points on varieties).

Repulsion: suppose that, whenever P1−M ≤ |⃗b · f⃗
[k]
|P ≤ P1−k , we have

Sw (B; α⃗ · f⃗ )Sw
(
B; (α⃗+ b⃗

PM

)
· f⃗ ) ≪ P−2E(k),

then meas{α⃗ ∈ [0, 1)R : |Sw (B; α⃗ · f⃗ )| ≍ B−A} ≪ B
∑R di (A/E(di )−1) (A > 0)

⃝: If
∑R di/E (di ) < 1 then Nf⃗ (B) ∼ cBs−

∑R di . Smooth: E (d) = n−R+1
2d

. 11



Measures by repulsion

• e(t) = 22πit , ∆h⃗f (x⃗) = f (x⃗ + h⃗)− f (x⃗), ∆h⃗1,...,⃗hr
= ∆h⃗1

· · ·∆h⃗r

• f [k] is the degree k part of f , with |f [k]| = |biggest coefficient|.
• m⃗f ,k

h⃗1,...,⃗hk−1
is the vector of coefficients of ∆h⃗1,...,⃗hk−1,( · )f

[k]

• The normalised sum Sw (B; f ) =
∑

x⃗∈Zs B−sw(x⃗/B)e (f (x⃗))

• f⃗ (x⃗) ∈ Z[x1, . . . , xs ]R is a system of R forms in s >
∑

di variables.

Repulsion: suppose that, whenever PB−k ≤ |β⃗ · f⃗
[k]
| ≤ P1−k , we have

Sw (B; α⃗ · f⃗ )Sw
(
B; (α⃗+ β⃗

)
· f⃗ ) ≪ P−2E(k),

then meas{α⃗ ∈ [0, 1)R : |Sw (B; α⃗ · f⃗ )| ≍ B−A} ≪ B
∑R di (A/E(di )−1) (A > 0)

Proof idea: Let P ≫ BA/E(k). Let α⃗, α⃗+ b⃗
PM belong to the set. Then

|β⃗ · f⃗
[k]
| < PB−k , or |β⃗ · f⃗

[k]
| > P1−k .

It follows that the α⃗ · f⃗
[k]

are contained in a few infrequent regions

(peaks) of diameter ≤ PB−k , separated by gaps of size ≥ P1−k , hence

with total measure ≤ (P/B)kRk where there are Rk forms of degree k.
12



Measures by p-adic repulsion

• e(t) = 22πit , ∆h⃗f (x⃗) = f (x⃗ + h⃗)− f (x⃗), ∆h⃗1,...,⃗hr
= ∆h⃗1

· · ·∆h⃗r

• f [k] is the degree k part of f , with |f [k]| = |biggest coefficient|.
• m⃗f ,k

h⃗1,...,⃗hk−1
is the vector of coefficients of ∆h⃗1,...,⃗hk−1,( · )f

[k]

• The normalised sum Sw (B; f ) =
∑

x⃗∈Zs B−sw(x⃗/B)e (f (x⃗))

• f⃗ (x⃗) ∈ Z[x1, . . . , xs ]R is a system of R forms in s >
∑

di variables.

Repulsion: suppose that, whenever P1−M ≤ |⃗b · f⃗
[k]
|P ≤ P1−k , we have

Sw (B; α⃗ · f⃗ )Sw
(
B; (α⃗+ b⃗

PM )
)
· f⃗ ) ≪ P−2E(k),

then meas{α⃗ ∈ [0, 1)R : |Sw (B; α⃗ · f⃗ )| ≍ B−A} ≪ B
∑R di (A/E(di )−1) (A > 0)

Proof idea: Let P ≫ BA/E(k) prime, PM ≪ Bk . Let α⃗, α⃗+ b⃗
PM belong to

the set. Either β⃗ = 0 or β⃗ ∈ Pk−2−MZ, because

|⃗b · f⃗
[k]
|P < P1−M , or |⃗b · f⃗

[k]
|P > P1−k .

Hence each lattice α⃗0 +
1

Pk−1−M ZR contains at most one element of the

set, hence it has total measure ≤ P(k−1−M)Rk where there are Rk forms

of degree k, this is ≤ (P/B)kRk if we choose M so B−k ≫ P−M−1. 12



Accessing the lower-degree part maths.fan/ICTS.pdf

Notation

• e(t) = 22πit , ∆h⃗f (x⃗) = f (x⃗ + h⃗)− f (x⃗), ∆h⃗1,...,⃗hr
= ∆h⃗1

· · ·∆h⃗r

• NB ∆h⃗1,...,⃗hk
f [k] is a multilinear form in the h⃗i , independent of x⃗

• m⃗f ,k

h⃗1,...,⃗hk−1
is the vector of coefficients of ∆h⃗1,...,⃗hk−1,( · )f

[k]

Proposition

Given w ∈ C∞
c (Rs) there is w̃ ∈ C∞

c (Rks) as follows. For any f ∈ R[⃗x ]
of degree ≤ d , and any 1 < k < d ,∣∣∣∣∣∑
x⃗∈Zs

1

Bs
w

(
x⃗

B

)
e (f (x⃗))

∣∣∣∣∣
(2d−1 + 1) · · · (2k + 1)2k−13(k+1)(d−k−1)+1

≤ B−ks
∑

h⃗1,...,⃗hk−1∈Zs

∣∣∣∣∣∣
∑
h⃗k∈Zs

w̃

(
h⃗1
B
, . . . ,

h⃗k
B

)
e
(
∆h⃗1,...,⃗hk

f [k]
)∣∣∣∣∣∣

≪ 1

B(k−1)s
#{(⃗h1, . . . , h⃗k−1, u⃗) ∈ Zks : |⃗hi | ≤ P, |m⃗f ,k

h⃗1,...,⃗hk−1
− u⃗| ≤ 1

B
}

13
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Lemma

Given w ∈ C∞
c (Rs) there is w̃ ∈ C∞

c (R(d+1)s) as follows. For any

f ∈ R[⃗x ] of degree ≤ d ,

∣∣∣∣∣∑
x⃗∈Zs

1

Bs
w

(
x⃗

B

)
e (f (x⃗))

∣∣∣∣∣
2d−1 + 1

≤
∣∣∣∣ ∑
x⃗1,...,⃗xd

∑
x⃗

w̃

(
x⃗d
B
, . . . ,

x⃗1
B
,
x⃗

B

)
e
(
f [<d ] + F (x⃗ ; x⃗1, . . . , x⃗d)

) ∣∣∣∣
with F = f [d ] −∆x⃗+x⃗1,...,⃗x+x⃗d f

[d ] of degree < d in x⃗ and ≤ 1 in each x⃗i .

Lemma

For L ∈ GLs(R), A := {∥x⃗∥ ≤ B : ∥Lx⃗ − u⃗∥ ≤ 1/B some u⃗ ∈ Zs}.
Given w ∈ C∞

c (R2s) there are w̃L,B
c⃗ ∈ C∞

c (Rs), whose values, support

and derivatives are bounded in terms of w only, such that for all real g ,∣∣∣∣∣∣
∑
x⃗ ,⃗y

w

(
x⃗

B
,
y⃗

B

)
e (y⃗ · Lx⃗ + g(x⃗))

∣∣∣∣∣∣
3

≤
∑

c⃗∈A−A

∑
x⃗

w̃L,B
c⃗

(
x⃗

B

)
e (∆c⃗g(x⃗)) .
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