Systems of many forms with differing degrees

Simon L. Rydin Myerson 2 September 2024

Warwick Mathematics Institute

Download these slides: maths.fan/ICTS.pdf Systems of polynomial equations to be solved in integers. Ubiquitous in mathematics; relatively few general results.

Notation (density of solutions)

- *f*(*x*) ∈ ℤ[x₁,...,x_s]^R will be a system of R homogenous forms of degrees d_i in s > ∑ d_i variables with integer coefficients.
- We count solutions of $\vec{f} = \vec{0}$ in integers of size *B*, where *B* is big.

- \vec{f} takes about $B^{\sum d_i}$ values; maybe it is zero about $\frac{1}{B^{\sum d_i}}$ of the time.
- That would mean about $B^{s-\sum d_i}$ solutions.
- Also need to consider the number of solutions modulo m for $m \in \mathbb{N}$.

Systems of polynomial equations to be solved in integers. Ubiquitous in mathematics; relatively few general results. No completely general result possible: Matiyasevich (1970), unsolvability of Hilbert's tenth problem.

Notation (density of solutions)

- *f*(*x*) ∈ ℤ[x₁,...,x_s]^R will be a system of R homogenous forms of degrees d_i in s > ∑ d_i variables with integer coefficients.
- We count solutions of $\vec{f} = \vec{0}$ in integers of size *B*, where *B* is big.
- $\vec{\alpha} \cdot \vec{f} = \sum^{R} \alpha_{i} f_{i}$ is nonzero and indefinite for all $\vec{\alpha} \in \mathbb{R}^{R} \setminus \{\vec{0}\}$.
- We study $N_{\vec{f}}(B) = \#\{\vec{x} \in \mathbb{Z}^s \cap [-B, B]^s \setminus \{\vec{0}\} : \vec{f}(\vec{x}) = \vec{0}\}.$
- \vec{f} takes about $B^{\sum d_i}$ values; maybe it is zero about $\frac{1}{B^{\sum d_i}}$ of the time.
- That would mean about $B^{s-\sum d_i}$ solutions.
- Also need to consider the number of solutions modulo m for $m \in \mathbb{N}$.
- Let's make this rigorous.

Systems of polynomial equations to be solved in integers. Ubiquitous in mathematics; relatively few general results. No completely general result possible: Matiyasevich (1970), unsolvability of Hilbert's tenth problem.

Notation (density of solutions)

- *f*(*x*) ∈ ℤ[x₁,...,x_s]^R will be a system of R homogenous forms of degrees d_i in s > ∑ d_i variables with integer coefficients.
- We count solutions of $\vec{f} = \vec{0}$ in integers of size *B*, where *B* is big.
- $\vec{\alpha} \cdot \vec{f} = \sum^{R} \alpha_{i} f_{i}$ is nonzero and indefinite for all $\vec{\alpha} \in \mathbb{R}^{R} \setminus \{\vec{0}\}$.
- We study $N_{\vec{f}}(B) = \#\{\vec{x} \in \mathbb{Z}^s \cap [-B, B]^s \setminus \{\vec{0}\} : \vec{f}(\vec{x}) = \vec{0}\}.$
- \vec{f} takes about $B^{\sum d_i}$ values; maybe it is zero about $\frac{1}{B^{\sum d_i}}$ of the time.
- That would mean about $B^{s-\sum d_i}$ solutions.
- Also need to consider the number of solutions modulo m for $m \in \mathbb{N}$.
- Let's make this rigorous.

Notation (density of solutions)

- *f*(*x*) ∈ ℤ[x₁,...,x_s]^R will be a system of R homogenous forms of degrees d_i in s > ∑ d_i variables with integer coefficients.
- We count solutions of $\vec{f} = \vec{0}$ in integers of size *B*, where *B* is big.
- $\vec{\alpha} \cdot \vec{f} = \sum_{i=1}^{R} \alpha_i f_i$ is nonzero and indefinite for all $\vec{\alpha} \in \mathbb{R}^R \setminus \{\vec{0}\}$.
- We study $N_{\vec{f}}(B) = \#\{\vec{x} \in \mathbb{Z}^s \cap [-B, B]^s \setminus \{\vec{0}\} : \vec{f} = \vec{0}\} \leq (2B+1)^s$.

Heuristics

- Model \vec{x} by a random real vector \vec{X} , and model $f_i(\vec{x})$ by $\lfloor f_i(\vec{X}) \rfloor$.
- That is, let X be a uniform random variable on [-B, B]^s. Maybe N_f(B) ≍ (2B)^s · ℙ[f(X) ∈ [0, 1)^R], which is typically ~ ν_fB^{s-∑d_i}.

Notation (density of solutions)

- *f*(*x*) ∈ ℤ[x₁,...,x_s]^R will be a system of R homogenous forms of degrees d_i in s > ∑ d_i variables with integer coefficients.
- We count solutions of $\vec{f} = \vec{0}$ in integers of size *B*, where *B* is big.
- $\vec{\alpha} \cdot \vec{f} = \sum_{i=1}^{R} \alpha_i f_i$ is nonzero and indefinite for all $\vec{\alpha} \in \mathbb{R}^R \setminus \{\vec{0}\}$.
- We study $N_{\vec{f}}(B) = \#\{\vec{x} \in \mathbb{Z}^s \cap [-B, B]^s \setminus \{\vec{0}\} : \vec{f} = \vec{0}\} \leq (2B+1)^s$.

