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Motivation (Before Quantum State Smoothing)

Types of classical estimation

Consider estimating a variable x at time τ .

Many types of estimate are possible e.g. mean,
mode, mode ....

The most powerful tool for this is the
probability distribution ℘(ξ) = Pr(x = ξ).
From this we can determine any type of
estimate.

Filtering (F):
Conditioning ξ on past measurement record:

℘F(ξ) ≡ ℘(ξ|
←−
O )

Retrofiltering (R):
Conditioning future record on ξ:

ER(ξ) ≡ ℘(
−→
O |ξ)

Assume “Markov”: ℘(
−→
O |ξ) = ℘(

−→
O |ξ,←−O ).

Smoothing (S):
Conditioning ξ on entire record:

℘S(ξ) ≡ ℘(ξ|
←→
O ) ∝ ℘F(ξ)ER(ξ)
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Motivation (Before Quantum State Smoothing)

Quantum case: Two state (vector) formalism

Y. Aharonov & D. Rohrlich (1990).

Filtering = pure state preparation at time t0 < τ :

ρF = Ûτ
t0 |ψ⟩⟨ψ|Û

τ
t0
†.

Retrofiltering = pure state projection at time
T > τ :

ÊR = ÛT
τ
†|ϕ⟩⟨ϕ|ÛT

τ .

Filtering = solution to quantum trajectory, i.e.,
initial state ρ0 at t0 < τ followed by continuous
measurement in (t0, τ):

ρF ≡ ρ←−O (τ)

Retrofiltering = continuous measurement in
(τ,T] yields a POVM element:

ÊR ≡ Ê−→O (τ) :

∫
dµ(
−→
O )Ê−→O (τ) = 1̂.
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ÊR = ÛT
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Motivation (Before Quantum State Smoothing)

Quantum case: smoothing?

... weak values as introduced in

Tr
[
Âρnaive

S

]
=
⟨ϕ|ÛT

τ ÂÛT
t0 |ψ⟩

⟨ϕ|ÛT
t0 |ψ⟩

for the simple (2SVF) case where

ρF = Ûτ
t0 |ψ⟩⟨ψ|Û

τ
t0
†, ÊR = ÛT

τ
†|ϕ⟩⟨ϕ|ÛT

τ .

Naively, following the classical example,

ρnaive
S = ÊRρF/Tr [this]

However, in general, this operator is not
Hermitian, and, even if symmetrized, not
positive. Nevertheless, as shown in

the “expectation values” evaluated using this
“state” correspond to ...

However2, if [ÊR, ρF] = 0 then ρnaive
S is Hermitian and positive:

ÊR =
∑
ξ

ER(ξ)|ξ⟩⟨ξ| , ρF =
∑
ξ

℘F(ξ)|ξ⟩⟨ξ| =⇒ ρnaive
S ∝

∑
ξ

℘S(ξ)|ξ⟩⟨ξ|.
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τ ÂÛT
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t0 |ψ⟩

for the simple (2SVF) case where

ρF = Ûτ
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†, ÊR = ÛT
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S = ÊRρF/Tr [this]

However, in general, this operator is not
Hermitian, and, even if symmetrized, not
positive. Nevertheless, as shown in

the “expectation values” evaluated using this
“state” correspond to ...
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Motivation (Before Quantum State Smoothing)

Application of Classical Smoothing to Quantum Systems
If [ÊR, ρF] = 0 then ∃ a basis {|ξ⟩ : ξ}: ÊR =

∑
ξ Ecl

R(ξ)|ξ⟩⟨ξ| and ρF =
∑

ξ ℘
cl
F (ξ)|ξ⟩⟨ξ|, and

ρnaive
S ∝ ÊRρF ∝

∑
ξ

℘cl
S (ξ)|ξ⟩⟨ξ|.
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Motivation (Before Quantum State Smoothing)

Not the end of the story (in fact, only the beginning)

If ÊR =
∑

ξ ℘(
−→
O |ξ)|ξ⟩⟨ξ| and ρF =

∑
ξ ℘(ξ|

←−
O )|ξ⟩⟨ξ|, then

ρcl
S ∝

∑
ξ

℘(
−→
O |ξ)℘(ξ|←−O )|ξ⟩⟨ξ|

is certainly a smoothed quantum state:

1 ρS is a single state, just as the classical theory gives ℘S, not a pair of states.

