Quantum state smoothing cannot be assumed classical even when the quantum filtering and retrofiltering equations are classical

Kiarn Laverick¹, Prahlad Warszawski, Areeya Chantasri^{1,2}, & Howard Wiseman¹

Department of Physics

Outline

1 Motivation (Before Quantum State Smoothing)

2 Quantum State Smoothing, and the Main Results

- 3 The Simple System, and Result 0
- 4 Result 1
- **(5)** Result **2**, and Comparisons
- 6 Cost Functions, and Result 3

7 Conclusion

3

< ロ > < 同 > < 回 > < 回 > < 回 >

Outline

Motivation (Before Quantum State Smoothing)

- Quantum State Smoothing, and the Main Results
- 3 The Simple System, and Result 0
- 4 Result 1
- 5 Result 2, and Comparisons
- 6 Cost Functions, and Result 3

7 Conclusion

イロト イポト イヨト イヨト

Consider estimating a variable x at time τ .

Many types of estimate are possible e.g. mean, mode, mode

The most powerful tool for this is the probability distribution $\wp(\xi) = \Pr(x = \xi)$. From this we can determine any type of estimate.

Filtering (F):

Conditioning ξ on past measurement record:

$$\wp_{\mathbf{F}}(\xi) \equiv \wp(\xi | \overleftarrow{O})$$

Retrofiltering (R): Conditioning future record on ξ : $E_{\rm R}(\xi) \equiv \wp(\vec{O}|\xi)$ Assume "Markov": $\wp(\vec{O}|\xi) = \wp(\vec{O}|\xi)$

Smoothing (S): Conditioning ξ on entire record:

ヘロト ヘ戸ト ヘヨト ヘヨト

Consider estimating a variable x at time τ .

Many types of estimate are possible e.g. mean, mode, mode

The most powerful tool for this is the probability distribution $\wp(\xi) = \Pr(x = \xi)$. From this we can determine any type of estimate.

(Adapted from a diagram of Tsang PRA 2009) **Filtering** (F):

Conditioning ξ on past measurement record:

$$\wp_{\rm F}(\xi)\equiv \wp(\xi|\overleftarrow{O})$$

Retrofiltering (R): Conditioning future record on ξ : $E_{\rm R}(\xi) \equiv \wp(\vec{O}|\xi)$

Assume "Markov": $\wp(\overrightarrow{O}|\xi) = \wp(\overrightarrow{O}|\xi, \overleftarrow{O}).$

Smoothing (S): Conditioning ξ on entire record: \longleftrightarrow

 $\wp_{\mathbf{S}}(\xi) \equiv \wp(\xi|\overleftrightarrow{O}) \propto \wp_{\mathbf{F}}(\xi) E_{\mathbf{R}}(\xi)$

< ロ > < 同 > < 回 > < 回 > < 回 >

Consider estimating a variable x at time τ .

Many types of estimate are possible e.g. mean, mode, mode

The most powerful tool for this is the probability distribution $\wp(\xi) = \Pr(x = \xi)$. From this we can determine any type of estimate.

(Adapted from a diagram of Tsang PRA 2009) **Filtering** (F):

Conditioning ξ on past measurement record:

$$\wp_{\rm F}(\xi) \equiv \wp(\xi | \overleftarrow{O})$$

Retrofiltering (R): Conditioning future record on ξ :

$$\underline{E}_{\mathbf{R}}(\xi) \equiv \wp(\overrightarrow{O}|\xi)$$

Assume "Markov": $\wp(\overrightarrow{O}|\xi) = \wp(\overrightarrow{O}|\xi,\overleftarrow{O}).$

Smoothing (S): Conditioning ξ on entire record:

 $\wp_{\mathbf{S}}(\xi) \equiv \wp(\xi|\overleftrightarrow{O}) \propto \wp_{\mathbf{F}}(\xi) E_{\mathbf{R}}(\xi)$

イロト イポト イラト イラト

Consider estimating a variable x at time τ .

Many types of estimate are possible e.g. mean, mode, mode

The most powerful tool for this is the probability distribution $\wp(\xi) = \Pr(x = \xi)$. From this we can determine any type of estimate.

Filtering (F):

Conditioning ξ on past measurement record:

$$\wp_{\rm F}(\xi)\equiv \wp(\xi|\overleftarrow{O})$$

Retrofiltering (R): Conditioning future record on ξ :

$$\underline{E}_{\mathbf{R}}(\xi) \equiv \wp(\overrightarrow{O}|\xi)$$

Assume "Markov": $\wp(\overrightarrow{O}|\xi) = \wp(\overrightarrow{O}|\xi, \overleftarrow{O}).$

Smoothing (S): Conditioning ξ on entire record:

$$\wp_{\mathbf{S}}(\xi) \equiv \wp(\xi|\overleftrightarrow{O}) \propto \wp_{\mathbf{F}}(\xi) E_{\mathbf{R}}(\xi)$$

Quantum case: Two state (vector) formalism

PHYSICAL REVIEW

N. U. M. B. R. R. 6 B

ime Symmetry in the Quantum Process of Measurement*

TOWARDS A TWO VECTOR FORMULATION OF OUANTUM MECHANICS

Y. Aharonov & D. Rohrlich (1990).

Filtering = pure state preparation at time $t_0 < \tau$:

 $ho_{\mathrm{F}} = \hat{U}_{t_0}^{ au} |\psi
angle \langle \psi | \hat{U}_{t_0}^{ au \dagger}.$

Retrofiltering = pure state projection at time $T > \tau$:

$$\hat{E}_{\mathbf{R}} = \hat{U}_{\tau}^{T\dagger} |\phi\rangle \langle \phi | \hat{U}_{\tau}^{T}.$$

PRL 111, 160401 (2013) PH

PHYSICAL REVIEW LETTERS

week ending 18 OCTOBER 2013

Past Quantum States of a Monitored System

Søren Gammelmark, Brian Julsgaard, and Klaus Mølmer[®] Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark (Received 3 May 2013; revised manuscript received 22 August 2013; published 15 October 2013)

Filtering = solution to **quantum trajectory**, *i.e.*, initial state ρ_0 at $t_0 < \tau$ followed by continuous measurement in (t_0, τ) :

$$\rho_{\rm F} \equiv \rho_{\overleftarrow{o}}(\tau)$$

Retrofiltering = continuous measurement in $(\tau, T]$ yields a POVM element:

$$\hat{E}_{\mathsf{R}} \equiv \hat{E}_{\overrightarrow{O}}(\tau) : \int d\mu(\overrightarrow{O}) \hat{E}_{\overrightarrow{O}}(\tau) = \hat{1}.$$

< ロ > < 同 > < 三 > < 三 >

Quantum case: Two state (vector) formalism

PHYSICAL REVIEW

22 JUNE 196

Time Symmetry in the Quantum Process of Measurement*

YAKIR AHARONOV, PETER G. BERGMANN, AND JOEL L. LEBOWITZ

TOWARDS A TWO VECTOR FORMULATION OF QUANTUM MECHANICS

Y. Aharonov & D. Rohrlich (1990).

Filtering = pure state preparation at time $t_0 < \tau$:

 $\rho_{\rm F} = \hat{U}_{t_0}^{\tau} |\psi\rangle \langle \psi | \hat{U}_{t_0}^{\tau \dagger}.$

Retrofiltering = pure state projection at time $T > \tau$:

$$\hat{E}_{\mathrm{R}} = \hat{U}_{\tau}^{T\dagger} |\phi\rangle \langle \phi | \hat{U}_{\tau}^{T}.$$

PRL 111, 160401 (2013)

PHYSICAL REVIEW LETTERS

week ending 18 OCTOBER 2013

Past Quantum States of a Monitored System

Søren Gammelmark, Brian Julsgaard, and Klaus Mølmer^{*} Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark (Received 3 May 2013; revised manuscript received 22 August 2013; published 15 October 2013)

Filtering = solution to **quantum trajectory**, *i.e.*, initial state ρ_0 at $t_0 < \tau$ followed by continuous measurement in (t_0, τ) :

$$\rho_{\rm F} \equiv \rho_{\overleftarrow{o}}(\tau)$$

Retrofiltering = continuous measurement in $(\tau, T]$ yields a POVM element:

$$\hat{E}_{\mathbf{R}} \equiv \hat{E}_{\overrightarrow{O}}(\tau) : \int d\mu(\overrightarrow{O}) \hat{E}_{\overrightarrow{O}}(\tau) = \hat{1}.$$