Heuristics

- Model \vec{x} by a random real vector \vec{X} , and model $f_i(\vec{x})$ by $\lfloor f_i(\vec{X}) \rfloor$.
- That is, let \vec{X} be a uniform random variable on $[-B, B]^s$. Maybe $N_{\vec{f}}(B) \asymp (2B)^s \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0, 1)^R]$, which is typically $\sim \nu_{\vec{f}} B^{s \sum d_i}$.
- But: if $f(\vec{x}) = x_1^2 + x_2^2 3x_3^2$, then $N_f(B) = 0$ as $\vec{x} = \vec{0} \pmod{2^{\infty}}$.
- Fix: let \vec{X}_p be uniformly distributed on \mathbb{Z}_p^s . Predict

 $egin{aligned} &\mathcal{N}_{ec{f}}(B) = (1+o(1))(2B)^s \mathbb{P}[ec{f}(ec{X}) \in [0,1)^R] \ &\cdot \prod_{p} \lim_{N o \infty} p^{NR} \mathbb{P}[p^N \mid ec{f}(ec{X}_p)]. \end{aligned}$

Density of solutions

- Let \vec{X} be a uniform random variable on $[-B, B]^s$. Maybe $N_{\vec{f}}(B) \asymp (2B)^s \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0, 1)^R]$, which is typically $\sim \nu_{\vec{f}} B^{s \sum d_i}$.
- But: if R = 1, $f(\vec{x}) = x_1^2 + x_2^2 3x_3^2$, then $N_{\vec{f}}(B) = 0$.
- Fix: let \vec{X}_p be uniformly distributed on \mathbb{Z}_p^s . Perhaps

 $N_{\vec{f}}(B) = (1 + o(1))(2B)^s \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0, 1)^R] \prod_p \lim_{N \to \infty} p^{NR} \mathbb{P}[p^N \mid \vec{f}(\vec{X}_p)].$

- $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ is a system of R forms in $s > \sum d_i$ variables with integer coefficients, and $N_{\vec{f}}(B) = \sum_{\vec{x} \in \mathbb{Z}^s \cap [-B,B]^s \setminus \{\vec{0}\}, \vec{f}(\vec{x}) = \vec{0}} 1$.
- We say a = O(b) iff a ≪ b iff |a| < Cb for some constant C. Also write a ≍ b iff a ≪ b ≪ a. And put a ~ b iff a/b → 1 as B → ∞. And put a = o(b) iff a/b → 0 as B → ∞.

Density of solutions

- Let \vec{X} be a uniform random variable on $[-B, B]^s$. Maybe $N_{\vec{f}}(B) \asymp (2B)^s \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0, 1)^R]$, which is typically $\sim \nu_{\vec{f}} B^{s \sum d_i}$.
- But: if R = 1, $f(\vec{x}) = x_1^2 + x_2^2 3x_3^2$, then $N_{\vec{f}}(B) = 0$.
- Fix: let \vec{X}_p be uniformly distributed on \mathbb{Z}_p^s . Perhaps

 $N_{\vec{f}}(B) = (1 + o(1))(2B)^s \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0, 1)^R] \prod_p \lim_{N \to \infty} p^{NR} \mathbb{P}[p^N \mid \vec{f}(\vec{X}_p)].$

 This is the analytic Hasse principle; the Manin-Peyre conjecture is a more sophisticated version needed for s ≤ 2∑d_i or f singular.

- $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ is a system of R forms in $s > \sum d_i$ variables with integer coefficients, and $N_{\vec{f}}(B) = \sum_{\vec{x} \in \mathbb{Z}^s \cap [-B,B]^s \setminus \{\vec{0}\}, \vec{f}(\vec{x}) = \vec{0}} 1$.
- We say a = O(b) iff a ≪ b iff |a| < Cb for some constant C. Also write a ≍ b iff a ≪ b ≪ a. And put a ~ b iff a/b → 1 as B → ∞. And put a = o(b) iff a/b → 0 as B → ∞.

Density of solutions

- Let \vec{X} be a uniform random variable on $[-B, B]^s$. Maybe $N_{\vec{f}}(B) \asymp (2B)^s \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0, 1)^R]$, which is typically $\sim \nu_{\vec{f}} B^{s \sum d_i}$.
- But: if R = 1, $f(\vec{x}) = x_1^2 + x_2^2 3x_3^2$, then $N_{\vec{f}}(B) = 0$.
- Fix: let \vec{X}_p be uniformly distributed on \mathbb{Z}_p^s . Perhaps

 $N_{\vec{f}}(B) = (1 + o(1))(2B)^s \cdot \mathbb{P}[\vec{f}(\vec{X}) \in [0, 1)^R] \prod_p \lim_{N \to \infty} p^{NR} \mathbb{P}[p^N \mid \vec{f}(\vec{X}_p)].$

 This is the analytic Hasse principle; the Manin-Peyre conjecture is a more sophisticated version needed for s ≤ 2∑d_i or f singular.

- $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ is a system of R forms in $s > \sum d_i$ variables with integer coefficients, and $N_{\vec{f}}(B) = \sum_{\vec{x} \in \mathbb{Z}^s \cap [-B,B]^s \setminus \{\vec{0}\}, \vec{f}(\vec{x}) = \vec{0}} 1$.
- We say a = O(b) iff a ≪ b iff |a| < Cb for some constant C. Also write a ≍ b iff a ≪ b ≪ a. And put a ~ b iff a/b → 1 as B → ∞. And put a = o(b) iff a/b → 0 as B → ∞.

- $\vec{f}(\vec{x}) \in \mathbb{Z}[\vec{x}]^R$ is a system of R forms in s variables of degrees $d_i \ge 2$.
- Set $N_{\vec{f}}(B) := \#\{\vec{x} \in \mathbb{Z}^s : \vec{f}(\vec{x}) = \vec{0}, \|\vec{x}\| \le B\}, \ \vec{\alpha} \cdot \vec{f} = \sum^R \alpha_i f_i.$

$$N_{\vec{f}}(B) = \int_0^1 \cdots \int_0^1 \sum_{\substack{\vec{x} \in \mathbb{Z}^s \\ \|\vec{x}\| \le B}} e^{2\pi i \vec{t} \cdot \vec{f}(\vec{x})} d\vec{t}$$

The circle method

Some peaks bigger than 12 or so. Random noise \leq 12.

Repulsion: pick points $t, t + \beta$. If both are at peaks, $|\beta| < 1$ or $|\beta| > 4$. So each peak has width 1, and they are at least 4 apart. Consequently the measure of t lying on peaks is small.