2 ρS ≡ ρ←→O such that
∫

dµ(
−→
O |ρτ = ρ←−O )× ρ←→O = ρ←−O ≡ ρF.

3 ρS is a genuine state (positive and Hermitian).

But is it the smoothed quantum state under this condition? No!

There is a more general way to define a smoothed quantum state ρS, that satisfies Conditions
1–3 above, and is an optimal* estimate of the “true” quantum state.

The more general ρS reduces to ∝
∑

ξ ℘(
−→
O |ξ)℘(ξ|←−O )|ξ⟩⟨ξ| only with an extra assumption:

the ‘true’ quantum state is always an element of {|ξ⟩ : ξ}.
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Quantum State Smoothing, and the Main Results

Background: Quantum Trajectory Theory = Quantum Filtering

A master equation is derived by ignoring (tracing over) the bath.

ρ̇(t) = Lρ(t) ≡ −i[Ĥ, ρ] +
∑L

ℓ=1D[ĉℓ]ρ.

It is not always appropriate to ignore the bath — under a strong Markov assumption, the bath
can be measured continuously without invalidating the ME on average.

This monitoring yields information about the system, so in any individual ‘run’ the
conditioned system state ρF(t) will differ from the ME solution, and typically be purer.

This ρF(t) is a function of the past measurement record and so evolves stochastically
(e.g. quantum jumps or quantum diffusion).

The ensemble of such “quantum trajectories” is an “unravelling” of the ME:

E[ρF(t)] = ρ(t) = exp[L(t − t0)]ρ(t0).

Different ways of measuring the bath give different types of unravellings, for fixed L.
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Quantum State Smoothing, and the Main Results

ρF(t) = ρ←−O (t) = E←−U |←−O [ρ←−O ,←−U (t)].

ρS(t) = ρ←→O (t) = E←−U |←→O [ρ←−O ,←−U (t)].

is, on average, closer* than ρF(t) to

ρT = ρ←−O ,←−U (t).
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Quantum State Smoothing, and the Main Results

Partial Observation and Filtering

Alice partially / imperfectly monitors (some of) the bath(s) to which the system is coupled,
yielding a record O (observed).

Whatever (quantum) information Alice misses is seen by Bob, yielding a record Utrue, unseen
by Alice.

Say for simplicity that Bob also knows Alice’s record. Thus Bob’s conditioned state is the
‘true’ state ρT(t) = ρ←−O ,←−U true(t), which can be assumed pure.

Alice wants to know the mind of Bob (i.e. know Bob’s state) at all times t.

If she uses only
←−
O , she should* guess

ρAlice
F (t) =

∫
dµ(
←−
U |←−O )× ρ←−O ,←−U (t), given ρ∅(t0).

It turns out this is identical to Alice’s usual filtered state ρ←−O (t), and is independent of how Bob
monitors (i.e. the type of unravelling he uses).
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Quantum State Smoothing, and the Main Results

Partial Observation and Smoothing

Set up as before, but now Alice realises that to guess Bob’s state at time t she might do better
to use

←→
O . Now she should* guess

ρAlice
S (t) =

∫
dµ(
←−
U |←→O )× ρ←−O ,←−U (t), given ρ∅(t0).

On average it is a better* estimate of ρT(t), and is more pure, and

E[Purity(ρC)] = E[Fidelity(ρC, ρT)].

In this case, ρS(t) does depend on how Bob monitors his bath(s).

Note that ρAlice
S (t) ̸= ρAlice

F (t) if and only if Alice’s measurement does not capture all the
information, so that ρAlice

F (t) is not pure. This is also the case for classical smoothing.
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Quantum State Smoothing, and the Main Results

Main Results

Say ∃ a basis {|ξ⟩ : ξ} such that ÊR =
∑

ξ ℘(
−→
O |ξ)|ξ⟩⟨ξ| and ρF =

∑
ξ ℘(ξ|

←−
O )|ξ⟩⟨ξ|. Then:

0 If, in each run, ∃ ξ: ρT = |ξ⟩⟨ξ| then ρS = ρcl
S :∝

∑
ξ ℘(
−→
O |ξ)℘(ξ|←−O )|ξ⟩⟨ξ|.

1 If this condition does not hold, then it can be that ρS ̸= ρcl
S .

2 In fact, it can be that ρS ̸=
∑

ξ ℘(ξ)|ξ⟩⟨ξ| for any ℘(ξ).

