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Diophantine equations

Systems of polynomial equations to be solved in integers. Ubiquitous in
mathematics; relatively few general results.

Notation (density of solutions)

o f(X) € Z[x1,...,x]R will be a system of R homogenous forms of
degrees d; in s > > d; variables with integer coefficients.

We count solutions of = 0 in integers of size B, where B is big.

f takes about B> ¢ values; maybe it is zero about =L of the time.
That would mean about BS~ > % solutions.

Also need to consider the number of solutions modulo m for m € N.
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Diophantine equations

Systems of polynomial equations to be solved in integers. Ubiquitous in
mathematics; relatively few general results. No completely general result
possible: Matiyasevich (1970), unsolvability of Hilbert's tenth problem.

Notation (density of solutions)

—

o f(X) €Z[x,...,xs]F will be a system of R homogenous forms of
degrees d; in s > > d; variables with integer coefficients.

e We count solutions of f = 0 in integers of size B, where B is big.

o @-f =Y "Fa;f is nonzero and indefinite for all @ € RR \ {0}.

o We study NA(B) = #{xX € Z°N[-B, B]*\ {0} : () = 0}.

e f takes about B> % values; maybe it is zero about ﬁ of the time.
e That would mean about B5~ 2 % solutions.

e Also need to consider the number of solutions modulo m for m € N.
e Let's make this rigorous.
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Diophantine equations ikl

Systems of polynomial equations to be solved in integers. Ubiquitous in
mathematics; relatively few general results. No completely general result
possible: Matiyasevich (1970), unsolvability of Hilbert's tenth problem.

Notation (density of solutions)

—

e f(X) € Z[xa,...,xs|® will be a system of R homogenous forms of
degrees d; in s > > d; variables with integer coefficients.

e We count solutions of f = 0 in integers of size B, where B is big.

o @-f =Y "Fa;f is nonzero and indefinite for all @ € RR \ {0}.

o We study NA(B) = #{xX € Z°N[-B, B]*\ {0} : () = 0}.

e f takes about BX ¢ values; maybe it is zero about ﬁ of the time.
e That would mean about B~ 29 solutions.

e Also need to consider the number of solutions modulo m for m € N.
e Let's make this rigorous.
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Notation (density of solutions)
° )?(5(') € Z[xi, . .., xs]® will be a system of R homogenous forms of
degrees d; in s > )" d; variables with integer coefficients.
e We count solutions of f = 0 in integers of size B, where B is big.
o @-f =Y Fa;f is nonzero and indefinite for all & € RR \ {0}.
o We study Nx(B) = #{X € Z°N[-B,B°*\ {0} : f = 0} < (2B +1)°.

Heuristics

e Model X by a random real vector X, and model £(X) by | £(X)].

e That is, let X be a uniform random variable on [~ B, B]*. Maybe
N:(B) = (2B)° - P[f(X) € [0,1)R], which is typically ~ 18524



Notation (density of solutions)
° )?(5(') € Z[xi, . .., xs]® will be a system of R homogenous forms of
degrees d; in s > )" d; variables with integer coefficients.
e We count solutions of f = 0 in integers of size B, where B is big.
o @-f =Y Fa;f is nonzero and indefinite for all & € RR \ {0}.
o We study Nx(B) = #{X € Z°N[-B,B°*\ {0} : f = 0} < (2B +1)°.