イロト イポト イラト イラト

... weak values as introduced in

How the	Result of a Measurement of a Component of the Sp Spin- ¹ / ₂ Particle Can Turn Out to be 100	in of a

$$\operatorname{Tr}\left[\hat{A}\rho_{\mathrm{S}}^{\mathrm{naive}}\right] = \frac{\langle \phi | \hat{U}_{\tau}^{T} \hat{A} \hat{U}_{t_{0}}^{T} | \psi \rangle}{\langle \phi | \hat{U}_{t_{0}}^{T} | \psi \rangle}$$

for the simple (2SVF) case where $\rho_{\rm F} = \hat{U}_{t_0}^{\tau} |\psi\rangle \langle \psi | \hat{U}_{t_0}^{\tau\dagger}, \hat{E}_{\rm R} = \hat{U}_{\tau}^{T\dagger} |\phi\rangle \langle \phi | \hat{v}_{t_0}^{\tau\dagger} \rangle$ Naively, following the classical example,

 $\rho_{\rm S}^{\rm naive} = \hat{E}_{\rm R} \rho_{\rm F} / {\rm Tr} \, [{\rm this}]$

However, in general, this operator is not Hermitian, and, even if symmetrized, not positive. Nevertheless, as shown in

PHYSICAL REVIEW A 80, 033840 (2009)

Optimal waveform estimation for classical and quantum systems via time-symmetric smoothing

Mankei Tsang®

the "expectation values" evaluated using this "state" correspond to ...

However², if $[\hat{E}_{R}, \rho_{F}] = 0$ then ρ_{S}^{naive} is Hermitian and positive:

$$\hat{E}_{\mathsf{R}} = \sum_{\xi} E_{\mathsf{R}}(\xi) |\xi\rangle \langle\xi| , \ \rho_{\mathsf{F}} = \sum_{\xi} \wp_{\mathsf{F}}(\xi) |\xi\rangle \langle\xi| \implies \rho_{\mathsf{S}}^{\mathsf{naive}} \propto \sum_{\xi} \wp_{\mathsf{S}}(\xi) |\xi\rangle \langle\xi|.$$

< ロ > < 同 > < 回 > < 回 > < 回 >

... weak values as introduced in

How the J	Result of a Measurement of a Component of the Spin Spin- ¹ / ₂ Particle Can Turn Out to be 100	of a

$$\operatorname{Tr}\left[\hat{A}\rho_{\mathrm{S}}^{\mathrm{naive}}\right] = \frac{\langle \phi | \hat{U}_{\tau}^{T} \hat{A} \hat{U}_{t_{0}}^{T} | \psi \rangle}{\langle \phi | \hat{U}_{t_{0}}^{T} | \psi \rangle}$$

for the simple (2SVF) case where

$$\rho_{\rm F} = \hat{U}_{t_0}^{\tau} |\psi\rangle \langle \psi | \hat{U}_{t_0}^{\tau\dagger}, \hat{E}_{\rm R} = \hat{U}_{\tau}^{T\dagger} |\phi\rangle \langle \phi | \hat{U}_{\tau}^{T}.$$

Naively, following the classical example,

 $\rho_{\rm S}^{\rm naive} = \hat{E}_{\rm R} \rho_{\rm F} / {\rm Tr} \, [{\rm this}]$

However, in general, this operator is not Hermitian, and, even if symmetrized, not positive. Nevertheless, as shown in

Privacial in a rate you coordinate Optimal waveform estimation for classical and quantum systems via time-symmetric smoothing

the "expectation values" evaluated using this "state" correspond to ...

However², if $[\hat{E}_{R}, \rho_{F}] = 0$ then ρ_{S}^{naive} is Hermitian and positive:

$$\hat{E}_{\mathsf{R}} = \sum_{\xi} E_{\mathsf{R}}(\xi) |\xi\rangle \langle\xi| , \ \rho_{\mathsf{F}} = \sum_{\xi} \wp_{\mathsf{F}}(\xi) |\xi\rangle \langle\xi| \implies \rho_{\mathsf{S}}^{\mathsf{naive}} \propto \sum_{\xi} \wp_{\mathsf{S}}(\xi) |\xi\rangle \langle\xi|.$$

< ロ > < 同 > < 回 > < 回 > < 回 >

... weak values as introduced in

How the J	Result of a Measurement of a Component of the Spin Spin- ¹ / ₂ Particle Can Turn Out to be 100	ofa

$$\operatorname{Tr}\left[\hat{A}\rho_{\mathrm{S}}^{\mathrm{naive}}\right] = \frac{\langle \phi | \hat{U}_{\tau}^{T} \hat{A} \hat{U}_{t_{0}}^{T} | \psi \rangle}{\langle \phi | \hat{U}_{t_{0}}^{T} | \psi \rangle}$$

for the simple (2SVF) case where

 $\rho_{\rm F} = \hat{U}_{t_0}^{\tau} |\psi\rangle \langle \psi | \hat{U}_{t_0}^{\tau\dagger}, \hat{E}_{\rm R} = \hat{U}_{\tau}^{T\dagger} |\phi\rangle \langle \phi | \hat{U}_{\tau}^{T}.$

Naively, following the classical example,

 $\rho_{\rm S}^{\rm naive} = \hat{E}_{\rm R} \rho_{\rm F} / {\rm Tr} \, [{\rm this}]$

However, in general, this operator is not Hermitian, and, even if symmetrized, not positive. Nevertheless, as shown in

PHYSICAL REVIEW A 80, 033840 (2009)

Optimal waveform estimation for classical and quantum systems via time-symmetric smoothing

Mankei Tsang*

the "expectation values" evaluated using this "state" correspond to ...

However², if $[\hat{E}_{R}, \rho_{F}] = 0$ then ρ_{S}^{naive} is Hermitian and positive:

$$\hat{E}_{\mathsf{R}} = \sum_{\xi} E_{\mathsf{R}}(\xi) |\xi\rangle \langle\xi| , \ \rho_{\mathsf{F}} = \sum_{\xi} \wp_{\mathsf{F}}(\xi) |\xi\rangle \langle\xi| \implies \rho_{\mathsf{S}}^{\mathsf{naive}} \propto \sum_{\xi} \wp_{\mathsf{S}}(\xi) |\xi\rangle \langle\xi|.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

... weak values as introduced in

VOLUME 60, NUMBER 14 PHYSICAL REVIEW LETTERS 4 APRIL 1988
How the Result of a Measurement of a Component of the Spin of a
Spin - 1/2 Particle Can Turn Out to be 100
Yakir Aharonov, David Z. Albert, and Lev Vaidman

$$\operatorname{Tr}\left[\hat{A}\rho_{\mathrm{S}}^{\mathrm{naive}}\right] = \frac{\langle \phi | \hat{U}_{\tau}^{T} \hat{A} \hat{U}_{t_{0}}^{T} | \psi \rangle}{\langle \phi | \hat{U}_{t_{0}}^{T} | \psi \rangle}$$

for the simple (2SVF) case where $\rho_{\rm F} = \hat{U}_{t_0}^{\tau} |\psi\rangle \langle \psi | \hat{U}_{t_0}^{\tau \dagger}, \hat{E}_{\rm R} = \hat{U}_{\tau}^{T \dagger} |\phi\rangle \langle \phi | \hat{U}_{\tau}^{T}.$ Naively, following the classical example,

 $\rho_{\rm S}^{\rm naive} = \hat{E}_{\rm R} \rho_{\rm F} / {\rm Tr} \, [{\rm this}]$

However, in general, this operator is not Hermitian, and, even if symmetrized, not positive. Nevertheless, as shown in

PHYSICAL REVIEW A 80, 033840 (2009)

Optimal waveform estimation for classical and quantum systems via time-symmetric smoothing

Mankei Tsang*

the "expectation values" evaluated using this "state" correspond to ...