3 It is not even the case that the classical case (where, in each run, ∃ ξ: ρT ∝ |ξ⟩⟨ξ| ) allows the
best* best* estimate of ρT at all times.

We show all of these results with a simple system, a qubit.
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The Simple System, and Result 0
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The Simple System, and Result 0

The Open Quantum System

Adiabatically eliminating the virtual level gives
this Lindblad master equation:

ρ̇ = (δ + γ)D[σ̂−]ρ+ ϵD[σ̂+]ρ.

The left-going field goes to Alice, the right-going
fields go to Bob.

We will always consider the case δ ≪ ϵ = 1
20γ,

so
ρss ≈ 20

21 |g⟩⟨g|+
1
21 |e⟩⟨e|.
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The Simple System, and Result 0

Alice’s Observation and Filtering

We will always take Alice to perform
photodetection (counting photons).

Because δ ≪ ϵ = 1
20γ, Alice very rarely gets

detections.

We will consider an interval [−5γ−1, 5γ−1]
around a rare Alice-detection at t = 0.

For t < 0 her filtered state is given by

ρF ≈ ρss ≈ 20
21 |g⟩⟨g|+

1
21 |e⟩⟨e|

and for t ≥ 0 (following a detection):

ρF ≈ |g⟩⟨g|e−(γ+ϵ)t + ρss(1− e−(γ+ϵ)t).
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The Simple System, and Result 0

Alice’s Naive (Classical) Smoothing ...

(a)

Now take the limit δ → 0+. Alice’s filtered state is

ρF(t) = ρss =
20
21 |g⟩⟨g|+

1
21 |e⟩⟨e| for t < 0

ρF(t) = |g⟩⟨g|e−(γ+ϵ)t + ρss(1− e−(γ+ϵ)t) for t ≥ 0

Similarly, her retrofiltered effect is

ÊR(t) ∝ |e⟩⟨e|e(γ+ϵ)t + (I/2)(1− e(γ+ϵ)t) for t ≤ 0

ÊR(t) ∝ I/2 for t > 0

Thus the naive smoothed state is also diagonal:

ρnaive
S (t) = ÊR(t)ρF(t)/Tr [this]

= ℘cl
S (e, t)|e⟩⟨e|+ [1− ℘cl

S (e, t)]|g⟩⟨g|.
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The Simple System, and Result 0

... can be derived from QSS if Bob performs Photodetection (0)

(a)

If Bob also counts photons then

∀t, ρ←−O ,←−U = |ψT(t)⟩⟨ψT(t)| ∈ {|e⟩⟨e|, |g⟩⟨g|} .

Alice’s knowledge of the true state is thus
described by ℘cl

O(e, t), where O is

←−
O (t) =

{
“no click so far” for t < 0
“click at time zero” for t ≥ 0

←→
O (t) = “click at time zero”

It is easy to verify that in this case

ρAlice
S (t) ≡

∫
dµ(
←−
U |←→O )× ρ←−O ,←−U (t)

= ℘cl
S (e, t)|e⟩⟨e|+ [1− ℘cl

S (e, t)]|g⟩⟨g|.

Wiseman, Laverick, Warszawski & Chantasri (Griffith U.) Quantum state smoothing cannot be assumed classical Quantum Trajectories, Jan-Feb 2025, ICTS 19 / 39



Result 1

Outline

1 Motivation (Before Quantum State Smoothing)

2 Quantum State Smoothing, and the Main Results

3 The Simple System, and Result 0

4 Result 1

5 Result 2, and Comparisons

6 Cost Functions, and Result 3

7 Conclusion

Wiseman, Laverick, Warszawski & Chantasri (Griffith U.) Quantum state smoothing cannot be assumed classical Quantum Trajectories, Jan-Feb 2025, ICTS 20 / 39



Result 1

Now consider QSS if Bob performs Homodyne detection (1)

If Bob does φ = 0 homodyne, then for t < 0

d|ψ̃T(t)⟩ =
[
− γ

2 |e⟩⟨e|dt − ϵ
2 |g⟩⟨g|dt

+
√
γσ̂−dWγ(t) +

√
ϵσ̂+dWϵ(t)

]
|ψ̃T(t)⟩,

i.e., quantum state diffusion.

