On the pseudonullity of Fine Selmer groups over function fields

Sohan Ghosh, Department of Mathematics , Harish-Chandra Research Institute.

11 Sep 2023

2 Fine Selmer Group.

Operation of the second sec

Onjectures A and B over function fields $(\ell \neq p \text{ and } \ell = p)$.

Notations

- p: an odd prime.
- \mathbb{Z}_p : the ring of *p*-adic integers and \mathbb{Q}_p : quotient field of \mathbb{Z}_p .
- R: ring, M: left R module. $M[p^r] := \{m \in M | p^r m = 0\}, M(p) := \bigcup_{r \ge 1} M[p^r].$
- K: a number field.
- CI(K): the ideal class group.

lwasawa's $\mu = 0$ conjecture

- ζ_{p^n} : primitive p^n -th root of unity in $\overline{\mathbb{Q}}$.
- Let $\mathbb{Q}(\zeta_{p^{\infty}}) := \bigcup_{n \geq 1} \mathbb{Q}(\zeta_{p^n}).$
- \mathbb{Q}_{cyc} : $\mathbb{Q}_{\text{cyc}} \subset \mathbb{Q}(\zeta_{p^{\infty}})$ s.t. $\Gamma := \text{Gal}(\mathbb{Q}_{\text{cyc}}/\mathbb{Q}) \cong \mathbb{Z}_{p}$ (cyclotomic \mathbb{Z}_{p} extension).
- Set $K_{\text{cyc}} := K\mathbb{Q}_{\text{cyc}}$. Then $\operatorname{Gal}(K_{\text{cyc}}/K) \cong \mathbb{Z}_p$ and $\exists K \subset K_n \subset K_{\text{cyc}}$ with $\operatorname{Gal}(K_n/K) \cong \mathbb{Z}/p^n\mathbb{Z}$.

Theorem (Iwasawa (1959))

There exists $\lambda, \mu, \nu \geq 0$ such that $|Cl(K_n)(p)| = p^{n\lambda + \mu p^n + \nu}$ for n >> 0.

- Iwasawa further conjectured that $\mu = 0$.
- Conjecture $\mu = 0$ holds if $Gal(K/\mathbb{Q})$ is abelian. (Ferrero-Washington 1979, Sinnot 1984)
- Open for a general number field.

Selmer groups

• Let E/K be an elliptic curve over a field K.

Theorem (Mordell-Weil)

Let K be a number field. Then, E(K) is a fin. gen. abelian group.

• The *n*-Selmer group of an elliptic curve E/K is defined as:

$$S_n(E/K) := \ker(H^1(G_K, E(\bar{K})[n]) \longrightarrow \prod_{\text{all prime v}} H^1(G_{K_v}, E(\bar{K_v}))).$$

• In fact, we have an exact sequence:

$$0 \longrightarrow E(K)/nE(K) \longrightarrow S_n(E/K) \longrightarrow \operatorname{III}(E/K)[n] \longrightarrow 0$$

where
$$\operatorname{III}(E/K) := \ker(H^1(G_K, E(\bar{K})) \longrightarrow \prod_v H^1(G_{K_v}, E(\bar{K_v}))) .$$

Fine Selmer group

۲

•
$$S(E/K) := S_{p^{\infty}}(E/K) := \varinjlim_{n} S_{p^{n}}(E/K).$$

- S- finite set of places of K containing primes above p, the infinite places and the primes of bad reduction of E/K.
- K_S maximal algebraic extension of K unramified outside S.

$$S(E/K) \cong \ker(H^1(K_S/K, E_{p^{\infty}}) \longrightarrow \bigoplus_{v \in S} H^1(K_v, E)).$$

Fine Selmer group

$$\begin{split} R(E/K) &:= R_{p^{\infty}}(E/K) := \ker(H^1(K_S/K, E_{p^{\infty}}) \longrightarrow \bigoplus_{v \in S} H^1(K_v, E_{p^{\infty}})) \\ &\cong \ker(S_{p^{\infty}}(E/K) \longrightarrow \bigoplus_{v \mid p} E(K_v) \otimes \mathbb{Q}_p/\mathbb{Z}_p). \end{split}$$

Conjecture A

•
$$R(E/K_{cyc}) := \varinjlim_n R(E/K_n)$$
, where $K \subset K_n \subset K_{cyc}$.

Conjecture A: (Coates-Sujatha (2005))

 $R(E/K_{cyc})^{\vee} := \operatorname{Hom}_{cont}(R(E/K_{cyc}), \mathbb{Q}_p/\mathbb{Z}_p)$ is a finitely generated \mathbb{Z}_p module.