However², if $[\hat{E}_{R}, \rho_{F}] = 0$ then ρ_{S}^{naive} is Hermitian and positive:

$$\hat{E}_{\mathsf{R}} = \sum_{\xi} E_{\mathsf{R}}(\xi) |\xi\rangle \langle\xi| , \ \rho_{\mathsf{F}} = \sum_{\xi} \wp_{\mathsf{F}}(\xi) |\xi\rangle \langle\xi| \implies \rho_{\mathsf{S}}^{\mathsf{naive}} \propto \sum_{\xi} \wp_{\mathsf{S}}(\xi) |\xi\rangle \langle\xi|.$$

(日)

... weak values as introduced in

VOLUME 60, NUMBER 14 PHYSICAL REVIEW LETTERS 4 APRIL 1988
How the Result of a Measurement of a Component of the Spin of a
Spin-1/2 Particle Can Turn Out to be 100
Yakir Aharonov, David Z. Albert, and Lev Vaidman

$$\operatorname{Tr}\left[\hat{A}\rho_{\mathrm{S}}^{\mathrm{naive}}\right] = \frac{\langle \phi | \hat{U}_{\tau}^{T} \hat{A} \hat{U}_{t_{0}}^{T} | \psi \rangle}{\langle \phi | \hat{U}_{t_{0}}^{T} | \psi \rangle}$$

for the simple (2SVF) case where $\rho_{\rm F} = \hat{U}_{t_0}^{\tau} |\psi\rangle \langle \psi | \hat{U}_{t_0}^{\tau \dagger}, \hat{E}_{\rm R} = \hat{U}_{\tau}^{T \dagger} |\phi\rangle \langle \phi | \hat{U}_{\tau}^{T}.$ Naively, following the classical example,

 $\rho_{\rm S}^{\rm naive} = \hat{E}_{\rm R} \rho_{\rm F} / {\rm Tr} \, [{\rm this}]$

However, in general, this operator is not Hermitian, and, even if symmetrized, not positive. Nevertheless, as shown in

PHYSICAL REVIEW A 80, 033840 (2009)

Optimal waveform estimation for classical and quantum systems via time-symmetric smoothing

Mankei Tsang*

the "expectation values" evaluated using this "state" correspond to ...

However², if $[\hat{E}_{R}, \rho_{F}] = 0$ then ρ_{S}^{naive} is Hermitian and positive:

$$\hat{E}_{\mathrm{R}} = \sum_{\xi} E_{\mathrm{R}}(\xi) |\xi\rangle \langle\xi| , \ \rho_{\mathrm{F}} = \sum_{\xi} \wp_{\mathrm{F}}(\xi) |\xi\rangle \langle\xi| \implies \rho_{\mathrm{S}}^{\mathrm{naive}} \propto \sum_{\xi} \wp_{\mathrm{S}}(\xi) |\xi\rangle \langle\xi|.$$

イロト イポト イラト イラト

If $[\hat{E}_{R}, \rho_{F}] = 0$ then \exists a basis $\{|\xi\rangle : \xi\}$: $\hat{E}_{R} = \sum_{\xi} E_{R}^{cl}(\xi) |\xi\rangle \langle\xi|$ and $\rho_{F} = \sum_{\xi} \wp_{F}^{cl}(\xi) |\xi\rangle \langle\xi|$, and

$$ho_{\rm S}^{\rm naive} \propto \hat{E}_{\rm R}
ho_{\rm F} \propto \sum_{\xi} \wp_{\rm S}^{\rm cl}(\xi) |\xi\rangle \langle\xi|.$$

< ロ > < 同 > < 回 > < 回 > < 回 >

If $[\hat{E}_{R}, \rho_{F}] = 0$ then \exists a basis $\{|\xi\rangle : \xi\}$: $\hat{E}_{R} = \sum_{\xi} E_{R}^{cl}(\xi) |\xi\rangle \langle\xi|$ and $\rho_{F} = \sum_{\xi} \wp_{F}^{cl}(\xi) |\xi\rangle \langle\xi|$, and

$$\rho_{\rm S}^{\rm naive} \propto \hat{E}_{\rm R} \rho_{\rm F} \propto \sum_{\xi} \wp_{\rm S}^{\rm cl}(\xi) |\xi\rangle \langle\xi|.$$

If $[\hat{E}_{R}, \rho_{F}] = 0$ then \exists a basis $\{|\xi\rangle : \xi\}$: $\hat{E}_{R} = \sum_{\xi} E_{R}^{cl}(\xi) |\xi\rangle \langle \xi|$ and $\rho_{F} = \sum_{\xi} \wp_{F}^{cl}(\xi) |\xi\rangle \langle \xi|$, and

$$ho_{\rm S}^{\rm naive} \propto \hat{E}_{\rm R}
ho_{\rm F} \propto \sum_{\xi} \wp_{\rm S}^{\rm cl}(\xi) |\xi\rangle \langle \xi|.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If $[\hat{E}_{R}, \rho_{F}] = 0$ then \exists a basis $\{|\xi\rangle : \xi\}$: $\hat{E}_{R} = \sum_{\xi} E_{R}^{cl}(\xi) |\xi\rangle \langle \xi|$ and $\rho_{F} = \sum_{\xi} \wp_{F}^{cl}(\xi) |\xi\rangle \langle \xi|$, and

$$ho_{
m S}^{
m naive} \propto \hat{E}_{
m R}
ho_{
m F} \propto \sum_{\xi} \wp_{
m S}^{
m cl}(\xi) |\xi\rangle \langle\xi|.$$

Wiseman, Laverick, Warszawski & Chantasri (Griffith U.)

Quantum state smoothing cannot be assumed classical

Not the end of the story (in fact, only the beginning) If $\hat{E}_{R} = \sum_{\xi} \wp(\overrightarrow{O}|\xi) |\xi\rangle \langle \xi|$ and $\rho_{F} = \sum_{\xi} \wp(\xi|\overrightarrow{O}) |\xi\rangle \langle \xi|$, then $\rho_{S}^{cl} \propto \sum_{\xi} \wp(\overrightarrow{O}|\xi) \wp(\xi|\overrightarrow{O}) |\xi\rangle \langle \xi|$

is certainly **a** smoothed quantum state:

1 $\rho_{\rm S}$ is a single state, just as the classical theory gives $\rho_{\rm S}$, not a pair of states.

2
$$\rho_{\rm S} \equiv \rho_{\overleftarrow{o}}$$
 such that $\int d\mu(\overrightarrow{O}|\rho_{\tau} = \rho_{\overleftarrow{o}}) \times \rho_{\overleftarrow{o}} = \rho_{\overleftarrow{o}} \equiv \rho_{\rm F}$.

3 $\rho_{\rm S}$ is a genuine state (positive and Hermitian).

But is it the smoothed quantum state under this condition? No!

- There is a more general way to define a smoothed quantum state ρ_S , that satisfies Conditions 1–3 above, and is an optimal* estimate of the "true" quantum state.
- The more general $\rho_{\rm S}$ reduces to $\propto \sum_{\xi} \wp(\vec{O}|\xi) \wp(\xi|\vec{O})|\xi\rangle\langle\xi|$ only with an *extra assumption*: the 'true' quantum state is always an element of $\{|\xi\rangle : \xi\}$.

Not the end of the story (in fact, only the beginning) If $\hat{E}_{R} = \sum_{\xi} \wp(\overrightarrow{O}|\xi) |\xi\rangle \langle \xi|$ and $\rho_{F} = \sum_{\xi} \wp(\xi|\overleftarrow{O}) |\xi\rangle \langle \xi|$, then $\rho_{S}^{cl} \propto \sum_{\xi} \wp(\overrightarrow{O}|\xi) \wp(\xi|\overleftarrow{O}) |\xi\rangle \langle \xi|$

is certainly **a** smoothed quantum state:

1 $\rho_{\rm S}$ is a single state, just as the classical theory gives $\rho_{\rm S}$, not a pair of states.

2
$$\rho_{\rm S} \equiv \rho_{\overleftarrow{o}}$$
 such that $\int d\mu(\overrightarrow{O}|\rho_{\tau} = \rho_{\overleftarrow{o}}) \times \rho_{\overleftarrow{o}} = \rho_{\overleftarrow{o}} \equiv \rho_{\rm F}$.

3 $\rho_{\rm S}$ is a genuine state (positive and Hermitian).

But is it the smoothed quantum state under this condition? No!

- There is a more general way to define a smoothed quantum state ρ_S , that satisfies Conditions 1–3 above, and is an optimal* estimate of the "true" quantum state.
- The more general ρ_{S} reduces to $\propto \sum_{\xi} \wp(\overrightarrow{O}|\xi) \wp(\xi|\overleftarrow{O})|\xi\rangle\langle\xi|$ only with an *extra assumption*: the 'true' quantum state is always an element of $\{|\xi\rangle : \xi\}$.