Now |ψ̃T(t)⟩ /∈ {|e⟩, |g⟩}. Instead it, can be
anywhere on the y = 0 great circle.

Alice knows this, but her click only reveals
information about z, not x, so

ρAlice
S (t) ≡

∫
dµ(
←−
U |←→O )× ρ←−O ,←−U (t)

= ℘1
S(e, t)|e⟩⟨e|+ [1− ℘1

S(e, t)]|g⟩⟨g|.

But ℘1
S(e, t) ̸= ℘0

S(e, t) = ℘cl
S (e, t).
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Result 1

Result 1

Theorem (1)
The commutativity of the filtered quantum state and the retrofiltered quantum effect does not imply
that the smoothed quantum state is given by their product:

[ÊR, ρF] = 0 ≠⇒ ρS ∝ ÊRρF.

Put another way, the existence of an orthonormal basis {|ξ⟩ : ξ} such that the filtering and
retrofiltering have classical descriptions does not imply that classical smoothing gives the
smoothed quantum state:

ρF =
∑
ξ

℘cl
F (ξ)|ξ⟩⟨ξ| and ÊR =

∑
ξ

Ecl
R (ξ)|ξ⟩⟨ξ| ≠⇒ ρS ∝

∑
ξ

℘cl
R (ξ)℘

cl
F (ξ)|ξ⟩⟨ξ|.
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Result 2, and Comparisons

Now Bob performs Adaptive interferometric detection ...

Now Bob uses photodetection with two weak
local oscillators, with amplitudes and phases set
by light modulators, controlled by feedback from
his past record of clicks

←−
U . [Karasik &

Wiseman, PRL (2011).]

With suitable feedback control, |ψ̃T(t)⟩ is again
confined to the y = 0 great circle, and more
particularly, after transients,

∀t < 0, |ψ̃T(t)⟩ ∈ {|α⟩, |β⟩, |ϕ⟩} ,

jumping cyclically between these three states
whenever Bob gets a click. [Warszawski &
Wiseman, NJP (2019).]

This is not true for t ≥ 0, but that’s transient
(t ≲ γ−1) and not relevant for smoothing.
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Result 2, and Comparisons

... giving rise to a non-diagonal Smoothed State

Just as with scheme 1 (homodyne
detection), the true state ρ←−O ,←−U (t) has both x
and z components, but Alice’s click only
reveals information about z.

But now, with scheme 2 (this particular
adaptive detection), the sign of x in the true
state is correlated with z.

Thus the smoothed state

ρAlice
S (t) ≡

∫
dµ(
←−
U |←→O )× ρ←−O ,←−U (t)

is not diagonal in the {|e⟩, |g⟩} basis.

Wiseman, Laverick, Warszawski & Chantasri (Griffith U.) Quantum state smoothing cannot be assumed classical Quantum Trajectories, Jan-Feb 2025, ICTS 25 / 39



Result 2, and Comparisons

Result 2

Theorem (2)
The commutativity of the filtered quantum state and the retrofiltered quantum effect does not imply
that the smoothed quantum state commutes with them:

[ÊR, ρF] = 0 ≠⇒ [ρS, ÊR] = [ρS, ρF] = 0.

Put another way, the existence of an orthonormal basis {|ξ⟩ : ξ} such that the filtering and
retrofiltering have classical descriptions does not imply that the smoothed quantum state is
diagonal in the same basis:

ρF =
∑
ξ

℘cl
F (ξ)|ξ⟩⟨ξ| and ÊR =

∑
ξ

℘cl
R (ξ)|ξ⟩⟨ξ| ≠⇒ ρS =

∑
ξ

℘(ξ)|ξ⟩⟨ξ|.
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Result 2, and Comparisons

For t < 0, ρAlice
S (t) =

∫
dµ(
←−
U |←→O )× ρ←−O ,←−U (t) ∝

∫
dµM

ss (|ψ⟩) ⟨ψ|ÊR(t)|ψ⟩ |ψ⟩⟨ψ|

where Supp(dµ0
ss) = {|e⟩, |g⟩}, Supp(dµ1

ss) = pure rebit manifold, Supp(dµ2
ss) = {|α⟩, |β⟩, |ϕ⟩}.
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Cost Functions, and Result 3

Return to case 0 — Bob performs photodetection

(b)

Recall, for t < 0, Alice’s filtered state = ρss, while her
smoothed state goes smoothly from ρss to |e⟩⟨e|.