- $\vec{f}(\vec{x}) \in \mathbb{Z}[\vec{x}]^R$ is a system of R forms in s variables of degrees $d_i \ge 2$.
- We set $N_{\vec{f}}(B) := \#\{\vec{x} \in \mathbb{Z}^s : \vec{f}(\vec{x}) = \vec{0}, \, \|\vec{x}\| \le B\}.$
- \vec{f} is smooth if $\vec{f} = 0$ defines a smooth s R dimensional complex manifold in $\mathbb{C}^s \setminus \{\vec{0}\}$ (away from the origin).

Theorem (Birch 1962)

We have
$$N_{\vec{f}}(B) \sim c_{\vec{f}}B^{s-dR}$$
 as above if \vec{f} smooth, $d_1 = \cdots = d_R = d$,
 $s \ge (d-1)2^{d-1}R(R+1) + R$.

- $\vec{f}(\vec{x}) \in \mathbb{Z}[\vec{x}]^R$ is a system of R forms in s variables of degrees $d_i \ge 2$.
- We set $N_{\vec{f}}(B) := \#\{\vec{x} \in \mathbb{Z}^s : \vec{f}(\vec{x}) = \vec{0}, \, \|\vec{x}\| \le B\}.$
- \vec{f} is smooth if $\vec{f} = 0$ defines a smooth s R dimensional complex manifold in $\mathbb{C}^s \setminus \{\vec{0}\}$ (away from the origin).

Theorem (Birch 1962)

We have
$$N_{\vec{f}}(B) \sim c_{\vec{f}}B^{s-dR}$$
 as above if \vec{f} smooth, $d_1 = \cdots = d_R = d$,
 $s \ge (d-1)2^{d-1}R(R+1) + R$.

Hope for s > 2dR. Much work on the range for s if R = 1. For $R \ge 2$:

- (*d*, *R*, *s*) = (2, 2, 11) by Munshi (2015) *s* = 10, Li-RM-Vishe, soon!
- *d* = 2, *s* ≥ 9*R*, RM (2018);
- $d = 3, s \ge 25R$, RM (2019);
- (d, R, s) = (3, 2, 39) by Northey and Vishe (2024).

- $\vec{f}(\vec{x}) \in \mathbb{Z}[\vec{x}]^R$ is a system of R forms in s variables of degrees $d_i \ge 2$.
- We set $N_{\vec{f}}(B) := \#\{\vec{x} \in \mathbb{Z}^s : \vec{f}(\vec{x}) = \vec{0}, \, \|\vec{x}\| \le B\}.$
- smooth if $\vec{f} = 0$ defines an s R dimensional manifold in $\mathbb{C}^s \setminus \{\vec{0}\}$.

Theorem (Birch 1962)

We have
$$N_{\vec{f}}(B) \sim c_{\vec{f}} B^{s-dR}$$
 as above if \vec{f} smooth, $d_1 = \cdots = d_R = d$,
 $s \ge (d-1)2^{d-1}R(R+1) + R.$

Hope for s > 2dR. Much work on the range for s if R = 1. For $R \ge 2$:

- (*d*, *R*, *s*) = (2, 2, 11) by Munshi (2015) *s* = 10, Li-RM-Vishe, soon!
- *d* = 2, *s* ≥ 9*R*, RM (2018);
- *d* = 3, *s* ≥ 25*R*, RM (2019);
- (d, R, s) = (3, 2, 39) by Northey and Vishe (2024).

For certain \vec{f} : (d, R, s) = (2, 2, 10) Heath-Brown–Pierce 2015; (2, 3, 20) Pierce-Schindler-Wood 2016; (2, R, 6R) Browning-Pierce-Schindler 2024.

• $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ is a system of R forms in $s > \sum d_i$ variables with integer coefficients, and $N_{\vec{f}}(B) = \sum_{\vec{x} \in \mathbb{Z}^s \cap [-B,B]^s \setminus \{\vec{0}\}, \vec{f}(\vec{x}) = \vec{0}} 1$.

Theorem (Birch 1962)

We have $N_{\vec{f}}(B) \sim c_{\vec{f}} B^{s-dR}$ as above if \vec{f} smooth, $d_1 = \cdots = d_R = d$, $s \geq (d-1)2^{d-1}R(R+1) + R$.

Generalisations to unequal d_i .

- Browning–Dietmann–Heath-Brown (2014), $d_1 = 2, d_2 = 3, s \ge 29$.
- If d₁,..., d_R ≤ d, Browning–Heath-Brown (2017) handle around d³R²2^d variables, improving on Schmidt (1985).

The circle method: differing degrees

Notation

• $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ is a system of R forms in $s > \sum d_i$ variables with integer coefficients, and $N_{\vec{f}}(B) = \sum_{\vec{x} \in \mathbb{Z}^s \cap [-B,B]^s \setminus \{\vec{0}\}, \vec{f}(\vec{x}) = \vec{0}} 1$.

Theorem (Birch 1962)

We have $N_{\vec{f}}(B) \sim c_{\vec{f}} B^{s-dR}$ as above if \vec{f} smooth, $d_1 = \cdots = d_R = d$, $s \geq (d-1)2^{d-1}R(R+1) + R$.

Generalisations to unequal d_i .

- Browning–Dietmann–Heath-Brown (2014), $d_1 = 2, d_2 = 3, s \ge 29$.
- If d₁,..., d_R ≤ d, Browning–Heath-Brown (2017) handle around d³R²2^d variables, improving on Schmidt (1985).

Theorem (RM 2024)

 $N_{\vec{f}}(B) \sim c_{\vec{f}}B^{s-dR}$ if \vec{f} smooth and $s \geq R + \sum_{i=1}^{R} d_i 2^{d_i} 3^{2d(d-d_i)}$.

Typically this is about $3^{2d^2}R$ variables; when $d_1 = \cdots = d_R = d$ it is $(1 + d2^d)R$ variables. Improve both Birch's result and, in big R, BHB.

The circle method: differing degrees

Notation

• $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ is a system of R forms in $s > \sum d_i$ variables with integer coefficients, and $N_{\vec{f}}(B) = \sum_{\vec{x} \in \mathbb{Z}^s \cap [-B,B]^s \setminus \{\vec{0}\}, \vec{f}(\vec{x}) = \vec{0}} 1$.