イロト イポト イラト イラト

Outline

- 2 Quantum State Smoothing, and the Main Results
- 3 The Simple System, and Result 0
- 4 Result 1
- 5 Result 2, and Comparisons
- 6 Cost Functions, and Result 3

7 Conclusion

э

<ロト < 四ト < 三ト < 三ト

Background: Quantum Trajectory Theory = Quantum Filtering

• A master equation is derived by ignoring (tracing over) the bath.

$$\dot{\rho}(t) = \mathcal{L}\rho(t) \equiv -i[\hat{H},\rho] + \sum_{\ell=1}^{L} \mathcal{D}[\hat{c}_{\ell}]\rho.$$

- It is not always appropriate to ignore the bath under a strong Markov assumption, the bath can be measured continuously *without invalidating the ME on average*.
- This monitoring yields information about the system, so in any individual 'run' the conditioned system state $\rho_{\rm F}(t)$ will differ from the ME solution, and typically be purer.
- This $\rho_{\rm F}(t)$ is a function of the **past** measurement record and so evolves stochastically (*e.g.* quantum jumps or quantum diffusion).
- The ensemble of such "quantum trajectories" is an "unravelling" of the ME:

$$\mathbf{E}[\rho_{\mathrm{F}}(t)] = \rho(t) = \exp[\mathcal{L}(t-t_0)]\rho(t_0).$$

• Different ways of measuring the bath give different types of unravellings, for fixed \mathcal{L} .

PRL 115, 180407 (2015)

PHYSICAL REVIEW LETTERS

week ending 30 OCTOBER 2015

Quantum State Smoothing

Ivonne Guevara and Howard Wiseman

A (10) + (10) + (10)

 $\rho_{\mathbf{F}}(t) = \rho_{\overleftarrow{o}}(t) = \mathbf{E}_{\overleftarrow{v}}[\overleftarrow{o}[\rho_{\overleftarrow{o}},\overleftarrow{v}](t)].$

 $\rho_{\mathbf{S}}(t) = \rho_{\overleftarrow{o}}(t) = \mathbf{E}_{\overleftarrow{v}} |_{\overleftarrow{o}} [\rho_{\overleftarrow{o}}, \overleftarrow{v}}(t)].$

is, on average, closer* than $\rho_{\rm F}(t)$ to

 $\rho_{\mathrm{T}} = \rho_{\overleftarrow{o},\overleftarrow{v}}(t).$

Partial Observation and Filtering

- Alice partially / imperfectly monitors (some of) the bath(s) to which the system is coupled, yielding a record *O* (observed).
- Whatever (quantum) information Alice misses is seen by Bob, yielding a record U^{true} , unseen by Alice.
- Say for simplicity that Bob also knows Alice's record. Thus Bob's conditioned state is the 'true' state $\rho_{T}(t) = \rho_{\overleftarrow{o},\overleftarrow{U}}$ true (t), which can be assumed *pure*.
- Alice wants to know the mind of Bob (*i.e.* know Bob's state) at all times *t*.
- If she uses only \overleftarrow{O} , she should* guess

$$\rho_{\rm F}^{\rm Alice}(t) = \int d\mu(\overleftarrow{U}|\overleftarrow{O}) \times \rho_{\overleftarrow{O},\overleftarrow{U}}(t), \text{ given } \rho_{\emptyset}(t_0).$$

It turns out this is identical to Alice's usual filtered state ρ₀(t), and is *independent of how Bob* monitors (i.e. the type of unravelling he uses).

・ロト (四) (ヨト (ヨト)ヨー のの()

Partial Observation and Smoothing

Set up as before, but now Alice realises that to guess Bob's state at time *t* she might do better to use *O*. Now she should* guess

$$\rho_{\mathsf{S}}^{\mathsf{Alice}}(t) = \int d\mu(\overleftarrow{U}|\overleftrightarrow{O}) \times \rho_{\overleftarrow{O},\overleftarrow{U}}(t), \text{ given } \rho_{\emptyset}(t_0).$$

• On average it is a *better** estimate of $\rho_{\rm T}(t)$, and is more pure, and

 $E[Purity(\rho_C)] = E[Fidelity(\rho_C, \rho_T)].$

- In this case, $\rho_{\rm S}(t)$ does depend on how Bob monitors his bath(s).
- Note that $\rho_{\rm S}^{\rm Alice}(t) \neq \rho_{\rm F}^{\rm Alice}(t)$ if and only if Alice's measurement does not capture all the information, so that $\rho_{\rm F}^{\rm Alice}(t)$ is not pure. This is also the case for classical smoothing.

Main Results

PRX QUANTUM 4, 040340 (2023)

Quantum State Smoothing Cannot Be Assumed Classical Even When the Filtering and Retrofiltering Are Classical

Kiarn T. Laverick^{1,*} Prahlad Warszawski,² Areeya Chantasri^{1,3} and Howard M. Wiseman^{1,4,†}

Say
$$\exists$$
 a basis $\{|\xi\rangle : \xi\}$ such that $\hat{E}_{\mathbb{R}} = \sum_{\xi} \wp(\overrightarrow{O}|\xi) |\xi\rangle \langle \xi|$ and $\rho_{\mathbb{F}} = \sum_{\xi} \wp(\xi|\overleftarrow{O}) |\xi\rangle \langle \xi|$. Then:

- **0** If, in each run, $\exists \xi: \rho_{\rm T} = |\xi\rangle\langle\xi|$ then $\rho_{\rm S} = \rho_{\rm S}^{\rm cl} :\propto \sum_{\xi} \wp(\overrightarrow{O}|\xi)\wp(\xi|\overleftarrow{O})|\xi\rangle\langle\xi|$.
- 1 If this condition does not hold, then it can be that $\rho_{\rm S} \neq \rho_{\rm S}^{\rm cl}$.
- 2 In fact, it can be that $\rho_{S} \neq \sum_{\xi} \wp(\xi) |\xi\rangle \langle \xi|$ for any $\wp(\xi)$.
- **3** It is not even the case that the classical case (where, in each run, $\exists \xi: \rho_T \propto |\xi\rangle\langle\xi|$) allows the *best** best* estimate of ρ_T at all times.

We show all of these results with a simple system, a qubit.

Outline

Motivation (Before Quantum State Smoothing)

2 Quantum State Smoothing, and the Main Results

3 The Simple System, and Result 0

4 Result 1

- [5] Result 2, and Comparisons
- 6 Cost Functions, and Result 3

7 Conclusion

э

・ロト ・ 四ト ・ ヨト ・ ヨト

The Open Quantum System

• Adiabatically eliminating the virtual level gives this Lindblad master equation:

$$\dot{\rho} = (\delta + \gamma) \mathcal{D}[\hat{\sigma}_{-}]\rho + \epsilon \mathcal{D}[\hat{\sigma}_{+}]\rho.$$

- The left-going field goes to Alice, the right-going fields go to Bob.
- We will always consider the case $\delta \ll \epsilon = \frac{1}{20}\gamma$, so

$$\rho_{\rm ss} \approx \frac{20}{21} |g\rangle \langle g| + \frac{1}{21} |e\rangle \langle e|.$$

4 **A b b b b b b**

Alice's Observation and Filtering

- We will always take Alice to perform photodetection (counting photons).
- Because $\delta \ll \epsilon = \frac{1}{20}\gamma$, Alice very rarely gets detections.
- We will consider an interval $[-5\gamma^{-1}, 5\gamma^{-1}]$ around a rare Alice-detection at t = 0.
- For t < 0 her filtered state is given by

$$ho_{\mathrm{F}} pprox
ho_{\mathrm{ss}} pprox rac{20}{21} |g
angle \langle g| + rac{1}{21} |e
angle \langle e|$$

and for $t \ge 0$ (following a detection):

$$\rho_{\rm F} \approx |g\rangle \langle g| {\rm e}^{-(\gamma+\epsilon)t} + \rho_{\rm ss}(1-{\rm e}^{-(\gamma+\epsilon)t}).$$

4 **A b b b b b b**

Alice's Naive (Classical) Smoothing ...

