

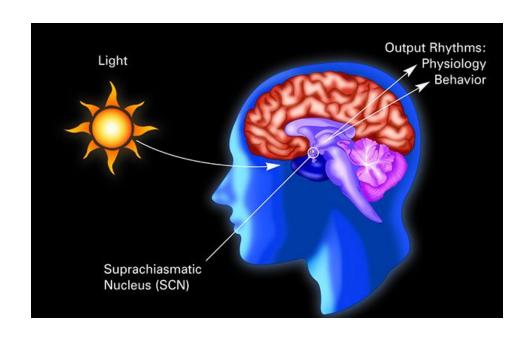
# The role of network structure in circadian system adaptation

Sneha Kachhara, Rosemary Braun

Northwestern University, USA

#### Background: the body keeps time

- Circadian rhythms: biological rhythms with period
   ~ 24 hours
- Robust: rhythms persist in constant conditions
- Almost every cell has its own molecular clock:
   feedback loops regulate biological clock proteins
- Adaptation to environment: strongly influencedby light



sunlight cues neuronal signals in the suprachiasmatic nucleus, the brain's master clock, which in turn coordinates biological clocks regulating functions throughout the body, and consequential behaviors

Source: NIGMS, National Institute of Health (USA)

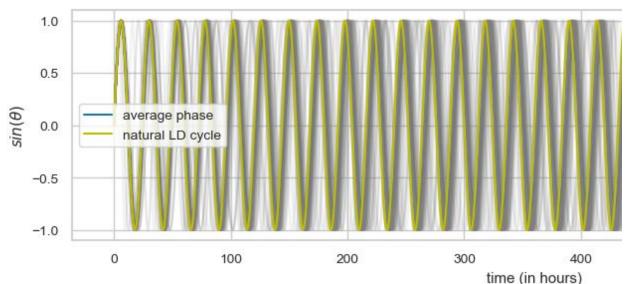
#### Jet lag

- The body clock adjusts gradually to the new time zone
- Severity increases with the number of time zones crossed
- Recovery depends on direction: Eastward is more difficult on average

#### The SCN as a coupled oscillator network

A network of N coupled phase oscillators (forced Kuramoto model)

$$\frac{\mathrm{d}\theta_i(t)}{\mathrm{d}t} = \omega_i + \frac{K}{\sum_{j=1}^{N} A_{ij}} \sum_{j=1}^{N} A_{ij} \sin(\theta_j(t) - \theta_i(t)) + F \sin(\sigma t - \theta_i(t) + \tau \frac{2\pi}{24})$$



Phase of  $i^{th}$  oscillator =  $\theta_i$ Natural frequency of  $i^{th}$  oscillator =  $\omega_i$ 

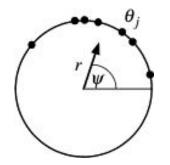
 $\sigma$  = Frequency of the external drive  $\tau$  = time zones traveled K = coupling strength

#### The SCN as a coupled oscillator network

$$\frac{\mathrm{d}\theta_i(t)}{\mathrm{d}t} = \omega_i + \frac{K}{\sum_j^N A_{ij}} \sum_{j=1}^N A_{ij} \sin(\theta_j(t) - \theta_i(t)) + F \sin(\sigma t - \theta_i(t) + \tau \frac{2\pi}{24})$$

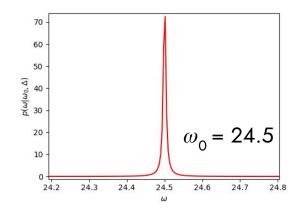
Order parameter are derived from average vector z.
r = phase coherence,
Ψ = average phase.

$$z(t) = r(t)e^{i\psi(t)} = \sum_{j=1}^{N} e^{i\theta_j(t)}$$



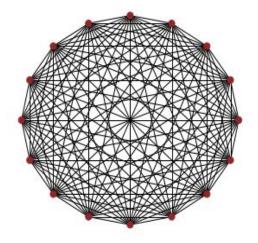
#### The SCN as a coupled oscillator network

$$\frac{\mathrm{d}\theta_i(t)}{\mathrm{d}t} = \omega_i + \frac{K}{\sum_j^N A_{ij}} \sum_{j=1}^N A_{ij} \sin(\theta_j(t) - \theta_i(t)) + F \sin(\sigma t - \theta_i(t) + \tau \frac{2\pi}{24})$$