Hence, Purity[ρF(t)] > Purity[ρ0
S(t)], even though

[Chantasri & al., Phys. Rep. (2021)], for O =
←−
O or

←→
O ,

P[ρO] = E←−U |O
[
Fidelity(ρO, ρ←−O ,←−U )

]
Is the smoothed state a worse estimate?!

No, because the *cost function which all these estimates
minimize* is not the infidelity, but

BTrSD
O := E←−U |OTr

[
(ρO − ρ←−O ,←−U )

2] .
As expected, BTrSD←→

O
< BTrSD←−

O
, here for

←−
U arising from Bob’s

photodetection.
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Cost Functions, and Result 3

Return to case 0 — Bob performs photodetection

(b)

(c)

Recall, for t < 0, Alice’s filtered state = ρss, while her
smoothed state goes smoothly from ρss to |e⟩⟨e|.

Hence, Purity[ρF(t)] > Purity[ρ0
S(t)], even though

[Chantasri & al., Phys. Rep. (2021)], for O =
←−
O or

←→
O ,

P[ρO] = E←−U |O
[
Fidelity(ρO, ρ←−O ,←−U )

]
Is the smoothed state a worse estimate?!

No, because the *cost function which all these estimates
minimize* is not the infidelity, but

BTrSD
O := E←−U |OTr

[
(ρO − ρ←−O ,←−U )

2] .
As expected, BTrSD←→

O
< BTrSD←−

O
, here for

←−
U arising from Bob’s

photodetection.
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Cost Functions, and Result 3

Result 3: Comparing Costs for the Smoothed State

In all cases, ρS are optimal Bayesian
estimates in that they minimize

BTrSD
←→
O

:= E←−U |←→O Tr
[
(ρS − ρ←−O ,←−U )

2] .
They differ because of the different nature
of ρ←−O ,←−U , under different measurement
schemes for Bob, even though this doesn’t
affect ρF or ÊR.

One might think the most classical,
photodetection, where ρ0

S ∝ ÊRρF, would
have the lowest expected cost.

In fact, for most of the time, BTrSD
←→
O

,0 is
higher than for homodyne and adaptive.
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Conclusion

Summary

Classically, there is no great conceptual difference between states obtained by filtering
℘F(ξ; t) = ℘←−O (ξ; t) and smoothing ℘S(ξ; t) = ℘←→O (ξ; t).

The latter is just ℘F(ξ; t) times the retrofiltered “effect”: ℘S(ξ; t) ∝ ℘F(ξ; t)℘(
−→
O |ξ; t).

The QM the analogues are the usual conditioned quantum state ρ←−O and effect E−→O .

But in QM, the obvious analogue of smoothing does not work when [ρ←−O ,E−→O ] ̸= 0.

ρS ∝ E−→O ρ←−O does “work” when [ρ←−O ,E−→O ] = 0 ...

0 and it can be derived from Quantum State Smoothing theory ρS(t) = E←−U |←→O [ρ←−O ,
←−
U (t)] when the

true state ρ←−O ,
←−
U is pure and commutes with E−→O and ρ←−O .

1 However, if ρ←−O ,
←−
U doesn’t commute with E−→O and ρ←−O then ρS(t) ̸∝ E−→O ρ←−O ,

2 and in fact ρS need not even by co-diagonal with E−→O and ρ←−O .

3 Moreover, the commuting-ρ←−O ,
←−
U case is not even best for minimizing the optimality- defining

cost function, the trace-mean-square-deviation of ρS from the true state ρ←−O ,
←−
U .
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Conclusion

Some Other Past and Future Work on Quantum State Smoothing

Kiarn T. Laverick, Areeya Chantasri, and Howard M. Wiseman, Quantum State Smoothing for Linear
Gaussian Systems Phys. Rev. Lett. (2019).

Areeya Chantasri, Ivonne Guevara, and Howard M. Wiseman, Quantum state smoothing: Why the
types of observed and unobserved measurements matter New J. Phys. (2019).

Kiarn T. Laverick, Areeya Chantasri, and Howard M. Wiseman, General criteria for quantum state
smoothing ... Quantum Stud.: Math. Found. (2020).