• Now take the limit $\delta \to 0^+$. Alice's filtered state is

$$\rho_{\rm F}(t) = \rho_{\rm ss} = \frac{20}{21} |g\rangle \langle g| + \frac{1}{21} |e\rangle \langle e| \qquad \text{for } t < 0$$

$$\rho_{\rm F}(t) = |g\rangle\langle g|{\rm e}^{-(\gamma+\epsilon)t} + \rho_{\rm ss}(1-{\rm e}^{-(\gamma+\epsilon)t}) \quad \text{ for } t \ge 0$$

• Similarly, her *retrofiltered effect* is

$$\begin{split} \hat{E}_{\mathrm{R}}(t) \propto |e\rangle \langle e|\mathrm{e}^{(\gamma+\epsilon)t} + (I/2)(1-\mathrm{e}^{(\gamma+\epsilon)t}) & \text{ for } t \leq 0\\ \hat{E}_{\mathrm{R}}(t) \propto I/2 & \text{ for } t > 0 \end{split}$$

• Thus the naive smoothed state is also diagonal:

$$\rho_{\rm S}^{\rm naive}(t) = \hat{E}_{\rm R}(t)\rho_{\rm F}(t)/{\rm Tr}\,[{\rm this}]$$

= $\wp_{\rm S}^{\rm cl}(e,t)|e\rangle\langle e| + [1 - \wp_{\rm S}^{\rm cl}(e,t)]|g\rangle\langle g|.$

The Simple System, and Result 0

... can be derived from QSS if Bob performs *Photodetection* (0)

• If Bob also counts photons then

 $\forall t, \rho_{\overleftarrow{o},\overleftarrow{v}} = |\psi_{\mathrm{T}}(t)\rangle \langle \psi_{\mathrm{T}}(t)| \in \{|e\rangle \langle e|, |g\rangle \langle g|\}\,.$

• Alice's *knowledge* of the true state is thus described by $\wp_O^{\rm cl}(e, t)$, where *O* is

 $\overleftarrow{o}(t) = \begin{cases} \text{"no click so far"} & \text{for } t < 0 \\ \text{"click at time zero" for } t \ge 0 \end{cases}$ $\overleftarrow{o}(t) = \text{"click at time zero"}$

• It is easy to verify that in this case

$$\begin{split} \rho_{\mathrm{S}}^{\mathrm{Alice}}(t) &\equiv \int d\mu(\overleftarrow{U}|\overleftrightarrow{O}) \times \rho_{\overleftarrow{O},\overleftarrow{U}}(t) \\ &= \wp_{\mathrm{S}}^{\mathrm{cl}}(e,t) |e\rangle \langle e| + [1 - \wp_{\mathrm{S}}^{\mathrm{cl}}(e,t)] |g\rangle \langle g|. \end{split}$$

Outline

Motivation (Before Quantum State Smoothing)

- Quantum State Smoothing, and the Main Results
- 3 The Simple System, and Result 0

4 Result 1

- 5 Result 2, and Comparisons
- 6 Cost Functions, and Result 3

7 Conclusion

э

イロト イポト イヨト イヨト

Now consider QSS if Bob performs *Homodyne detection* (1)

• If Bob does $\varphi = 0$ homodyne, then for t < 0 $d|\tilde{\psi}_{\mathrm{T}}(t)\rangle = \left[-\frac{\gamma}{2}|e\rangle\langle e|dt - \frac{\epsilon}{2}|g\rangle\langle g|dt + \sqrt{\gamma}\hat{\sigma}_{-}dW_{\gamma}(t) + \sqrt{\epsilon}\hat{\sigma}_{+}dW_{\epsilon}(t)\right]|\tilde{\psi}_{\mathrm{T}}(t)\rangle,$

i.e., quantum state diffusion.

- Now |ψ_T(t)⟩ ∉ {|e⟩, |g⟩}. Instead it, can be anywhere on the y = 0 great circle.
- Alice *knows* this, but her click only reveals information about *z*, not *x*, so

$$\begin{split} \rho_{\rm S}^{\rm Alice}(t) &\equiv \int d\mu(\overleftarrow{U}|\overleftrightarrow{O}) \times \rho_{\overleftarrow{O},\overleftarrow{U}}(t) \\ &= \wp_{\rm S}^{\rm 1}(e,t)|e\rangle\langle e| + [1 - \wp_{\rm S}^{\rm 1}(e,t)]|g\rangle\langle g|. \end{split}$$

• But
$$\wp_{\mathbf{S}}^{\mathbf{1}}(e,t) \neq \wp_{\mathbf{S}}^{\mathbf{0}}(e,t) = \wp_{\mathbf{S}}^{\mathrm{cl}}(e,t).$$

Result 1

Theorem (1)

The commutativity of the filtered quantum state and the retrofiltered quantum effect does **not** imply that the smoothed quantum state is given by their product:

$$[\hat{E}_R, \rho_F] = 0 \implies \rho_S \propto \hat{E}_R \rho_F.$$

Put another way, the existence of an orthonormal basis $\{|\xi\rangle : \xi\}$ such that the filtering and retrofiltering have classical descriptions does **not** imply that classical smoothing gives the smoothed quantum state:

$$\rho_F = \sum_{\xi} \wp_F^{cl}(\xi) |\xi\rangle \langle \xi| \text{ and } \hat{E}_R = \sum_{\xi} E_R^{cl}(\xi) |\xi\rangle \langle \xi| \not\implies \rho_S \propto \sum_{\xi} \wp_R^{cl}(\xi) \wp_F^{cl}(\xi) |\xi\rangle \langle \xi|.$$

< ロ > < 同 > < 回 > < 回 > < 回 >

Outline

Motivation (Before Quantum State Smoothing)

- Quantum State Smoothing, and the Main Results
- 3 The Simple System, and Result 0
- 4 Result 1
- **(5)** Result **2**, and Comparisons
- 6 Cost Functions, and Result 3

7 Conclusion

э

イロト イポト イヨト イヨト

Result 2, and Comparisons

Now Bob performs Adaptive interferometric detection ...

- Now Bob uses photodetection with two *weak* local oscillators, with amplitudes and phases set by *light modulators*, controlled by *feedback* from his past record of clicks \overline{U} . [Karasik & Wiseman, PRL (2011).]
- With suitable feedback control, |ψ_T(t)⟩ is again confined to the y = 0 great circle, and more particularly, after transients,

 $\forall t < 0, \ |\tilde{\psi}_{\mathrm{T}}(t)\rangle \in \{|\alpha\rangle, |\beta\rangle, |\phi\rangle\}\,,$

jumping cyclically between these three states whenever Bob gets a click. [Warszawski & Wiseman, NJP (2019).]

• This is not true for $t \ge 0$, but that's transient $(t \le \gamma^{-1})$ and not relevant for smoothing.

... giving rise to a non-diagonal Smoothed State

- Just as with scheme 1 (homodyne detection), the true state ρ_{ö, ΰ}(t) has both x and z components, but Alice's click only reveals information about z.
- But now, with scheme 2 (this particular adaptive detection), the *sign* of *x* in the true state is *correlated* with *z*.
- Thus the smoothed state

$$\rho_{\rm S}^{\rm Alice}(t) \equiv \int d\mu(\overleftarrow{U}|\overleftrightarrow{O}) \times \rho_{\overleftarrow{O},\overleftarrow{U}}(t)$$

is **not diagonal** in the $\{|e\rangle, |g\rangle\}$ basis.

Theorem (2)

The commutativity of the filtered quantum state and the retrofiltered quantum effect does **not** imply that the smoothed quantum state commutes with them:

$$[\hat{E}_R, \rho_F] = 0 \not\Longrightarrow [\rho_S, \hat{E}_R] = [\rho_S, \rho_F] = 0.$$

Put another way, the existence of an orthonormal basis $\{|\xi\rangle : \xi\}$ such that the filtering and retrofiltering have classical descriptions does **not** imply that the smoothed quantum state is diagonal in the same basis:

$$\rho_F = \sum_{\xi} \wp_F^{cl}(\xi) |\xi\rangle \langle \xi| \text{ and } \hat{E}_R = \sum_{\xi} \wp_R^{cl}(\xi) |\xi\rangle \langle \xi| \not\implies \rho_S = \sum_{\xi} \wp(\xi) |\xi\rangle \langle \xi|.$$

< ロ > < 同 > < 回 > < 回 > < 回 >

For
$$t < 0$$
, $\rho_{\mathsf{S}}^{\mathsf{Alice}}(t) = \int d\mu(\overleftarrow{U}|\overleftrightarrow{O}) \times \rho_{\overleftarrow{O},\overleftarrow{U}}(t) \propto \int d\mu_{\mathrm{ss}}^{\mathsf{M}}(|\psi\rangle) \langle \psi | \hat{E}_{\mathsf{R}}(t) | \psi \rangle \langle \psi |$

where Supp $(d\mu_{ss}^0) = \{|e\rangle, |g\rangle\}$, Supp $(d\mu_{ss}^1) =$ pure rebit manifold, Supp $(d\mu_{ss}^2) = \{|\alpha\rangle, |\beta\rangle, |\phi\rangle\}$.

Wiseman, Laverick, Warszawski & Chantasri (Griffith U.)