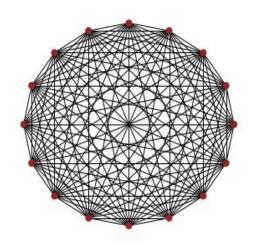


$$g(\omega) = \frac{\Delta}{\pi \Big[ (\omega - \omega_0)^2 + \Delta^2 \Big]}$$

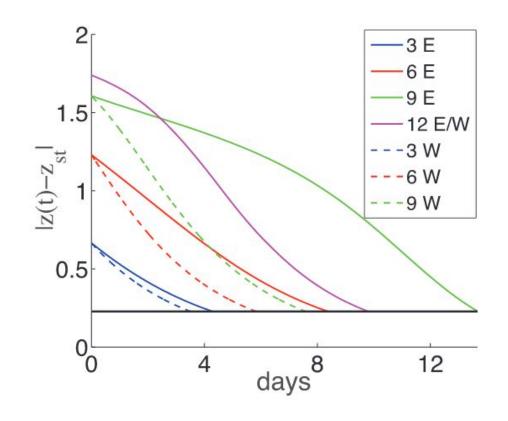
$$\Delta = 3.8 \times 10^{-3} \, (\text{rad} \cdot \text{h}^{-1}),$$
 
$$K = 4.5\Delta$$
 
$$F = 3.5\Delta$$



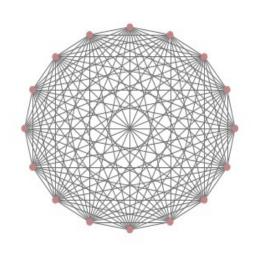
### Jet lag recovery: east-west asymmetry



All-to-all connected network

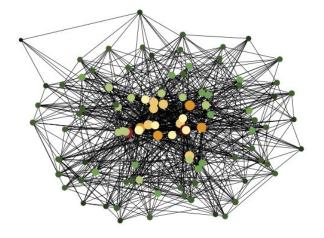


#### All connected network: realistic?

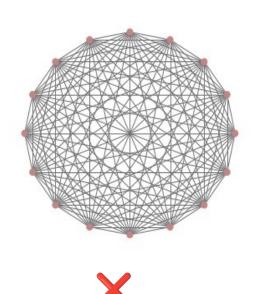


#### For circadian network:

• Density  $(\varrho)$  < 0.1 (estimate)

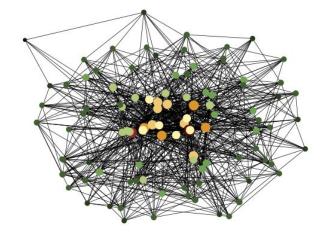


#### All connected network: realistic?



#### For circadian network:

- Density  $(\varrho)$  < 0.1 (estimate)
- Presence of hubs and hierarchical structure



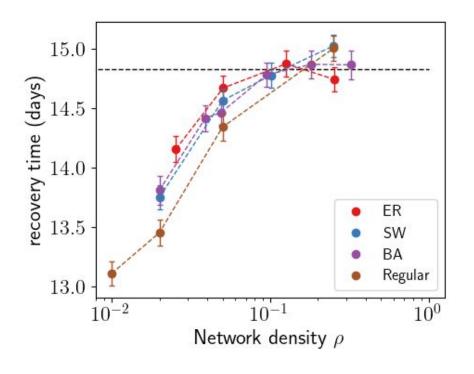


Gu, Changgui, et al. Frontiers in Physiology (2021)