Kiarn T. Laverick, Areeya Chantasri, and Howard M. Wiseman, Linear Gaussian quantum state
smoothing: Understanding the optimal unravelings for Alice to estimate Bob’s state Phys. Rev. A
(2021).

Areeya Chantasri, Ivonne Guevara, Kiarn T. Laverick, and Howard M. Wiseman, Unifying theory of
quantum state estimation using past and future information Physics Reports (2021).

Kiarn T. Laverick, Ivonne Guevara, and Howard M. Wiseman, Quantum state smoothing as an optimal
Bayesian estimation problem with three different cost functions Phys. Rev. A (2021).

In various stages of preparation: 2 experimental papers, 4 theory papers.
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Conclusion

Q. (Parameter) Smoothing [Tsang, PRL (2009)]

[adapted from a diagram of Tsang, PRA 2009.]
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Conclusion

Applications of this Quantum Smoothing

Adaptive Optical Phase Estimation Using Time-Symmetric Quantum Smoothing

T.A. Wheatley,1,2,3 D.W. Berry,4 H. Yonezawa,3 D. Nakane,3 H. Arao,3 D. T. Pope,5 T. C. Ralph,1,6,* H.M. Wiseman,1,7,†
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Canberra 2600, ACT, Australia
3Department of Applied Physics and Quantum Phase Electronics Center, School of Engineering, The University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
4Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada

5Perimeter Institute for Theoretical Physics, 31 Caroline Street N, Waterloo, ON N2L 2Y5, Canada
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7Centre for Quantum Dynamics, Griffith University, Brisbane 4111, QLD, Australia

(Received 6 December 2009; published 3 March 2010)

Quantum parameter estimation has many applications, from gravitational wave detection to quantum

key distribution. The most commonly used technique for this type of estimation is quantum filtering, using

only past observations. We present the first experimental demonstration of quantum smoothing, a time-

symmetric technique that uses past and future observations, for quantum parameter estimation. We

consider both adaptive and nonadaptive quantum smoothing, and show that both are better than their

filtered counterparts. For the problem of estimating a stochastically varying phase shift on a coherent

beam, our theory predicts that adaptive quantum smoothing (the best scheme) gives an estimate with a

mean-square error up to 2
ffiffiffi
2

p
times smaller than nonadaptive filtering (the standard quantum limit). The

experimentally measured improvement is 2:24! 0:14.

DOI: 10.1103/PhysRevLett.104.093601 PACS numbers: 42.50.Dv, 03.65.Ta, 03.67."a, 42.50.Xa

Quantum parameter estimation (QPE) is the problem of
estimating an unknown classical parameter (or process)
which plays a role in the preparation (or dynamics) of a
quantum system [1,2], and is central to many fields includ-
ing gravitational wave interferometry [3], quantum com-
puting [4], and quantum key distribution [5]. The
fundamental limit to the precision of the estimate in QPE
is set by quantum mechanics [1,2]. Thus one of the key
issues in QPE is the development of practical method-
ologies which allow measurements to approach or exceed
the standard quantum limit (SQL) for a given measurement
coupling [6–12]. Because of its wide-ranging technologi-
cal relevance, the prime example of QPE is estimating an
optical phase shift [13–20].

Apart from some theoretical papers [19,20], work in this
area of QPE has concentrated upon the problem of estimat-
ing a fixed, but unknown phase shift, which can be thought
of as preparing the quantum state with an average phase
equal to this parameter. It was shown theoretically [15] that
for this problem adaptive homodyne measurements cou-
pled with an optimal estimation filter can yield an estimate
with mean-square error smaller than the standard quantum
limit (as set by perfect heterodyne detection). This was
demonstrated experimentally in Ref. [16] using very weak
coherent states (for which the factor of improvement is at
most 2). More recent theory and experiment have shown
that interferometric measurements with photon counting
can also be improved using adaptive techniques [17,18].