Theorem (Birch 1962)

We have $N_{\vec{f}}(B) \sim c_{\vec{f}} B^{s-dR}$ as above if \vec{f} smooth, $d_1 = \cdots = d_R = d$, $s \geq (d-1)2^{d-1}R(R+1) + R$.

Generalisations to unequal d_i .

- Browning–Dietmann–Heath-Brown (2014), $d_1 = 2, d_2 = 3, s \ge 29$.
- If d₁,..., d_R ≤ d, Browning–Heath-Brown (2017) handle around d³R²2^d variables, improving on Schmidt (1985).

Theorem (RM 2024)

 $N_{\vec{f}}(B) \sim c_{\vec{f}}B^{s-dR}$ if \vec{f} smooth and $s \geq R + \sum_{i=1}^{R} d_i 2^{d_i} 3^{2d(d-d_i)}$.

Typically this is about $3^{2d^2}R$ variables; when $d_1 = \cdots = d_R = d$ it is $(1 + d2^d)R$ variables. Improve both Birch's result and, in big R, BHB.

• $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ is a system of R forms in $s > \sum d_i$ variables with integer coefficients, and $N_{\vec{f}}(B) = \sum_{\vec{x} \in \mathbb{Z}^s \cap [-B,B]^s \setminus \{\vec{0}\}, \vec{f}(\vec{x}) = \vec{0}} 1$.

Theorem (Birch 1962)

We have $N_{\vec{f}}(B) \sim c_{\vec{f}} B^{s-dR}$ as above if \vec{f} smooth, $d_1 = \cdots = d_R = d$, $s \ge (d-1)2^{d-1}R(R+1) + R$.

 If d₁,..., d_R ≤ d, Browning–Heath-Brown (2017) handle around d³R²2^d variables, improving on Schmidt (1985).

Theorem (RM 2024)

 $N_{\vec{f}}(B) \sim c_{\vec{f}} B^{s-dR}$ if \vec{f} smooth and $s \geq R + \sum_{i=1}^{R} d_i 2^{d_i} 3^{2d(d-d_i)}$.

Typically this is about $3^{2d^2}R$ variables; when $d_1 = \cdots = d_R = d$ it is $(1 + d2^d)R$ variables. Improve both Birch's result and, in big R, BHB.

 $d_1 = 2, d_3 = 3, s \ge 5858$, worse than BDHB $s \ge 29!$ Key ideas: *p*-adic repulsion and a way to extract lower-order terms in exponential sums.

- $\vec{g}(\vec{x}) \in \mathbb{R}[\vec{x}]^R$ is a system of R forms in s variables of degrees $d_i \ge 2$.
- The function $M(B) := \#\{\vec{x} \in \mathbb{Z}^s \setminus \{\vec{0}\} : \|\vec{g}(\vec{x})\| \le 1, \|\vec{x}\| \le B\}.$
- \vec{g} is nonsingular if the $R \times s$ Jacobian matrix $(\partial g_i(\vec{x})/\partial x_j)_{ij}$ has rank R at every nontrivial complex solution \vec{x} to $\vec{g}(\vec{x}) = \vec{0}$.
- If \vec{g} is nonsingular and the number of variables *s* is very large, can we estimate M(B)?
- In the case R = 1, d = 2 the breakthrough work of Margulis, which introduced ideas from ergodic theory, led to:

- $\vec{g}(\vec{x}) \in \mathbb{R}[\vec{x}]^R$ is a system of R forms in s variables of degrees $d_i \ge 2$.
- The function $M(B) := \#\{\vec{x} \in \mathbb{Z}^s \setminus \{\vec{0}\} : \|\vec{g}(\vec{x})\| \le 1, \|\vec{x}\| \le B\}.$
- \vec{g} is nonsingular if the $R \times s$ Jacobian matrix $(\partial g_i(\vec{x})/\partial x_j)_{ij}$ has rank R at every nontrivial complex solution \vec{x} to $\vec{g}(\vec{x}) = \vec{0}$.
- If \vec{g} is nonsingular and the number of variables *s* is very large, can we estimate M(B)?
- In the case R = 1, d = 2 the breakthrough work of Margulis, which introduced ideas from ergodic theory, led to:

Theorem (Eskin, Margulis and Mozes 1998)

Let g be a single quadratic form. Suppose g is nonsingular, and not a multiple of a form with rational coefficients.

If $s \ge 5$, then $M(B) \sim \nu_g B^{s-2}$ as $B \to \infty$ for some $\nu \ge 0$.

If \vec{X} is a uniform RV on $[-B, B]^s$, then $\nu_g B^{s-2} \sim B^s \mathbb{P}[|g(\vec{X})| \leq 1]$.

- $\vec{g}(\vec{x}) \in \mathbb{R}[\vec{x}]^R$ is a system of R forms in s variables of degrees $d_i \ge 2$.
- The function $M(B) := \#\{\vec{x} \in \mathbb{Z}^s \setminus \{\vec{0}\} : \|\vec{g}(\vec{x})\| \le 1, \|\vec{x}\| \le B\}.$
- g is nonsingular if the R × s Jacobian matrix (∂g_i(x)/∂x_j)_{ij} has rank R at every nontrivial complex solution x to g(x) = 0.
- If \vec{g} is nonsingular and the number of variables *s* is very large, can we estimate M(B)?
- In the case R = 1, d = 2 the breakthrough work of Margulis, which introduced ideas from ergodic theory, led to:

Theorem (Eskin, Margulis and Mozes 1998)

Let g be a single quadratic form. Suppose g is nonsingular, and not a multiple of a form with rational coefficients.

If $s \ge 5$, then $M(B) \sim \nu_g B^{s-2}$ as $B \to \infty$ for some $\nu \ge 0$.

If \vec{X} is a uniform RV on $[-B, B]^s$, then $\nu_g B^{s-2} \sim B^s \mathbb{P}[|g(\vec{X})| \leq 1]$.