#### Sparse vs dense: role of density

Sparse networks ( $\varrho$  < 0.1) take less time to re-entrain for larger time zone travels

shown on right: recovery times for travel of 10 time zones Eastward

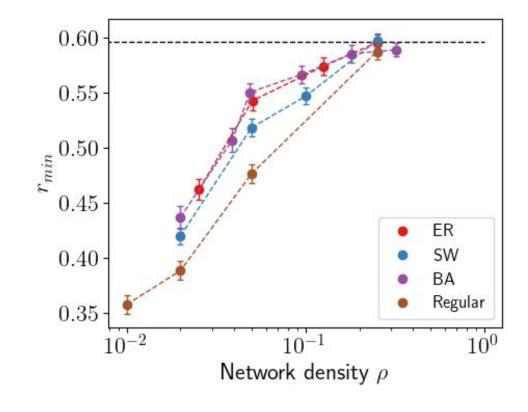


Recovery times for Erdős–Rényi networks (ER) networks, small world (SW) networks, Barabási–Albert networks (BA), and regular ring networks at different densities ( $\varrho$ )

#### Sparse networks: microscale structure

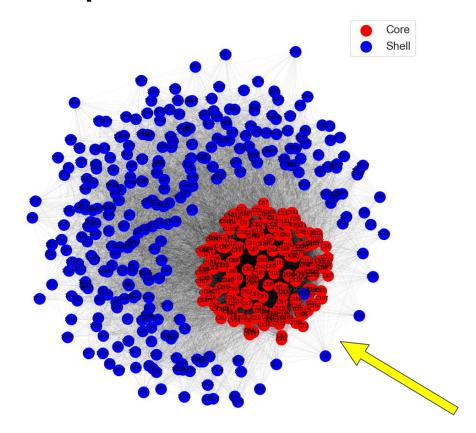
Sparse networks ( $\varrho$  < 0.1) show less phase coherence

shown on right: minimum
phase coherence (r<sub>min</sub>) for
travel of 10 time zones
Eastward



Minimum order parameter (r<sub>min</sub>) for Erdős–Rényi networks (ER), small world networks (SW), Barabási–Albert networks (BA), and regular ring networks for different network densities

#### Experimental results: core-shell structure



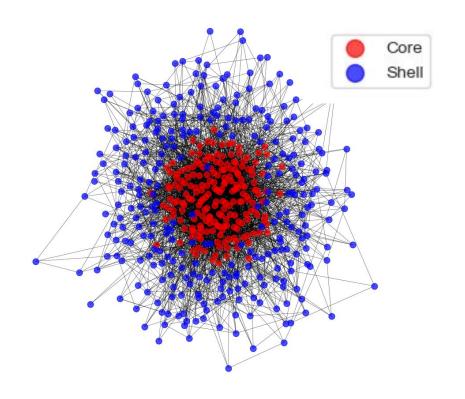
$$\varrho_{\text{core}} >> \varrho_{\text{shell}}$$
,  $N_{\text{core}} < N_{\text{shell}}$ 

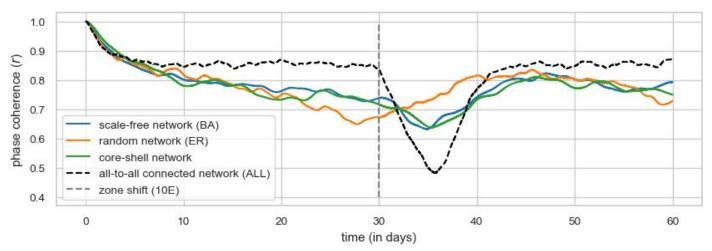
$$F_{\text{shell}} = 0$$

Only the core receives light input

(Based on bioluminescence studies)

#### Core-shell structure adapts efficiently



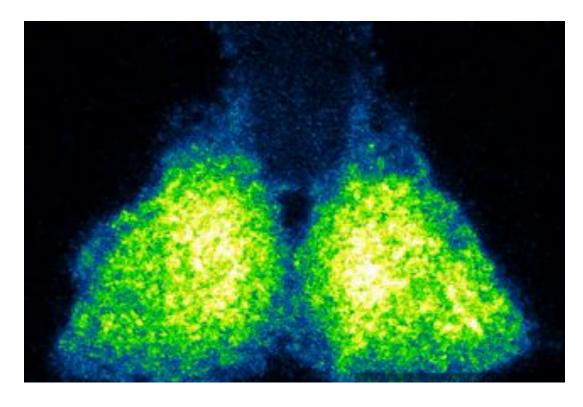


$$\varrho_{\rm CS}$$
 = 0.05,  $\varrho_{\rm SS}$  = 0.05,  $\varrho_{\rm CC}$  = 0.375

More to be done!