Heuristics

e Model X by a random real vector X, and model £(X) by | £(X)].

e That is, let X be a uniform random variable on [~ B, B]*. Maybe

N:(B) = (2B)° - P[f(X) € [0,1)R], which is typically ~ 18524
e But: if f(X) = x? + x3 — 3x3, then N¢(B) =0as X =0 “mod 2°°".
e Fix: let X, be uniformly distributed on Zs,. Predict

Nz(B) = (1 + o(1))(2B)*P[f(X) € [0,1)"]
T Jim o B | (X))
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e Let X be a uniform random variable on [-B, B]*. Maybe

N+(B) < (2B)* -P[f(X) € [0,1)F], which is typically ~ vzBs—2 4,
e But: if R=1, f(X) = x} + x3 — 3x3, then Nz(B) = 0.
e Fix: let )?p be uniformly distributed on Zj,. Perhaps

NA(B) = (1+0o(1))(2B)° - PIF(X) € [0,1)F [ Jim o Blp" | F(X,)]

Notation

o F(X) € Z[xy,...,xs]R is a system of R forms in s > 3" d; variables
with integer coefficients, and Nz(B) = EzeZsm[—B,B]s\{(?},?()?):G 1.

e We say a = O(b) iff a < b iff |a] < Cb for some constant C. Also
write a < b iff a < b < a. And put a ~ b iff a/b — 1 as B — 0.
And put a = o(b) iff a/b — 0 as B — oo.
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e Let X be a uniform random variable on [-B, B]*. Maybe

N+(B) < (2B)* -P[f(X) € [0,1)F], which is typically ~ vzBs—2 4,
e But: if R=1, f(X) = x} + x3 — 3x3, then Nz(B) = 0.
e Fix: let )?p be uniformly distributed on Zj,. Perhaps

NA(B) = (1+0o(1))(2B)° - PIF(X) € [0,1)F [ Jim o Blp" | F(X,)]

e This is the analytic Hasse principle, the Manin-Peyre conjecture is a
more sophisticated version needed for s <25 d; or f singular.

Notation

o F(X) € Z[xy,...,xs]R is a system of R forms in s > 3" d; variables
with integer coefficients, and Nz(B) = EzeZsm[—B,B]s\{(?},?()?):G 1.

e We say a = O(b) iff a < b iff |a] < Cb for some constant C. Also
write a < b iff a < b < a. And put a ~ b iff a/b — 1 as B — 0.
And put a = o(b) iff a/b — 0 as B — oo.
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e Let X be a uniform random variable on [—B, B]*. Maybe
Nz(B) = (2B)* - P[f(X) € [0,1)], which is typically ~ vzBS~ X%
e But: if R=1, f(X) = x{ + x3 — 3x3, then Nz(B) = 0.

o Fix: let )?,3 be uniformly distributed on Z. Perhaps

N¢(B) = (L +o(1))(2B) - P[F(X) € [0, )R] ] Jim p"*E[p" | 7(X,)].

e This is the analytic Hasse principle; the Manin-Peyre conjecture is a
more sophisticated version needed for s <23 d; or f singular.

Notation

o f(X) € Z|xi, ..., xR is a system of R forms in s > 3" d; variables
with integer coefficients, and Nz(B) = Eiezsm[—B,B]S\{(?}f()?):G 1.

e We say a = O(b) iff a < b iff |a] < Cb for some constant C. Also
write a < b iff a < b < a. And put a~ b iff a/b— 1 as B — .
And put a = o(b) iff a/b — 0 as B — oo.
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Notation

° 1?()?) € Z[X]R is a system of R forms in s variables of degrees d; > 2.
o Set Ny(B) = #{XeZ° : f(X) =0, |R| < B}, a-f=>Faf.
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Some peaks bigger than 12 or so. Random noise < 12.

Bl <1lor|B] >4

Repulsion: pick points t, t + 5. If both are at peaks,

So each peak has width 1, and they are at least 4 apart. Consequently
the measure of t lying on peaks is small. 4
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The Birch-Davenport circle method

Notation

o (%) € Z[X]R is a system of R forms in s variables of degrees d; > 2.

o We set Ny(B) = #{X € Z°: f(X) =0, |[X]| < B}.

e f is smooth if f = 0 defines a smooth s — R dimensional complex
manifold in C*\ {0}(away from the origin).