- $\vec{g}(\vec{x}) \in \mathbb{R}[\vec{x}]^R$ is a system of R forms in s variables of degrees $d_i \geq 2$.
- The function $M(B) := \#\{\vec{x} \in \mathbb{Z}^s \setminus \{\vec{0}\} : \|\vec{g}(\vec{x})\| \le 1, \|\vec{x}\| \le B\}.$
- \vec{g} is nonsingular if the $R \times s$ Jacobian matrix $(\partial g_i(\vec{x})/\partial x_j)_{ij}$ has rank R at every nontrivial complex solution \vec{x} to $\vec{g}(\vec{x}) = \vec{0}$.
- $\vec{g}(\vec{x})$ is irrational if no $\vec{\alpha} \in \mathbb{R}^R \setminus \{\vec{0}\}$ satisfies $\vec{\alpha} \cdot \vec{g}(\vec{x}) \in \mathbb{Z}[\vec{x}]$.
- Bentkus and Götze (1999) used the circle method to give a new proof of EMM's result M(B) ~ ν_gB^{s-2} when s ≥ 9.

- $\vec{g}(\vec{x}) \in \mathbb{R}[\vec{x}]^R$ is a system of R forms in s variables of degrees $d_i \geq 2$.
- The function $M(B) := \#\{\vec{x} \in \mathbb{Z}^s \setminus \{\vec{0}\} : \|\vec{g}(\vec{x})\| \le 1, \|\vec{x}\| \le B\}.$
- \vec{g} is nonsingular if the $R \times s$ Jacobian matrix $(\partial g_i(\vec{x})/\partial x_j)_{ij}$ has rank R at every nontrivial complex solution \vec{x} to $\vec{g}(\vec{x}) = \vec{0}$.
- $\vec{g}(\vec{x})$ is irrational if no $\vec{\alpha} \in \mathbb{R}^R \setminus \{\vec{0}\}$ satisfies $\vec{\alpha} \cdot \vec{g}(\vec{x}) \in \mathbb{Z}[\vec{x}]$.
- Bentkus and Götze (1999) used the circle method to give a new proof of EMM's result M(B) ~ ν_gB^{s-2} when s ≥ 9.

Theorem (Müller, 2008, slightly rephrased)

If $d_1 = \cdots = d_R = 2$, \vec{g} is nonsingular and irrational, and $s \ge 9R$, then we have $M(B) \sim \nu_{\vec{g}} B^{s-2}$ as $P \to \infty$ for some $\nu \ge 0$.

- Freeman (2000, 2001): Standardised this form of the circle method.
- Buterus-Götze-Hille-Margulis (2022): EMM's R = 1, s ≥ 5, explicit, by circle method! Exp sums ≪ nice functions on 1-param groups

- $\vec{g}(\vec{x}) \in \mathbb{R}[\vec{x}]^R$ is a system of R forms in s variables of degrees $d_i \geq 2$.
- The function $M(B) := \#\{\vec{x} \in \mathbb{Z}^s \setminus \{\vec{0}\} : \|\vec{g}(\vec{x})\| \le 1, \|\vec{x}\| \le B\}.$
- $\vec{g}(\vec{x})$ is irrational if no $\vec{\alpha} \in \mathbb{R}^R \setminus {\{\vec{0}\}}$ satisfies $\vec{\alpha} \cdot \vec{g}(\vec{x}) \in \mathbb{Z}[\vec{x}]$.
- Diagonal case, d_i = d, indefinite: M(B) > 0 for R = 1 and s ≫ cd log d by Davenport-Heilbronn-Roth-...; M(B) > 0 for s ≥ R[Rd² log 3Rd] by Nadesalingam-Pitman (1989).
- Schmidt (1980) gave a lower bound for M(B) when s is (very) large.
- Cubic case: Freeman (2004) got M(B) > 0 for s > (10R)^{(10R)⁵}. Chow (2014) took R = 1 and s ≥ 358 823 708.
- Asymptotics? Diagonal case: Freeman ('03), Wooley ('03).
- Ergodic (EMM-like) methods? Special cases only, see overview of Yukie (arxiv:9710214).

Diophantine inequalities: d > 2

- Diagonal case, d_i = d, indefinite: M(B) > 0 for R = 1 and s ≫ cd log d by Davenport-Heilbronn-Roth-...; M(B) > 0 for s ≥ R[Rd² log 3Rd] by Nadesalingam-Pitman (1989).
- Schmidt (1980) gave a lower bound for M(B) when s is (very) large.
- Cubic case: Freeman (2004) got M(B) > 0 for s > (10R)^{(10R)⁵}. Chow (2014) took R = 1 and s ≥ 358 823 708.
- Asymptotics? Diagonal case: Freeman ('03), Wooley ('03).
- Ergodic (EMM-like) methods? Special cases only, see overview of Yukie (arxiv:9710214).

Theorem (RM 2024)

Let $d_i \leq d$. Suppose that \vec{g} is nonsingular and irrational, and that

$$s \geq R + \sum_{i=1}^{R} d_i \max\{d_i - 2, 1\} 2^{d_i} 3^{2d(d-d_i)}.$$

Then $M(B) \sim \nu_{\vec{g}} B^{n-\sum d_i}$ where $\nu_{\vec{g}} = \lim B^{\sum d_i} \mathbb{P}[\vec{g}(\vec{X}) \in [0,1)^R]$.

- $\vec{g}(\vec{x}) \in \mathbb{R}[\vec{x}]^R$ is a system of R forms in s variables of degrees $d_i \ge 2$.
- The function $M(B) := \#\{\vec{x} \in \mathbb{Z}^s \setminus \{\vec{0}\} : \|\vec{g}(\vec{x})\| \le 1, \|\vec{x}\| \le B\}.$
- $\vec{g}(\vec{x})$ is irrational if no $\vec{\alpha} \in \mathbb{R}^R \setminus {\{\vec{0}\}}$ satisfies $\vec{\alpha} \cdot \vec{g}(\vec{x}) \in \mathbb{Z}[\vec{x}]$.

Theorem (RM 2024)

Let $d_i \leq d$. Suppose that \vec{g} is nonsingular and irrational, and that

$$s \geq R + \sum_{i=1}^{R} d_i \max\{d_i - 2, 1\} 2^{d_i} 3^{2d(d-d_i)}.$$

Then $M(B) \sim \nu_{\vec{g}} B^{n-\sum d_i}$ where $\nu_{\vec{g}} = \lim B^{\sum d_i} \mathbb{P}[\vec{g}(\vec{X}) \in [0,1)^R]$.