Kim, Hyun, et al. *PLoS Computational Biology* 18.6 (2022): e1010213.

#### Summary and takeaways



Circadian rhythm of PER2::LUC bioluminescence recorded from cultured mouse SCN neurons over a period of several days. credits: Joseph Takahashi lab at UT Southwestern, Dallas, Texas.

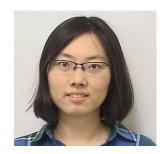
- Realistic models of central circadian network suggest sparse structure
- Sparse networks take slightly less time for recovery on average, BUT have lower phase coherence (|z| < 0.5)</li>
- Efficient recovery requires a balance:
   Core-shell structure
- Next: fine-tuning, dynamical network



### Acknowledgements



Rosemary Braun



Yitong Huang



Eliza Duval



Bingxian Xu



Connor Puritz



Ziyu Zhao









### Thank you!

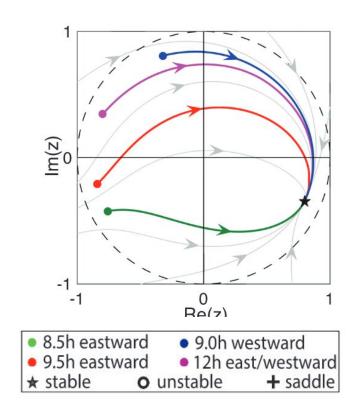
Questions?

sneha.kachhara@northestern.edu

#### References

- 1. Waterhouse, J., Reilly, T., Atkinson, G., & Edwards, B. (2007). Jet lag: trends and coping strategies. The lancet, 369(9567), 1117-1129.
- 2. Lu, Z., Klein-Cardeña, K., Lee, S., Antonsen, T. M., Girvan, M., & Ott, E. (2016).
  Resynchronization of circadian oscillators and the east-west asymmetry of jet-lag.
  Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(9).
- 3. Gu, Changgui, Jiahui Li, Jian Zhou, Huijie Yang, and Jos Rohling. "Network structure of the master clock is important for its primary function." Frontiers in Physiology 12 (2021): 678391.

#### Modeling jet lag recovery



$$\dot{z} = \frac{1}{2} \left[ (Kz + F) - z^2 (Kz + F)^* \right] - (\Delta + i\Omega)z,$$

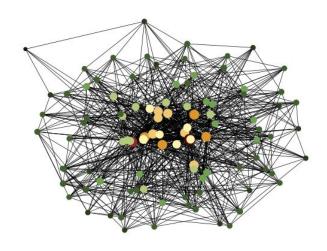
# Deviation from full recovery is given by

$$|z(t)-z_{st}|$$

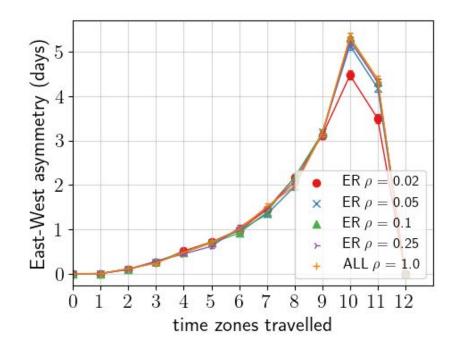
# Modeling jet lag recovery

$$\dot{z} = \frac{1}{2} \left[ (Kz + F) - z^2 (Kz + F)^* \right] - (\Delta + i\Omega)z,$$

#### Sparse vs dense: role of density



Dense networks ( $\varrho > 0.1$ ) show similar levels of East-West asymmetry as fully connected network



asymmetry in recovery times in the Erdős–Rényi networks at different  $\varrho$