Quantum state smoothing cannot be assumed classical

Outline

Motivation (Before Quantum State Smoothing)

- Quantum State Smoothing, and the Main Results
- 3 The Simple System, and Result 0
- 4 Result 1
- **5** Result **2**, and Comparisons
- 6 Cost Functions, and Result 3

7 Conclusion

Wiseman, Laverick, Warszawski & Chantasri (Griffith U.) Quantum state smoothing cannot be assumed classical

э

イロト イポト イヨト イヨト

Cost Functions, and Result 3

Return to case **0** — Bob performs *photodetection*

- Recall, for t < 0, Alice's filtered state = ρ_{ss}, while her smoothed state goes smoothly from ρ_{ss} to |e⟩⟨e|.
- Hence, $Purity[\rho_{\rm F}(t)] > Purity[\rho_{\rm S}^{0}(t)]$, even though [Chantasri & *al.*, Phys. Rep. (2021)], for $O = \overleftarrow{O}$ or \overleftarrow{O} , $P[\rho_{O}] = {\rm E}_{\overline{U}|O} \left[{\rm Fidelity}(\rho_{O}, \rho_{\overline{O}, \overline{U}})\right]$
- Is the smoothed state a worse estimate?!
- No, because the *cost function which all these estimates minimize* is not the infidelity, but

$$\mathcal{B}_{O}^{\mathrm{TrSD}} := \mathrm{E}_{\overline{\upsilon}|O} \mathrm{Tr} \left[(\rho_{O} - \rho_{\overline{\upsilon},\overline{\upsilon}})^{2} \right].$$

• As expected, $\mathcal{B}_{\overrightarrow{O}}^{\text{TrSD}} < \mathcal{B}_{\overrightarrow{O}}^{\text{TrSD}}$, here for \overleftarrow{U} arising from Bob's photodetection.

Cost Functions, and Result 3

Return to case **0** — Bob performs *photodetection*

- Recall, for t < 0, Alice's filtered state = ρ_{ss}, while her smoothed state goes smoothly from ρ_{ss} to |e⟩⟨e|.
- Hence, $Purity[\rho_{\rm F}(t)] > Purity[\rho_{\rm S}^{0}(t)]$, even though [Chantasri & *al.*, Phys. Rep. (2021)], for $O = \overleftarrow{O}$ or \overleftarrow{O} ,

 $P[\rho_{O}] = \mathbf{E}_{\overleftarrow{\upsilon}|O} \left[\mathrm{Fidelity}(\rho_{O}, \rho_{\overleftarrow{\upsilon},\overleftarrow{\upsilon}}) \right]$

- Is the smoothed state a worse estimate?!
- No, because the *cost function which all these estimates minimize* is not the infidelity, but

$$\mathcal{B}_{O}^{\mathrm{TrSD}} := \mathrm{E}_{\overleftarrow{\upsilon}|O} \mathrm{Tr} \left[(\rho_{O} - \rho_{\overleftarrow{o},\overleftarrow{\upsilon}})^{2} \right].$$

• As expected, $\mathcal{B}_{\overleftarrow{O}}^{\text{TrSD}} < \mathcal{B}_{\overleftarrow{O}}^{\text{TrSD}}$, here for \overleftarrow{U} arising from Bob's photodetection.

Result 3: Comparing Costs for the Smoothed State

In all cases, ρ_S are optimal Bayesian estimates in that they minimize

 $\mathcal{B}_{\overleftarrow{o}}^{\mathrm{TrSD}} := \mathrm{E}_{\overleftarrow{v}}_{\overleftarrow{o}} \operatorname{Tr} \left[\left(\rho_{\mathrm{S}} - \rho_{\overleftarrow{o},\overleftarrow{v}} \right)^2 \right].$

- They differ because of the different nature of ρ_{0, v}, under different measurement schemes for Bob, even though this doesn't affect ρ_F or Ê_R.
- One might think the most classical, photodetection, where $\rho_{\rm S}^0 \propto \hat{E}_{\rm R}\rho_{\rm F}$, would have the lowest expected cost.
- In fact, for most of the time, $\mathcal{B}_{\overleftarrow{o}}^{\text{TrSD},0}$ is higher than for homodyne and adaptive.

Outline

Motivation (Before Quantum State Smoothing)

- Quantum State Smoothing, and the Main Results
- 3 The Simple System, and Result 0
- 4 Result 1
- 5 Result 2, and Comparisons
- 6 Cost Functions, and Result 3

7 Conclusion

э

イロト イポト イヨト イヨト

Summary

- Classically, there is no great conceptual difference between states obtained by filtering $\wp_{\rm F}(\xi;t) = \wp_{\overleftarrow{O}}(\xi;t)$ and smoothing $\wp_{\rm S}(\xi;t) = \wp_{\overleftarrow{O}}(\xi;t)$.
- The latter is just $\wp_{\rm F}(\xi;t)$ times the retrofiltered "effect": $\wp_{\rm S}(\xi;t) \propto \wp_{\rm F}(\xi;t) \wp(\vec{O}|\xi;t)$.
- The QM the analogues are the usual conditioned quantum state $\rho_{\overleftarrow{o}}$ and effect $E_{\overrightarrow{o}}$.
- But in QM, the obvious analogue of smoothing does not work when $[\rho_{\overleftarrow{o}}, \underline{E_{\overrightarrow{o}}}] \neq 0$.
- $\rho_{\rm S} \propto E_{\vec{o}} \rho_{\vec{o}}$ does "work" when $[\rho_{\vec{o}}, E_{\vec{o}}] = 0 \dots$
 - and it can be derived from Quantum State Smoothing theory $\rho_{S}(t) = E_{\overline{U}|\overrightarrow{\sigma}}[\rho_{\overline{\sigma},\overline{U}}(t)]$ when the true state $\rho_{\overline{\sigma},\overline{U}}$ is pure and commutes with $E_{\overrightarrow{\sigma}}$ and $\rho_{\overline{o}}$.
 - However, if $\rho_{\overleftarrow{o},\overleftarrow{v}}$ doesn't commute with $E_{\overrightarrow{o}}$ and $\rho_{\overleftarrow{o}}$ then $\rho_{S}(t) \not\propto E_{\overrightarrow{o}}\rho_{\overleftarrow{o}}$,
 - 2 and in fact $\rho_{\rm S}$ need not even by co-diagonal with $E_{\vec{o}}$ and $\rho_{\vec{o}}$.
 - Solution Moreover, the commuting $\rho_{\overleftarrow{o},\overleftarrow{v}}$ case is not even best for minimizing the optimality- defining cost function, the trace-mean-square-deviation of ρ_{s} from the true state $\rho_{\overleftarrow{o},\overleftarrow{v}}$.

Some Other Past and Future Work on Quantum State Smoothing

- Kiarn T. Laverick, Areeya Chantasri, and Howard M. Wiseman, *Quantum State Smoothing for Linear Gaussian Systems* Phys. Rev. Lett. (2019).
- Areeya Chantasri, Ivonne Guevara, and Howard M. Wiseman, *Quantum state smoothing: Why the types of observed and unobserved measurements matter* **New J. Phys.** (2019).
- Kiarn T. Laverick, Areeya Chantasri, and Howard M. Wiseman, *General criteria for quantum state smoothing* ... Quantum Stud.: Math. Found. (2020).
- Kiarn T. Laverick, Areeya Chantasri, and Howard M. Wiseman, *Linear Gaussian quantum state smoothing: Understanding the optimal unravelings for Alice to estimate Bob's state* **Phys. Rev. A** (2021).
- Areeya Chantasri, Ivonne Guevara, Kiarn T. Laverick, and Howard M. Wiseman, *Unifying theory of quantum state estimation using past and future information* **Physics Reports** (2021).
- Kiarn T. Laverick, Ivonne Guevara, and Howard M. Wiseman, *Quantum state smoothing as an optimal Bayesian estimation problem with three different cost functions* **Phys. Rev. A** (2021).
- In various stages of preparation: 2 experimental papers, 4 theory papers.

This slide intentionally left blank

2

*ロト *個ト *注ト *注ト

Q. (Parameter) Smoothing [Tsang, PRL (2009)]

[adapted from a diagram of Tsang, PRA 2009.]