Setup for repulsion

•
$$e(t) = 2^{2\pi i t}, \ \Delta_{\vec{h}} f(\vec{x}) = f(\vec{x} + \vec{h}) - f(\vec{x}), \ \Delta_{\vec{h}_1, \dots, \vec{h}_r} = \Delta_{\vec{h}_1} \cdots \Delta_{\vec{h}_r}$$

- $f^{[k]}$ is the degree k part of f, with $|f^{[k]}| = |\text{biggest coefficient}|$.
- NB $\Delta_{\vec{h}_1,...,\vec{h}_k} f^{[k]}$ is a multilinear form in the \vec{h}_i , independent of \vec{x}
- $\vec{m}_{\vec{h}_1,...,\vec{h}_{k-1}}^{f,k}$ is the vector of coefficients of $\Delta_{\vec{h}_1,...,\vec{h}_{k-1},(\cdot)} f^{[k]}$

For $w\in \mathit{C}^\infty_c(\mathbb{R}^s)$, $f,g\in\mathbb{R}[ec{x}]$ with degree $\leq k$, and $1\leq P\leq B$ we have

$$\sum_{\vec{x} \in \mathbb{Z}^{s}} B^{-s} w(\vec{x}/B) e(g(\vec{x})) \sum_{\vec{x} \in \mathbb{Z}^{s}} B^{-s} w(\vec{x}/B) e(g(\vec{x}) + f(\vec{x})) \Big|^{2^{k-1}}$$

$$\leq \Big|\sum_{\vec{h}\in\mathbb{Z}^s}\sum_{\vec{x}\in\mathbb{Z}^s}B^{-2s}w(\vec{x}+\vec{h}/B)\overline{w}(\vec{x}/B)e\left(f(\vec{x})-\Delta_{\vec{h}}g(\vec{x})\right)\Big|^2$$

$$\ll B^{-(k-1)s} \#\{(\vec{h}_1,\ldots,\vec{h}_{k-1},\vec{u}) \in \mathbb{Z}^{ks} : |\vec{h}_i| \le B, |\vec{m}_{\vec{h}_1,\ldots,\vec{h}_{k-1}}^{f,k} - \vec{u}| \le B^{-1}\}$$

$$\ll \frac{1}{P^{(k-1)s}} \#\{(\vec{h}_1,\ldots,\vec{h}_{k-1},\vec{u}) \in \mathbb{Z}^{ks} : |\vec{h}_i| \le P, |\vec{m}_{\vec{h}_1,\ldots,\vec{h}_{k-1}}^{f,k} - \vec{u}| \le \frac{P^{k-1}}{B^k}\}$$

If $PB^{-k} \leq |f^{[k]}| \leq P^{1-k}$, this is

$$<rac{1}{P^{(k-1)s}}\#\{(ec{h}_1,\ldots,ec{h}_{k-1})\in\mathbb{Z}^{(k-1)s}:|ec{h}_i|\leq P,|ec{m}^{f,k}_{ec{h}_1,\ldots,ec{h}_{k-1}}|\leq |f^{[k]}|P^{k-2}\}.$$

Setup for repulsion

•
$$e(t) = 2^{2\pi i t}, \ \Delta_{\vec{h}} f(\vec{x}) = f(\vec{x} + \vec{h}) - f(\vec{x}), \ \Delta_{\vec{h}_1, \dots, \vec{h}_r} = \Delta_{\vec{h}_1} \cdots \Delta_{\vec{h}_r}$$

- $f^{[k]}$ is the degree k part of f, with $|f^{[k]}| = |\text{biggest coefficient}|$.
- $\vec{m}_{\vec{h}_1,...,\vec{h}_{k-1}}^{f,k}$ is the vector of coefficients of $\Delta_{\vec{h}_1,...,\vec{h}_{k-1},(\,\cdot\,)}f^{[k]}$
- The normalised sum $S_w(B; f) = \sum_{\vec{x} \in \mathbb{Z}^s} B^{-s} w(\vec{x}/B) e(f(\vec{x}))$

For $f, g \in \mathbb{R}[\vec{x}]$ with degree $\leq k$, and $PB^{-k} \ll |f^{[k]}| \ll P^{1-k}$ we have $|S_w(B; f)S_w(B; g+f)|^{2^{k-1}} \ll P^{-(k-1)s}$ $\cdot \#\{(\vec{h}_1, \dots, \vec{h}_{k-1}) \in \mathbb{Z}^{(k-1)s} : |\vec{h}_i| \leq P, |\vec{m}_{\vec{h}_1, \dots, \vec{h}_{k-1}}^{f, k}| \leq P^{k-2}|f^{[k]}|\}.$

If k = 3, $f^{[3]}$ smooth get $\ll P^{-s}$ by ideas of Davenport; else, pigeonhole. Repulsion: suppose that, whenever $PB^{-k} \le |\vec{\beta} \cdot \vec{f}^{[k]}| \le P^{1-k}$, we have $S_w(B; \vec{\alpha} \cdot \vec{f}) S_w\left(B; (\vec{\alpha} + \vec{\beta}) \cdot \vec{f}\right) \ll P^{-2E(k)}$,

then meas{ $\vec{\alpha} \in [0,1)^R$: $|S_w(B; \vec{\alpha} \cdot \vec{f})| \asymp B^{-A}$ } $\ll B^{\sum^R d_i(A/E(d_i)-1)}$ (A > 0) \bigcirc : If $\sum^R d_i/E(d_i) < 1$ then $\begin{cases} N_{\vec{f}}(B) \sim c_{\vec{f}}B^{s-\sum^R d_i} & \text{if } \vec{f} \in \mathbb{Z}[\vec{x}]^R, \text{ or} \\ M(B) \sim \nu_{\vec{f}}B^{s-\sum^R d_i} & \text{if } \vec{f} \text{ is irrational.} \end{cases}$