Theorem (Birch 1962)
We have N¢(B) ~ c;Bs’dR as above if f smooth, di = ---=dr =d,
s> (d—1)2'R(R+1)+R.
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The Birch-Davenport circle method

Notation

o (%) € Z[X]R is a system of R forms in s variables of degrees d; > 2.

o We set Ny(B) = #{X € Z°: f(X) =0, |[X]| < B}.

e f is smooth if f = 0 defines a smooth s — R dimensional complex
manifold in C*\ {0}(away from the origin).

Theorem (Birch 1962)
We have N¢(B) ~ c;Bs’dR as above if f smooth, di = ---=dr =d,
s> (d—1)2'R(R+1)+R.

Hope for s > 2dR. Much work on the range for s if R =1. For R > 2:
o (d,R,s) = (2,2,11) by Munshi (2015) -
o d=2,5>9R, RM (2018);
e d=3,s>25R, RM (2019);
e (d,R,s)=(3,2,39) by Northey and Vishe (2024).
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Notation

° 1?()?) € Z[X]R is a system of R forms in s variables of degrees d; > 2.
o We set Ny(B) = #{X € Z°: f(X) =0, |[X]| < B}.

e smooth if f = 0 defines an s — R dimensional manifold in C*\ {0}.

Theorem (Birch 1962)
We have N¢(B) ~ c;Bs’dR as above if f smooth, di = ---=dr =d,
s> (d—1)2'R(R+1)+R.

Hope for s > 2dR. Much work on the range for s if R =1. For R > 2:
e (d,R,s) =(2,2,11) by Munshi (2015) - s = 10, Li-RM-Vishe, soon!
e d=25>9R, RM (2018);
e d=3,5>25R, RM (2019);
e (d,R,s)=(3,2,39) by Northey and Vishe (2024).

For certain 7: (d, R,s) = (2,2,10) Heath-Brown—Pierce 2015; (2,3,20)
Pierce-Schindler-Wood 2016; (2, R, 6R) Browning-Pierce-Schindler 2024. 5
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Notation
o f(X) € Zlxi, ..., xR is a system of R forms in s > " d; variables
with integer coefficients, and Nz(B) = 226250[78,8]5\{5},?()?):5 1.
Theorem (Birch 1962)
We have Nz(B) ~ czB*~9 as above if £ smooth, dy = --- = dr = d,
s>(d-12R(R+1)+R.

Generalisations to unequal d;.

e Browning—Dietmann—Heath-Brown (2014), d; =2,d» =3, s > 29.

e If di,...,dr < d, Browning—Heath-Brown (2017) handle around
d®R?29 variables, improving on Schmidt (1985).
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The circle method: differing degrees ikl

Notation
o f(X) € Zlxi, ..., xR is a system of R forms in s > " d; variables
with integer coefficients, and N¢(B) = ZzeZsm[—B,B]s\{ﬁ},?(;):ﬁ 1.
Theorem (Birch 1962)
We have Nz(B) ~ czB*~9 as above if £ smooth, dy = --- = dr = d,
s> (d—1)2'R(R+1) +R.

Generalisations to unequal d;.

e Browning—Dietmann—Heath-Brown (2014), d; = 2,d, = 3, s > 29.
e If di,...,dr < d, Browning—Heath-Brown (2017) handle around
d®R?29 variables, improving on Schmidt (1985).

Theorem (RM 2024)
N:(B) ~ c;B=9R if f smooth and s > R+ YK | dj2%32d(d=),

Typically this is about RFR variables; when d; = --- =dr =d it is
(14 d29)R variables. Improve both Birch's result and, in big R, BHB. 6
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The circle method: differing degrees ikl

Notation
o f(X) € Zlxi, ..., xR is a system of R forms in s > " d; variables
with integer coefficients, and N¢(B) = Zi‘ezsm[—B,B]S\{ﬁ},f(i‘):ﬁ 1.
Theorem (Birch 1962)
We have Nz(B) ~ czB*~9 as above if £ smooth, dy = --- = dr = d,
s> (d—1)2'R(R+1) +R.

e If di,...,dr < d, Browning—Heath-Brown (2017) handle around
d®R?29 variables, improving on Schmidt (1985).