3

イロト イポト イヨト イヨト

Applications of this Quantum Smoothing

PRL 104, 093601 (2010)	PHYSICAL REVIEW LETTERS	week ending 5 MARCH 2010			
Adaptive Optical Phase Estimation Using Time-Symmetric Quantum Smoothing T. A. Wheatley, ^{1,2,3} D. W. Berry, ⁴ H. Yonezawa, ³ D. Nakane, ³ H. Arao, ³ D. T. Pope, ⁵ T. C. Ralph, ^{1,6,4} H. M. Wiseman, ^{1,7,7} A. Furusawa, ^{3,4} and E. H. Huntington ^{1,2,5}					
					-
PRL 106, 090401 (2011)	PHYSICAL REVIEW LETTERS	week ending 4 MARCH 2011			
Fundamental Quantum Limit to Waveform Estimation					

21 SEPTEMBER 2012 VOL 337 SCIENCE www.sciencemag.org

Quantum-Enhanced Optical-Phase Tracking

Hidehiro Yonezawa,¹ Daisuke Nakane,¹ Trevor A. Wheatley,^{1,2,3} Kohjiro Iwasawa,¹ Shuntaro Takeda,¹ Hajime Arao,¹ Kentaro Ohki,⁴ Koji Tsumura,⁵ Dominic W. Berry,^{6,7} Timothy C. Ralph,^{2,8} Howard M. Wiseman,⁹* Elanor H. Huntington,^{2,3} Akira Furusawa¹*

ν : Bayesian State Estimation Revisited

• Recall that, given a set of data Y, the Bayesian state is

$$\wp(\mathbf{x}) = \wp_{\mathbf{Y}}^{\text{Bayes}}(\mathbf{x}) \propto P(\mathbf{Y}^{\text{true}} = \mathbf{Y} | \mathbf{x}^{\text{true}} = \mathbf{x}) \wp_{\emptyset}(\mathbf{x}).$$

• Why this?

0
$$\wp_{\mathbf{Y}}^{\text{Bayes}}(\mathbf{x}) = P(\mathbf{x}^{\text{true}} = \mathbf{x} | \mathbf{Y}).$$

1 to *predict* any property $\Lambda(\mathbf{x})$, with minimum Mean-Square-Error (mMSE). That is,

$$\Lambda_{\text{est}} = \sum_{\mathbf{x}} \wp_{\mathbf{Y}}^{\text{Bayes}}(\mathbf{x}) \Lambda(\mathbf{x}) \text{ minimizes } R_{\Lambda} = \sum_{\mathbf{x}} P(\mathbf{x}^{\text{true}} = \mathbf{x} | \mathbf{Y}) [\Lambda_{\text{est}} - \Lambda(\mathbf{x})]^2.$$

2 to *estimate*, with mM \sum SE, the *true state* $\wp^{true}(\mathbf{x}) = \delta(\mathbf{x}, \mathbf{x}^{true})$. That is,

$$\wp = \wp_{\mathbf{Y}}^{\text{Bayes}} \text{ minimizes } R(\wp) = \sum_{\mathbf{x}} P(\mathbf{x}^{\text{true}} = \mathbf{x} | \mathbf{Y}) \sum_{\mathbf{x}'} [\wp(\mathbf{x}') - \wp^{\text{true}}(\mathbf{x}')]^2.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ν : Bayesian State Estimation Revisited

• Recall that, given a set of data Y, the Bayesian state is

$$\wp(\mathbf{x}) = \wp_{\mathbf{Y}}^{\text{Bayes}}(\mathbf{x}) \propto P(\mathbf{Y}^{\text{true}} = \mathbf{Y} | \mathbf{x}^{\text{true}} = \mathbf{x}) \wp_{\emptyset}(\mathbf{x}).$$

- Why this?
- $0 \ \wp_{\mathbf{Y}}^{\text{Bayes}}(\mathbf{x}) = P(\mathbf{x}^{\text{true}} = \mathbf{x} | \mathbf{Y}).$

1 to *predict* any property $\Lambda(\mathbf{x})$, with minimum Mean-Square-Error (mMSE). That is,

$$\Lambda_{\text{est}} = \sum_{\mathbf{x}} \wp_{\mathbf{Y}}^{\text{Bayes}}(\mathbf{x}) \Lambda(\mathbf{x}) \text{ minimizes } R_{\Lambda} = \sum_{\mathbf{x}} P(\mathbf{x}^{\text{true}} = \mathbf{x} | \mathbf{Y}) [\Lambda_{\text{est}} - \Lambda(\mathbf{x})]^2.$$

2 to *estimate*, with mM \sum SE, the *true state* $\wp^{true}(\mathbf{x}) = \delta(\mathbf{x}, \mathbf{x}^{true})$. That is,

$$\wp = \wp_{\mathbf{Y}}^{\text{Bayes}} \text{ minimizes } R(\wp) = \sum_{\mathbf{x}} P(\mathbf{x}^{\text{true}} = \mathbf{x} | \mathbf{Y}) \sum_{\mathbf{x}'} [\wp(\mathbf{x}') - \wp^{\text{true}}(\mathbf{x}')]^2.$$

ν : Bayesian State Estimation Revisited

• Recall that, given a set of data Y, the Bayesian state is

$$\wp(\mathbf{x}) = \wp_{\mathbf{Y}}^{\text{Bayes}}(\mathbf{x}) \propto P(\mathbf{Y}^{\text{true}} = \mathbf{Y} | \mathbf{x}^{\text{true}} = \mathbf{x}) \wp_{\emptyset}(\mathbf{x}).$$

- Why this?
- $0 \ \wp_{\mathbf{Y}}^{\text{Bayes}}(\mathbf{x}) = P(\mathbf{x}^{\text{true}} = \mathbf{x} | \mathbf{Y}).$

1 to *predict* any property $\Lambda(\mathbf{x})$, with minimum Mean-Square-Error (mMSE). That is,

$$\Lambda_{\rm est} = \sum_{\mathbf{x}} \wp_{\mathbf{Y}}^{\rm Bayes}(\mathbf{x})\Lambda(\mathbf{x}) \text{ minimizes } R_{\Lambda} = \sum_{\mathbf{x}} P(\mathbf{x}^{\rm true} = \mathbf{x}|\mathbf{Y})[\Lambda_{\rm est} - \Lambda(\mathbf{x})]^2.$$

2 to *estimate*, with mM \sum SE, the *true state* $\wp^{true}(\mathbf{x}) = \delta(\mathbf{x}, \mathbf{x}^{true})$. That is,

$$\wp = \wp_{\mathbf{Y}}^{\text{Bayes}} \text{ minimizes } R(\wp) = \sum_{\mathbf{x}} P(\mathbf{x}^{\text{true}} = \mathbf{x} | \mathbf{Y}) \sum_{\mathbf{x}} [\wp(\mathbf{x}') - \wp^{\text{true}}(\mathbf{x}')]^2.$$

ν : Bayesian State Estimation Revisited

• Recall that, given a set of data Y, the Bayesian state is

$$\wp(\mathbf{x}) = \wp_{\mathbf{Y}}^{\text{Bayes}}(\mathbf{x}) \propto P(\mathbf{Y}^{\text{true}} = \mathbf{Y} | \mathbf{x}^{\text{true}} = \mathbf{x}) \wp_{\emptyset}(\mathbf{x}).$$

- Why this?
- $0 \ \wp_{\mathbf{Y}}^{\text{Bayes}}(\mathbf{x}) = P(\mathbf{x}^{\text{true}} = \mathbf{x} | \mathbf{Y}).$

1 to *predict* any property $\Lambda(\mathbf{x})$, with minimum Mean-Square-Error (mMSE). That is,

$$\Lambda_{\text{est}} = \sum_{\mathbf{x}} \wp_{\mathbf{Y}}^{\text{Bayes}}(\mathbf{x}) \Lambda(\mathbf{x}) \text{ minimizes } R_{\Lambda} = \sum_{\mathbf{x}} P(\mathbf{x}^{\text{true}} = \mathbf{x} | \mathbf{Y}) [\Lambda_{\text{est}} - \Lambda(\mathbf{x})]^2.$$

2 to *estimate*, with mM \sum SE, the *true state* $\wp^{true}(\mathbf{x}) = \delta(\mathbf{x}, \mathbf{x}^{true})$. That is,

$$\wp = \wp_{\mathbf{Y}}^{\text{Bayes}} \text{ minimizes } R(\wp) = \sum_{\mathbf{x}} P(\mathbf{x}^{\text{true}} = \mathbf{x} | \mathbf{Y}) \sum_{\mathbf{x}'} [\wp(\mathbf{x}') - \wp^{\text{true}}(\mathbf{x}')]^2.$$

ν : Quantum State Filtering Revisited

• Recall: if Alice wants to guess Bob's state at all times τ , from \overleftarrow{O} , she *should* guess

$$\rho = \rho_{\overline{o}}^{\text{Bayes}}(\tau) \equiv \sum_{\overleftarrow{\upsilon}} P(\overleftarrow{\upsilon} = \overleftarrow{\upsilon}^{\text{true}} | \overleftarrow{O}) \times \rho_{\overleftarrow{o},\overleftarrow{\upsilon}}(\tau), \text{ given } \rho_{\emptyset}(t_0).$$

• But why *should* she do this?