11

Setup for *p*-adic repulsion

•
$$e(t) = 2^{2\pi i t}, \ \Delta_{\vec{h}} f(\vec{x}) = f(\vec{x} + \vec{h}) - f(\vec{x}), \ \Delta_{\vec{h}_1, \dots, \vec{h}_r} = \Delta_{\vec{h}_1} \cdots \Delta_{\vec{h}_r}$$

- $f^{[k]}$ is the degree k part of f, with $|f^{[k]}| = |\text{biggest coefficient}|$.
- $\vec{m}_{\vec{h}_1,...,\vec{h}_{k-1}}^{f,k}$ is the vector of coefficients of $\Delta_{\vec{h}_1,...,\vec{h}_{k-1},(\,\cdot\,)}f^{[k]}$
- The normalised sum $S_w(B; f) = \sum_{\vec{x} \in \mathbb{Z}^s} B^{-s} w(\vec{x}/B) e(f(\vec{x}))$

For $f \in \mathbb{Z}[\vec{x}], g \in \mathbb{R}[\vec{x}]$ with degree $\leq k$, and P prime with $P^M \ll B^k$, such that $P^{1-M} \leq |f^{[k]}|_P \leq P^{1-k}$ we have

$$\begin{aligned} |S_w(B;f)S_w(B;g+\frac{1}{P^M}f)|^{2^{k-1}} \ll P^{-(k-1)s} \\ \cdot \#\{(\vec{h}_1,\ldots,\vec{h}_{k-1}) \in \mathbb{Z}^{(k-1)s} : |\vec{h}_i| \le P, |\vec{m}_{\vec{h}_1,\ldots,\vec{h}_{k-1}}^{f,k}|_P \le P^{-1}|f^{[k]}|_P\}. \end{aligned}$$

For $f^{[k]}$ smooth this is $\ll P^{-s}$ (\mathbb{F}_p -points on varieties).

Repulsion: suppose that, whenever $P^{1-M} \leq |\vec{b} \cdot \vec{f}^{[k]}|_P \leq P^{1-k}$, we have $S_w(B; \vec{\alpha} \cdot \vec{f}) S_w\left(B; (\vec{\alpha} + \frac{\vec{b}}{P^M}) \cdot \vec{f}\right) \ll P^{-2E(k)},$

then meas{ $\vec{\alpha} \in [0,1)^R$: $|S_w(B; \vec{\alpha} \cdot \vec{f})| \asymp B^{-A}$ } $\ll B^{\sum^R d_i(A/E(d_i)-1)}$ (A > 0) \bigcirc : If $\sum^R d_i/E(d_i) < 1$ then $N_{\vec{f}}(B) \sim cB^{s-\sum^R d_i}$. Smooth: $E(d) = \frac{n-R+1}{2^d}$. 11

Measures by repulsion

•
$$e(t) = 2^{2\pi i t}, \ \Delta_{\vec{h}} f(\vec{x}) = f(\vec{x} + \vec{h}) - f(\vec{x}), \ \Delta_{\vec{h}_1, \dots, \vec{h}_r} = \Delta_{\vec{h}_1} \cdots \Delta_{\vec{h}_r}$$

- $f^{[k]}$ is the degree k part of f, with $|f^{[k]}| = |\text{biggest coefficient}|$.
- $\vec{m}_{\vec{h}_1,...,\vec{h}_{k-1}}^{f,k}$ is the vector of coefficients of $\Delta_{\vec{h}_1,...,\vec{h}_{k-1},(\,\cdot\,)} f^{[k]}$
- The normalised sum $S_w(B; f) = \sum_{\vec{x} \in \mathbb{Z}^s} B^{-s} w(\vec{x}/B) e(f(\vec{x}))$
- $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ is a system of R forms in $s > \sum d_i$ variables.

Repulsion: suppose that, whenever $PB^{-k} \leq |\vec{\beta} \cdot \vec{f}^{[k]}| \leq P^{1-k}$, we have $S_w(B; \vec{\alpha} \cdot \vec{f}) S_w(B; (\vec{\alpha} + \vec{\beta}) \cdot \vec{f}) \ll P^{-2E(k)}$,

then meas{ $\vec{\alpha} \in [0,1)^R : |S_w(B; \vec{\alpha} \cdot \vec{f})| \asymp B^{-A}$ } $\ll B^{\sum^R d_i(A/E(d_i)-1)} (A > 0)$ Proof idea: Let $P \gg B^{A/E(k)}$. Let $\vec{\alpha}, \vec{\alpha} + \frac{\vec{b}}{P^M}$ belong to the set. Then

$$|\vec{\beta} \cdot \vec{f}^{[k]}| < PB^{-k}, \text{ or } |\vec{\beta} \cdot \vec{f}^{[k]}| > P^{1-k}$$

It follows that the $\vec{\alpha} \cdot \vec{f}^{[k]}$ are contained in a few infrequent regions (peaks) of diameter $\leq PB^{-k}$, separated by gaps of size $\geq P^{1-k}$, hence with total measure $\leq (P/B)^{kR_k}$ where there are R_k forms of degree k.

Measures by *p*-adic repulsion

•
$$e(t) = 2^{2\pi i t}, \ \Delta_{\vec{h}} f(\vec{x}) = f(\vec{x} + \vec{h}) - f(\vec{x}), \ \Delta_{\vec{h}_1, \dots, \vec{h}_r} = \Delta_{\vec{h}_1} \cdots \Delta_{\vec{h}_r}$$

- $f^{[k]}$ is the degree k part of f, with $|f^{[k]}| = |\text{biggest coefficient}|$.
- $\vec{m}_{\vec{h}_1,...,\vec{h}_{k-1}}^{f,k}$ is the vector of coefficients of $\Delta_{\vec{h}_1,...,\vec{h}_{k-1},(\,\cdot\,)} f^{[k]}$
- The normalised sum $S_w(B; f) = \sum_{\vec{x} \in \mathbb{Z}^s} B^{-s} w(\vec{x}/B) e(f(\vec{x}))$
- $\vec{f}(\vec{x}) \in \mathbb{Z}[x_1, \dots, x_s]^R$ is a system of R forms in $s > \sum d_i$ variables.