Theorem (RM 2024)
N:(B) ~ c;B=9R if f smooth and s > R+ YK | dj2%32d(d=),

Typically this is about RFR variables; when d; = --- =dr =d it is
(14 d29)R variables. Improve both Birch's result and, in big R, BHB. 6
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The circle method: differing degrees ikl

Notation
o f(X) € Zlxi, ..., xR is a system of R forms in s > " d; variables
with integer coefficients, and N¢(B) = Zi‘ezsm[—B BJ\ {6}.7(%)=0 1
Theorem (Birch 1962)
We have Nz(B) ~ czB*~9 as above if £ smooth, dy = --- = dr = d,
s> (d—1)2'R(R+1)+R.
e If di,...,dr < d, Browning—Heath-Brown (2017) handle around
d®R?29 variables, improving on Schmidt (1985).
Theorem (RM 2024)
Nz(B) ~ c;Bs—9R if f smooth and s > R + 2?:1 d;24i32d(d—d),
Typically this is about 32%°R variables; when d; = --- = dg = d it is
(14 d29)R variables. Improve both Birch's result and, in big R, BHB.

di = 2,d3 = 3,5 > 5858, worse than BDHB s > 29! Key ideas: p-adic
repulsion and a way to extract lower-order terms in exponential sums. 0
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Forms with real coefficients LR LA G

Notation

e 2(X) € R[x]R is a system of R forms in s variables of degrees d; > 2.
e The function M(B) := #{x € 2°\ {0} : ||g(X)|| < 1, ||X]| < B}.
e g is nonsingular if the R x s Jacobian matrix (9g;(X)/0x;);; has rank

—

R at every nontrivial complex solution X to g(X) = 0.

e If g is nonsingular and the number of variables s is very large, can
we estimate M(B)?

e In the case R =1, d = 2 the breakthrough work of Margulis, which
introduced ideas from ergodic theory, led to:
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Notation

e 2(X) € R[x]R is a system of R forms in s variables of degrees d; > 2.
e The function M(B) := #{x € 2°\ {0} : ||g(X)|| < 1, ||X]| < B}.

e g is nonsingular if the R x s Jacobian matrix (9g;(X)/0x;);; has rank

—

R at every nontrivial complex solution X to g(X) = 0.

e If g is nonsingular and the number of variables s is very large, can
we estimate M(B)?

e In the case R =1, d = 2 the breakthrough work of Margulis, which
introduced ideas from ergodic theory, led to:

Theorem (Eskin, Margulis and Mozes 1998)

Let g be a single quadratic form. Suppose g is nonsingular, and not a
multiple of a form with rational coefficients.

If s > 5, then M(B) ~ v,BS~2 as B — oo for some v > 0.

If X is a uniform RV on [—B, BJ*, then v;B°~2 ~ B*P[|g(X)| < 1].
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Forms with real coefficients LR LA G

Notation

e 2(X) € R[x]R is a system of R forms in s variables of degrees d; > 2.
e The function M(B) := #{x € 2°\ {0} : ||g(X)|| < 1, ||X]| < B}.

e g is nonsingular if the R x s Jacobian matrix (9g;(X)/0x;);; has rank

R at every nontrivial complex solution X to g(X) = 0.

e If g is nonsingular and the number of variables s is very large, can
we estimate M(B)?
e In the case R =1, d = 2 the breakthrough work of Margulis, which
introduced ideas from ergodic theory, led to:
Theorem (Eskin, Margulis and Mozes 1998)

Let g be a single quadratic form. Suppose g is nonsingular, and not a
multiple of a form with rational coefficients.

If s > 5, then M(B) ~ 1gB*=2 as B — oo for some v > 0.