A far richer, and in many cases more experimentally
relevant, problem of quantum phase estimation arises when

the phase evolves dynamically under the influence of an
unknown classical stochastic process [19,20]. The general
problem of estimating a classical process dynamically
coupled to a quantum system under continuous measure-
ment has recently been considered by Tsang [21], who
introduced three main categories of quantum estimation:
prediction or filtering, smoothing, and retrodiction. Of
those, prediction or filtering is a causal estimation tech-
nique that can be used in real-time applications [22].
Smoothing and retrodiction are acausal and so cannot be
used in real time, but they can be used for off-line data
processing or with a delay corresponding to the estimation
time. Smoothing, in which the signal is inferred at a point
in time based on data taken both before and after that time,
is the only time-symmetric estimation technique. As a
consequence, it can be more precise than the time asym-
metric techniques of filtering or retrodiction [20,21]. Such
a result is very significant for quantum sensing applications
where it is more important to have precise rather than real-
time estimates.
Here we present the first experimental demonstration of

QPE using quantum smoothing. Specifically, we consider
estimation of the phase of a continuous optical field, gen-
eralizing the theory of Ref. [19] to a more general classical
phase noise process, and to smoothing (rather than filter-
ing). According to our theory, adaptive measurements and
smoothing both offer improvements over the alternative
(nonadaptive and filtering, respectively). Moreover, using
both together offers the maximum improvement, with a
mean-square phase error smaller than the standard (non-
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Fundamental Quantum Limit to Waveform Estimation

Mankei Tsang,1,* Howard M. Wiseman,2 and Carlton M. Caves1
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We derive a quantum Cramér-Rao bound (QCRB) on the error of estimating a time-changing signal.

The QCRB provides a fundamental limit to the performance of general quantum sensors, such as

gravitational-wave detectors, force sensors, and atomic magnetometers. We apply the QCRB to the

problem of force estimation via continuous monitoring of the position of a harmonic oscillator, in which

case the QCRB takes the form of a spectral uncertainty principle. The bound on the force-estimation error

can be achieved by implementing quantum noise cancellation in the experimental setup and applying

smoothing to the observations.

DOI: 10.1103/PhysRevLett.106.090401 PACS numbers: 03.65.Ta, 03.67.Mn

The accuracy of any sensor is limited by noise. To
quantify the potential performance of a sensor, it is often
useful to compute a lower bound to the error in the esti-
mation of the signal of interest. One of the most widely
used bounds is the Cramér-Rao bound (CRB), which limits
the mean-square error in parameter estimation [1].

The development of quantum technology highlights the
question of how quantum mechanics impacts the perform-
ance of sensors. Helstrom formulated a quantum Cramér-
Rao bound (QCRB) [2], which stipulates that the minimum
estimation error is inversely proportional to a property of
the sensor known as the quantum Fisher information. The
QCRB is central to quantum sensor design in the burgeon-
ing field of quantum metrology [3,4] for several reasons. It
allows one to determine whether the fundamental sensitiv-
ity of a sensor design meets the requirements of an appli-
cation, provides a criterion against which the optimality
of quantum sensing schemes can be tested, and motivates
improvements of schemes that are suboptimal. For sensors
near the fundamental limit, the QCRB can also be used
to quantify the trade-off between sensing accuracy and
physical resources of the sensor, so that efficient ways of
improving sensitivity can be identified.

Most prior work on the QCRB considered estimation of
one or a few fixed parameters. Yet, in most sensing appli-
cations, such as force sensing and magnetometry, the signal
of interest is changing in time. This time-changing signal,
which we call a waveform, is coupled continuously to the
sensor, and continuous measurements on the sensor are
used to extract information about the waveform [5–7].
Here we derive the QCRB for waveform estimation—the
first such derivation to our knowledge—allowing for any
quantum measurement protocol, including sequential, dis-
crete or continuous measurements.

Previous work on the QCRB generally did not take into
account prior information, but for the task of estimating a

waveform, which often depends on an infinite number of
unknown parameters, parameter estimation techniques no
longer suffice and prior information is required to make the
problem well defined [1]. The prior information might, for
example, restrict the signal to a finite bandwidth, making
integrals over frequency finite that otherwise would di-
verge. Thus a crucial feature of our QCRB is the inclusion
of prior waveform information.
Our result provides a rigorous criterion against which

the optimality of design, control, and estimation strategies
for quantum sensors, such as gravitational-wave detectors,
force sensors, and atomic magnetometers, can be tested. As
an example, we calculate the QCRB on the error of force
estimation via continuous position measurements of a har-
monic oscillator, in which case the bound takes the form of
a spectral uncertainty principle. We show that the bound
can be achieved by implementing quantum noise cancel-
lation (QNC) to remove the backaction noise from the
observations [8] and applying the estimation technique of
quantum smoothing [7] to the observations. This proves
the optimality of such control and estimation techniques
for force sensing and establishes our QCRB as the funda-
mental limit to force sensing.
Let xðtÞ denote the classical waveform to be estimated.