Theorem (Coates-Sujatha (2005))

Let E/K be an elliptic curve. Assume K(E[p])/K is a finite *p*-extension. Then, $\mu = 0$ holds for K_{cyc} if and only if Conjecture A holds for $R(E/K_{cyc})^{\vee}$.

• For example this theorem holds if $E[p](\overline{\mathbb{Q}}) \subset K$.

Pseudonullity

- G: a compact p-adic Lie group without any element of order p, with a closed normal subgroup H s.t. Γ := G/H ≅ Z_p.
- Define the Iwasawa algebra of G over \mathbb{Z}_p as

$$\mathbb{Z}_p[[G]] := \varprojlim_U \mathbb{Z}_p[G/U],$$

where U varies over open normal subgroups of G.

If *M* is a fin. gen. Z_p[[*G*]]-module, then *M* is said to be a pseudo-null Z_p[[*G*]]-module if Extⁱ_{Z_p[[*G*]]}(*M*, Z_p[[*G*]]) = 0 for *i* = 0, 1. (Venjakob 2003)

Conjecture B (Coates-Sujatha, 2005)

Assume that the Conjecture A holds for E over F_{cyc} . Let F_{∞} be an *admissible p*-adic Lie extension of F such that $G = \operatorname{Gal}(F_{\infty}/F)$ has dimension at least 2 as a *p*-adic Lie group. Then $R(E/F_{\infty})^{\vee}$ is a pseudonull $\mathbb{Z}_p[[G]]$ -module.

Function field $(\ell \neq p)$

- Fix an integer prime $\ell \neq p$.
- \mathbb{F} : a finite field of char *p*. Set $K = \mathbb{F}(t)$.
- Let $K_{\infty} := K\mathbb{F}^{(\ell)}$, where $\mathbb{F}^{(\ell)} \subset \overline{\mathbb{F}}$ be the unique (unramified) \mathbb{Z}_{ℓ} extension of \mathbb{F} .
- The ℓ^{∞} -fine Selmer group of E/K is defined as:

$$R(E/K) := \ker(H^1(K_S/K, E_{\ell^{\infty}}) \to \bigoplus_{\nu \in S} H^1(K_{\nu}, E_{\ell^{\infty}}))$$

- In the function field case ℓ ≠ p, the analogue of Conjecture A is known [Witte, 2020].
- We give an explicit example using results of [A.Bandini, M.Valentino, (2014)] to show that the analogue of Conjecture B does not hold [G-Jha-Shekhar (2022), Preprint].

Function fields($\ell = p$)

1

- $K = \mathbb{F}(t)$, a function field of char p.
- S- the set of places of K containing all the bad primes of bad reduction of E.
- The S-fine Selmer group of E/K is defined as:

$$\mathsf{R}^{S}(E/K) := \ker \left(H^{1}_{\mathsf{fl}}(K, E_{p^{\infty}}) \longrightarrow \prod_{v \in S} (H^{1}_{\mathit{fl}}(K_{v}, E_{p^{\infty}})) \prod_{v \notin S} (H^{1}_{\mathit{fl}}(K_{v}, E)[p^{\infty}]) \right).$$

- We consider two \mathbb{Z}_p extensions over K: K_{∞} : the unramified \mathbb{Z}_p extension over K and K'_{∞} : \mathbb{Z}_p extension constructed from Carlitz module.
- We showed that the analogue of Conjecture A is true for K_{∞} and K'_{∞} [G-Jha-Shekhar (2022), Preprint].

Corresponding to each prime 𝔅 of 𝐾, we have a Z^d_p-extension, 𝐾^𝔅_d for d ≥ 1.

-,2023

Let $F_{\infty} = K_{\infty} K_d^{\mathfrak{P}}$. Let ν_r be the unique prime of K that ramifies in F_{∞} . Assume E/K be an ordinary elliptic curve that has good reduction outside ν_r . Then $R^S(E/F_{\infty})^{\vee}$ is a pseudonull $\mathbb{Z}_p[[G]]$ -module, where $G = \operatorname{Gal}(F_{\infty}/F)$ and S is any set of primes of K containing the prime ν_r .

- S.Ghosh, S. Jha, and S. Shekhar, Iwasawa theory of fine Selmer groups over global fields, http://arxiv.org/abs/2201.01751.
- S.Ghosh, Some cases in Pseudonullity of Fine Selmer groups over global fields, https://arxiv.org/abs/2201.01751.

Thank You.