If X is a uniform RV on [~B, B]*, then v,B5=2 ~ B*P[|g(X)| < 1].
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Notation

e 2(X) € R[x]R is a system of R forms in s variables of degrees d; > 2.
e The function M(B) := #{x € z°\ {0} : ||g(X)| < 1, ||X]| < B}.
e g is nonsingular if the R x s Jacobian matrix (9g;(X)/0x;);; has rank

R at every nontrivial complex solution X to g(x) = 0.

e Z(X) is irrational if no @ € RR \ {0} satisfies & - §(X) € Z[X].

Bentkus and Gotze (1999) used the circle method to give a new
proof of EMM'’s result M(B) ~ v,B5~2 when s > 0.
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Notation

e 2(X) € R[x]R is a system of R forms in s variables of degrees d; > 2.
e The function M(B) := #{x € z°\ {0} : ||g(X)| < 1, ||X]| < B}.
e g is nonsingular if the R x s Jacobian matrix (9g;(X)/0x;);; has rank

R at every nontrivial complex solution X to g(x) = 0.

e Z(X) is irrational if no @ € RR \ {0} satisfies & - §(X) € Z[X].

Bentkus and Gotze (1999) used the circle method to give a new
proof of EMM'’s result M(B) ~ v,B5~2 when s > 0.
Theorem (Miiller, 2008, slightly rephrased)

Ifdy =---=dgr =2, g is nonsingular and irrational, and s > 9R, then
we have M(B) ~ vzB*~2 as P — oo for some v > 0.

e Freeman (2000, 2001): Standardised this form of the circle method.
e Buterus-Gotze-Hille-Margulis (2022): EMM's R =1, s > 5, explicit,
by circle method! Exp sums < nice functions on 1-param groups
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Diophantine inequalities: d > 2 ikl

Notation

e 3(X) € R[%|R is a system of R forms in s variables of degrees d; > 2.
e The function M(B) := #{x € Z*\ {0} : ||(X)|| < 1, |IX] < B}.
e Z(X) is irrational if no @ € RR \ {0} satisfies & - g(X) € Z[X].

e Diagonal case, d; = d, indefinite: M(B) >0 for R =1 and
s > cdlog d by Davenport-Heilbronn-Roth-...; M(B) > 0 for
s > R[Rd?log3Rd] by Nadesalingam-Pitman (1989).
e Schmidt (1980) gave a lower bound for M(B) when s is (very) large.
e Cubic case: Freeman (2004) got M(B) > 0 for s > (10R)(10R)",
Chow (2014) took R =1 and s > 358 823 708.
e Asymptotics? Diagonal case: Freeman ('03), Wooley ('03).

e Ergodic (EMM-like) methods? Special cases only, see overview of
Yukie (arxiv:9710214).
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Diophantine inequalities: d > 2

e Diagonal case, d; = d, indefinite: M(B) > 0 for R =1 and
s> cdlog d by Davenport-Heilbronn-Roth-...; M(B) > 0 for
s > R[Rd?log 3Rd] by Nadesalingam-Pitman (1989).
e Schmidt (1980) gave a lower bound for M(B) when s is (very) large.
e Cubic case: Freeman (2004) got M(B) > 0 for s > (10R)(10R)’.
Chow (2014) took R =1 and s > 358 823 708.
e Asymptotics? Diagonal case: Freeman ('03), Wooley ('03).
e Ergodic (EMM-like) methods? Special cases only, see overview of
Yukie (arxiv:9710214).

Theorem (RM 2024)
Let d; < d. Suppose that g is nonsingular and irrational, and that

R
s>R+ Z dimax{d; — 2, 1}2d"32d(d*d").
i=1

Then M(B) ~ vgB"~2 % where vz = lim B 4P[g(X) € [0,1)F].
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Notation

e 2(X) € R[%]R is a system of R forms in s variables of degrees d; > 2.
e The function M(B) := #{x € Z*\ {0} : |(X)|| < 1, |I%] < B}.
e Z(X) is irrational if no @ € RR \ {0} satisfies & - g(X) € Z[X].