For simplicity, we assume xðtÞ to be a scalar function;
generalization to multiple processes is straightforward.
We discretize time as tj ¼ t0 þ j!t, j ¼ 0; 1; . . . ; J, and
assume that !t is small enough that we can treat xðtÞ as
piecewise-constant, i.e., xðtÞ ¼ xj for tj % t < tjþ1. The
prior probability density P½x' for the vector x (
ðxJ)1; . . . ; x0ÞT characterizes what is known or assumed
about the waveform prior to the measurements. For a
vector of observations y ( ðyN)1; . . . ; y1; y0ÞT made any
time during the interval t0 < t % tJ, we define a condi-
tional probability density P½yjx'. The joint probability
density is P½y; x' ¼ P½yjx'P½x'. Finally, we define the

PRL 106, 090401 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

4 MARCH 2011

0031-9007=11=106(9)=090401(4) 090401-1 ! 2011 American Physical Society

Wiseman, Laverick, Warszawski & Chantasri (Griffith U.) Quantum state smoothing cannot be assumed classical Quantum Trajectories, Jan-Feb 2025, ICTS 36 / 39



Conclusion

ν: Bayesian State Estimation Revisited

Recall that, given a set of data Y, the Bayesian state is

℘(x) = ℘
Bayes
Y (x) ∝ P(Ytrue = Y|xtrue = x)℘∅(x).

Why this?

0 ℘
Bayes
Y (x) = P(xtrue = x|Y).

1 to predict any property Λ(x), with minimum Mean-Square-Error (mMSE). That is,

Λest =
∑

x
℘

Bayes
Y (x)Λ(x) minimizes RΛ =

∑
x

P(xtrue = x|Y)[Λest − Λ(x)]2.

2 to estimate, with mM
∑

SE, the true state ℘true(x) = δ(x, xtrue). That is,

℘ = ℘
Bayes
Y minimizes R(℘) =

∑
x

P(xtrue = x|Y)
∑

x′
[℘(x′)− ℘true(x′)]2.
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Conclusion
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1 to predict any property Λ(x), with minimum Mean-Square-Error (mMSE). That is,

Λest =
∑

x
℘

Bayes
Y (x)Λ(x) minimizes RΛ =

∑
x

P(xtrue = x|Y)[Λest − Λ(x)]2.

2 to estimate, with mM
∑

SE, the true state ℘true(x) = δ(x, xtrue). That is,

℘ = ℘
Bayes
Y minimizes R(℘) =

∑
x

P(xtrue = x|Y)
∑

x′
[℘(x′)− ℘true(x′)]2.
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Conclusion

ν: Quantum State Filtering Revisited

Recall: if Alice wants to guess Bob’s state at all times τ , from
←−
O , she should guess

ρ = ρ
Bayes
←−
O

(τ) ≡
∑
←−
U

P(
←−
U =

←−
U true|←−O )× ρ←−O ,←−U (τ), given ρ∅(t0).

But why should she do this?

0 ρ
Bayes
←−
O

(τ) = ρAlice
F (τ) from quantum measurement theory.

1 To predict the minimum Mean-Square-Error (mMSE) value of a measurement of any
observable Λ̂(τ+), as Tr[ρ←−O (τ)Λ̂].

2 To estimate, with mMTrSE, the true state (Bob’s state), ρtrue(τ) = ρ←−O ,←−U true(τ). That is,

ρ = ρ
Bayes
←−
O

(τ) minimizes R(ρ) =
∑
←−
U

P(
←−
U =

←−
U true|←−O )Tr[(ρ− ρ←−O ,←−U (τ))

2].
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Conclusion

ν: Quantum State Smoothing Revisited

Now I also said before that if Alice wants to guess Bob’s state at all times τ , using only
−→
O as

well as
←−
O , she should guess

ρ = ρ
Bayes
←→
O

(τ) ≡
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←−
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P(
←−
U =

←−
U true|←→O )× ρ←−O ,←−U (τ), given ρ∅(t0).

Again, why should she do this?

0 ρ
Bayes
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(τ) = ρAlice
S (τ) from . . . ✗

1 To predict . . . ✗
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U
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