Repulsion: suppose that, whenever $P^{1-M} \leq |\vec{b} \cdot \vec{f}^{[k]}|_P \leq P^{1-k}$, we have

$$S_w(B; \vec{\alpha} \cdot \vec{f}) S_w\left(B; (\vec{\alpha} + \frac{\vec{b}}{P^M})\right) \cdot \vec{f}) \ll P^{-2E(k)},$$

then meas $\{\vec{\alpha} \in [0,1)^R : |S_w(B; \vec{\alpha} \cdot \vec{f})| \asymp B^{-A}\} \ll B^{\sum^R d_i(A/E(d_i)-1)} \ (A > 0)$

Proof idea: Let $P \gg B^{A/E(k)}$ prime, $P^M \ll B^k$. Let $\vec{\alpha}, \vec{\alpha} + \frac{\vec{b}}{P^M}$ belong to the set. Either $\vec{\beta} = 0$ or $\vec{\beta} \in P^{k-2-M}\mathbb{Z}$, because

$$|\vec{b}\cdot\vec{f}^{[k]}|_P < P^{1-M}, \text{ or } |\vec{b}\cdot\vec{f}^{[k]}|_P > P^{1-k}$$

Hence each lattice $\vec{\alpha}_0 + \frac{1}{P^{k-1-M}}\mathbb{Z}^R$ contains at most one element of the set, hence it has total measure $\leq P^{(k-1-M)R_k}$ where there are R_k forms of degree k, this is $\leq (P/B)^{kR_k}$ if we choose M so $B^{-k} \gg P^{-M-1}$.

Accessing the lower-degree part

Notation

•
$$e(t) = 2^{2\pi i t}$$
, $\Delta_{\vec{h}} f(\vec{x}) = f(\vec{x} + \vec{h}) - f(\vec{x})$, $\Delta_{\vec{h}_1,...,\vec{h}_r} = \Delta_{\vec{h}_1} \cdots \Delta_{\vec{h}_r}$

• NB $\Delta_{\vec{h}_1,...,\vec{h}_k} f^{[k]}$ is a multilinear form in the \vec{h}_i , independent of \vec{x}

•
$$\vec{m}_{\vec{h}_1,...,\vec{h}_{k-1}}^{f,k}$$
 is the vector of coefficients of $\Delta_{\vec{h}_1,...,\vec{h}_{k-1},(\,\cdot\,)}f^{[k]}$

Proposition

Given $w \in C_c^{\infty}(\mathbb{R}^s)$ there is $\tilde{w} \in C_c^{\infty}(\mathbb{R}^{ks})$ as follows. For any $f \in \mathbb{R}[\vec{x}]$ of degree $\leq d$, and any 1 < k < d,

$$\begin{split} &\left|\sum_{\vec{x}\in\mathbb{Z}^{s}}\frac{1}{B^{s}}w\left(\frac{\vec{x}}{B}\right)e\left(f(\vec{x})\right)\right|^{\left(2^{d-1}+1\right)\cdots\left(2^{k}+1\right)2^{k-1}3^{(k+1)(d-k-1)+1}} \\ &\leq B^{-ks}\sum_{\vec{h}_{1},\ldots,\vec{h}_{k-1}\in\mathbb{Z}^{s}}\left|\sum_{\vec{h}_{k}\in\mathbb{Z}^{s}}\tilde{w}\left(\frac{\vec{h}_{1}}{B},\ldots,\frac{\vec{h}_{k}}{B}\right)e\left(\Delta_{\vec{h}_{1},\ldots,\vec{h}_{k}}f^{[k]}\right)\right| \\ &\ll \frac{1}{B^{(k-1)s}}\#\{(\vec{h}_{1},\ldots,\vec{h}_{k-1},\vec{u})\in\mathbb{Z}^{ks}:|\vec{h}_{i}|\leq P,|\vec{m}_{\vec{h}_{1},\ldots,\vec{h}_{k-1}}^{f,k}-\vec{u}|\leq \frac{1}{B}\} \end{split}$$

Lemma

Given $w \in C_c^{\infty}(\mathbb{R}^s)$ there is $\tilde{w} \in C_c^{\infty}(\mathbb{R}^{(d+1)s})$ as follows. For any $f \in \mathbb{R}[\vec{x}]$ of degree $\leq d$,

$$\sum_{\vec{x}\in\mathbb{Z}^{s}} \frac{1}{B^{s}} w\left(\frac{\vec{x}}{B}\right) e\left(f(\vec{x})\right) \Big|^{2^{d-1}+1}$$
$$\leq \left|\sum_{\vec{x}_{1},\ldots,\vec{x}_{d}} \sum_{\vec{x}} \tilde{w}\left(\frac{\vec{x}_{d}}{B},\ldots,\frac{\vec{x}_{1}}{B},\frac{\vec{x}}{B}\right) e\left(f^{[\leq d]} + F\left(\vec{x};\vec{x}_{1},\ldots,\vec{x}_{d}\right)\right)\right|$$

with
$$F = f^{[d]} - \Delta_{\vec{x} + \vec{x}_1, \dots, \vec{x} + \vec{x}_d} f^{[d]}$$
 of degree $< d$ in \vec{x} and ≤ 1 in each \vec{x}_i .

Lemma

For $L \in GL_s(\mathbb{R})$, $A := \{ \|\vec{x}\| \le B : \|L\vec{x} - \vec{u}\| \le 1/B$ some $\vec{u} \in \mathbb{Z}^s \}$. Given $w \in C_c^{\infty}(\mathbb{R}^{2s})$ there are $\tilde{w}_{\vec{c}}^{L,B} \in C_c^{\infty}(\mathbb{R}^s)$, whose values, support and derivatives are bounded in terms of w only, such that for all real g,

$$\left|\sum_{\vec{x},\vec{y}} w\left(\frac{\vec{x}}{B},\frac{\vec{y}}{B}\right) e\left(\vec{y}\cdot L\vec{x}+g(\vec{x})\right)\right|^{3} \leq \sum_{\vec{c}\in A-A} \sum_{\vec{x}} \tilde{w}_{\vec{c}}^{L,B}\left(\frac{\vec{x}}{B}\right) e\left(\Delta_{\vec{c}}g(\vec{x})\right).$$

14