Theorem (RM 2024)

Let d; < d. Suppose that g is nonsingular and irrational, and that

R
s> R+ dmax{d; — 2,1}243%(4=4),
S

Then M(B) ~ vgB"~2 % where vz = lim BZ4P[g(X) € [0,1)F].
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Setup for repulsion
o e(t) =22 ALf(RX) = f(X+h)— F(X), Dy =Dp A
e f[H is the degree k part of f, with |f[¥| = |biggest coefficient|.

e NB A~1 T K is a multilinear form in the E;, independent of X

e m% s the vector of coefficients of A = 1y
hy,..., he_1 h17~~-7hk717(')

For w € C°(R?), f, g € R[X] with degree < k, and 1 < P < B we have

2k71
‘ZB *w(%/B)e(g(%)) 3 B *w(x (()+f())’
X€ELs XELs
. 2/(—1
<| 33 B %w(x + b/B)w(E/B)e (F(X) — A (9)) |
hezs X€L?
< B~k Vssuf(hy, ... he_q,0) € ZF : |hj| < B, |*” — 4 <B™Y}
goooy k,].
L (o s, 0) € 2 : || < P, 0¥ g < 2
< m#{( 5 il 1) © bl < ’|m711,.~,l7k_1 — i < Bk }

If PB=k < |fIH]| < P1=K this is

1 7 k—1)s = f K [K]| pk—2
< e (-  hi_1) € Z R < P, |m TS L L W8T



Setup for repulsion
o e(t) =22 ALf(RX) = f(X+h)— F(X), Dy =Dp A
e f[H is the degree k part of f, with |f[¥| = |biggest coefficient|.

e MK s the vector of coefficients of A flAl
hi,....;hk—1 hl""’hkfl»(')

e The normalised sum S, (B;f) =) ¢, B°w(X/B)e(f(X))
For f,g € R[X] with degree < k, and PB~* < |fIK| < P1=* we have

1Sw(Bi F)Su(Big + AP < ptk—Ds
Ay, her) €200 Ry < P mTE L < PRRIAK,

If k =3, B smooth get < P~ by ideas of Davenport; else, pigeonhole.

—»[k]

Repulsion: suppose that, whenever PB~* < |5 f | < PL% we have

SW(B:o?-f)S( (a+6) f) <« P2EW),

-,

then meas{@ € [0,1)F : |S,,(B; @ - f)| < B-A} < BX"d(4/E(d)-1) (A > 0)
N(B) ~ ;B2 4 if f € Z[X|R, or
M(B) ~ vzB5=2 4 if f is irrational. 1

O: 1f 2R di/E(d;) < 1 then {



Setup for p-adic repulsion
o e(t) =22 ALf(RX) = f(X+h)— F(X), Dy =Dp A
e f[H is the degree k part of f, with |f[¥| = |biggest coefficient|.

e MK s the vector of coefficients of A flAl
hyy..sh—1,( )

hi,y..oshe—1
e The normalised sum S, (B;f) =) ¢, B°w(X/B)e(f(X))
For f € Z[X], g € R[X] with degree < k, and P prime with PM < Bk,
such that P*=M < |flK|p < P~k we have
1Sw(B; F)Suw(B; g + 2 )P < p=tk-Ds
(o b)) € 267D R < P L | < PTYAM Y,
’ k—1

For fIKl smooth this is < P=5 (FF,-points on varieties).

[k
[]|P < Pk, we have

Repulsion: suppose that, whenever P1™M < |b . f
Su(Bi@-F)S, (Bi(a+ ) - F) < P20,

then meas{@ € [0,1)R : [S,,(B; @ - f)| < B~A} < BX"d(A/E(@)=1) (A > ()

O: If YR di/E(d;) < 1 then Nx(B) ~ cB*"X"%. Smooth: E(d) = 2=R+1



Measures by repulsion
o e(t) =22 ALf(RX) = f(X+h)— F(X), Dy =Dp A
e f[H is the degree k part of f, with |f[¥| = |biggest coefficient|.

e MK s the vector of coefficients of A flAl
hi,....;hk—1 hl""’hkflr(')

e The normalised sum S, (B;f) =) ¢, B°w(X/B)e(f(X))
o f(X) € Zlx, ..., xR is a system of R forms in s > 3" d; variables.