 $0 \ \rho_{\overleftarrow{o}}^{\text{Bayes}}(\tau) = \rho_{\text{F}}^{\text{Alice}}(\tau)$ from quantum measurement theory.

- 1 To *predict* the minimum Mean-Square-Error (mMSE) value of a measurement of any observable $\hat{\Lambda}(\tau+)$, as $\text{Tr}[\rho_{\overline{o}}(\tau)\hat{\Lambda}]$.
- 2 To *estimate*, with mMTrSE, the true state (Bob's state), $\rho^{\text{true}}(\tau) = \rho_{\overleftarrow{o},\overleftarrow{v}}$ true (τ) . That is,

$$\rho = \rho_{\overleftarrow{o}}^{\text{Bayes}}(\tau) \text{ minimizes } R(\rho) = \sum_{\overleftarrow{v}} P(\overleftarrow{U} = \overleftarrow{U}^{\text{true}} | \overleftarrow{O}) \text{Tr}[(\rho - \rho_{\overleftarrow{o},\overleftarrow{v}}(\tau))^2].$$

イロト イポト イラト イラト

ν : Quantum State Filtering Revisited

• Recall: if Alice wants to guess Bob's state at all times τ , from \overleftarrow{O} , she *should* guess

$$\rho = \rho_{\overleftarrow{o}}^{\text{Bayes}}(\tau) \equiv \sum_{\overleftarrow{v}} P(\overleftarrow{U} = \overleftarrow{U}^{\text{true}} | \overleftarrow{O}) \times \rho_{\overleftarrow{o},\overleftarrow{v}}(\tau), \text{ given } \rho_{\emptyset}(t_0).$$

- But why *should* she do this?
- $0 \ \rho_{\overline{b}}^{\text{Bayes}}(\tau) = \rho_{\text{F}}^{\text{Alice}}(\tau)$ from quantum measurement theory.
- 1 To *predict* the minimum Mean-Square-Error (mMSE) value of a measurement of any observable $\hat{\Lambda}(\tau+)$, as $\text{Tr}[\rho_{\overline{o}}(\tau)\hat{\Lambda}]$.
- 2 To *estimate*, with mMTrSE, the true state (Bob's state), $\rho^{\text{true}}(\tau) = \rho_{\overleftarrow{o},\overleftarrow{\upsilon}} t^{\text{true}}(\tau)$. That is,

$$\rho = \rho_{\overleftarrow{o}}^{\text{Bayes}}(\tau) \text{ minimizes } R(\rho) = \sum_{\overleftarrow{U}} P(\overleftarrow{U} = \overleftarrow{U}^{\text{true}} | \overleftarrow{O}) \text{Tr}[(\rho - \rho_{\overleftarrow{o},\overleftarrow{U}}(\tau))^2].$$

ν : Quantum State Smoothing Revisited

Now I also said before that if Alice wants to guess Bob's state at all times τ, using only d as well as d, she should guess

$$\rho = \rho_{\overleftrightarrow{o}}^{\text{Bayes}}(\tau) \equiv \sum_{\overleftarrow{\upsilon}} P(\overleftarrow{U} = \overleftarrow{U}^{\text{true}} | \overleftarrow{O}) \times \rho_{\overleftarrow{o},\overleftarrow{\upsilon}}(\tau), \text{ given } \rho_{\emptyset}(t_0).$$

- Again, why *should* she do this?
- $0 \ \rho_{\overleftrightarrow}^{\text{Bayes}}(\tau) = \rho_{\text{S}}^{\text{Alice}}(\tau) \text{ from } \dots \textbf{X}$
- 1 To predict ... X
- 2 To *estimate*, with mMTrSE, the true state (Bob's state), $\rho^{\text{true}}(\tau) = \rho_{\overleftarrow{o},\overleftarrow{v}} t^{\text{true}}(\tau)$. That is,

$$\rho = \rho_{\overleftarrow{O}}^{\text{Bayes}}(\tau) \text{ minimizes } R(\rho) = \sum_{\overleftarrow{U}} P(\overleftarrow{U} = \overleftarrow{U}^{\text{true}} | \overleftarrow{O}) \text{Tr}[(\rho - \rho_{\overleftarrow{O},\overleftarrow{U}}(\tau))^2].$$

イロト イポト イラト イラト

ν : Quantum State Smoothing Revisited

Now I also said before that if Alice wants to guess Bob's state at all times τ, using only d as well as d, she should guess

$$\rho = \rho_{\overleftrightarrow{o}}^{\text{Bayes}}(\tau) \equiv \sum_{\overleftarrow{\upsilon}} P(\overleftarrow{U} = \overleftarrow{U}^{\text{true}} | \overleftarrow{O}) \times \rho_{\overleftarrow{o},\overleftarrow{\upsilon}}(\tau), \text{ given } \rho_{\emptyset}(t_0).$$

- Again, why *should* she do this?
- $0 \ \rho_{\overleftrightarrow}^{\text{Bayes}}(\tau) = \rho_{\text{S}}^{\text{Alice}}(\tau) \text{ from } \dots \not >$

1 To *predict* ... **X**

2 To *estimate*, with mMTrSE, the true state (Bob's state), $\rho^{\text{true}}(\tau) = \rho_{\overleftarrow{o},\overleftarrow{v}} t^{\text{true}}(\tau)$. That is,

$$\rho = \rho_{\overleftrightarrow{O}}^{\text{Bayes}}(\tau) \text{ minimizes } R(\rho) = \sum_{\overleftarrow{U}} P(\overleftarrow{U} = \overleftarrow{U}^{\text{true}} | \overleftarrow{O}) \text{Tr}[(\rho - \rho_{\overleftarrow{O},\overleftarrow{U}}(\tau))^2].$$

ν : Quantum State Smoothing Revisited

Now I also said before that if Alice wants to guess Bob's state at all times τ, using only d as well as d, she should guess

$$\rho = \rho_{\overleftrightarrow{o}}^{\text{Bayes}}(\tau) \equiv \sum_{\overleftarrow{\upsilon}} P(\overleftarrow{U} = \overleftarrow{U}^{\text{true}} | \overleftarrow{O}) \times \rho_{\overleftarrow{o},\overleftarrow{\upsilon}}(\tau), \text{ given } \rho_{\emptyset}(t_0).$$

- Again, why *should* she do this?
- 1 To *predict* ... **X**

2 To *estimate*, with mMTrSE, the true state (Bob's state), $\rho^{\text{true}}(\tau) = \rho_{\overleftarrow{o},\overleftarrow{v}}$ true (τ) . That is,

$$\rho = \rho_{\overleftrightarrow{O}}^{\text{Bayes}}(\tau) \text{ minimizes } R(\rho) = \sum_{\overleftarrow{U}} P(\overleftarrow{U} = \overleftarrow{U}^{\text{true}} | \overleftrightarrow{O}) \text{Tr}[(\rho - \rho_{\overleftarrow{O},\overleftarrow{U}}(\tau))^2].$$

ν : Quantum State Smoothing Revisited

Now I also said before that if Alice wants to guess Bob's state at all times τ, using only d as well as d, she should guess

$$\rho = \rho_{\overleftrightarrow{o}}^{\text{Bayes}}(\tau) \equiv \sum_{\overleftarrow{\upsilon}} P(\overleftarrow{U} = \overleftarrow{U}^{\text{true}} | \overleftarrow{O}) \times \rho_{\overleftarrow{o},\overleftarrow{\upsilon}}(\tau), \text{ given } \rho_{\emptyset}(t_0).$$

- Again, why *should* she do this?
- $0 \ \rho^{\rm Bayes}_{\overleftrightarrow}(\tau) = \rho^{\rm Alice}_{\rm S}(\tau) \ {\rm from} \dots \ {\it X}$
- 1 To *predict* ... **X**
- 2 To *estimate*, with mMTrSE, the true state (Bob's state), $\rho^{\text{true}}(\tau) = \rho_{\overleftarrow{o},\overleftarrow{U}}_{\text{true}}(\tau)$. That is,

$$\rho = \rho_{\overleftrightarrow{O}}^{\text{Bayes}}(\tau) \text{ minimizes } R(\rho) = \sum_{\overleftarrow{U}} P(\overleftarrow{U} = \overleftarrow{U}^{\text{true}} | \overleftarrow{O}) \text{Tr}[(\rho - \rho_{\overleftarrow{O},\overleftarrow{U}}(\tau))^2].$$