—*[k]

Repulsion: suppose that, whenever PB=% < |3 f | < P, we have

sw(B;o-z-F)sw( (a+5) f) < P2E(K),
then meas{d € [0,1)R : |S,(B;a - f)| = A} < BEFAA/Ed)-1) (A > 0)
Proof idea: Let P> BAE(). Let @, & + £; belong to the set. Then
G- F) < B or |7 A1) > Lok,

Sk
It follows that the & - f[ ] are contained in a few infrequent regions
(peaks) of diameter < PB~*, separated by gaps of size > P~ hence
with total measure < (P/B)*R« where there are Ry forms of degree k.

12



Measures by p-adic repulsion
o e(t) =22 ALf(RX) = f(X+h)— F(X), Dy =Dp A
e f[H is the degree k part of f, with |f[¥| = |biggest coefficient|.

e MK s the vector of coefficients of A flAl
hi,....;hk—1 hl""’hkflr(')

e The normalised sum S, (B; f) = B=*w(X/B)e(f(X))
o f(X) € Zlx, ..., xR is a system of R forms in s > 3" d; variables.

ReZs
o 1-m (g, 7K 1—k
Repulsion: suppose that, whenever P <|b-f '|p < PK we have
Sw(B:@-F)S, (Bi(@+ &) - F) < P20,
then meas{d € [0,1)R : |S,(B; @ - f)| < B~A} < BX"d(A/E(d)-1) (4 > )

Proof idea: Let P > BA/E(K) prime, PM <« B, Let &@,d + PLM belong to
the set. Either =0 or f € P<"2-M7, because

3 - -k
5.7 < PYM o |B- 7 > Pk

Hence each lattice agy + Pk_ill_MZR contains at most one element of the

set, hence it has total measure < P(k=1=MRk \yhere there are Ry forms

of degree k, this is < (P/B)R« if we choose M so B=k > p~M-1,

12
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Accessing the lower-degree part

Notation
o e(t) =22t Npf(R) = f(X+h)— F(X), Dy 7 =Df - Dp
e NB A,;lu__ i Ikl is a multilinear form in the H;, independent of X
> f ok o o _a = = [k]
o my g is the vector of coefficients of Ahl,...,hk,l.t)f

Proposition
Given w € C°(IR®) there is W € C2°(R*®) as follows. For any f € R[X]
of degree < d, and any 1 < k < d,

(2d71 4 1) L (2/( + 1)2k713(k+1)(d7k71)+1

h h

—ks = (M k LW

<B 3 E:W<B,...,B> (25,5 ™)
hi,...,hk_1E€Z5 | h€Z5

< =X (. P, ) € T il < P, AL~ —d <)

B(k—1)s pooegl=ils - B

yhk—1 13


maths.fan/ICTS.pdf

Lemma

Given w € C2°(R®) there is w € C°(R(9+1)9) as follows. For any
f € R[X] of degree < d,

29-1 41

Z ;w (5) <t
YD LT CE] é)e(f[<d]+F(>'<’;>‘<'1,...,>?d)>‘

XiyeosXd X

with F = fldl — A;Jr;lw})u;df[d] of degree < d in X and <1 in each X;.

Lemma

For L € GLs(R), A:= {||X|| < B: HL)?— || <1/B some i € Z°}.
Given w € C2°(R?®) there are W~ 5 e C=(R?), whose values, support
and derivatives are bounded in terms of w only, such that for all real g,

3

Sw (5 L) e e < 3 Ykt (5) elbeslx)).

X,y ceA-A X 14



