Periodically driven Langevin systems with vanishingly small viscous drives

Sreedhar Dutta

IISER Thiruvananthapuram

ISPCM 3-5 April 2024, Bangalore

Shakul Awasthi and SD (arXiv:2402.16512)

Sreedhar Dutta (IISER Tvm)

Driven Langevin systems

ISPCM 3-5 April 2024, Bangalore 1/6

- Periodically driven thermodynamic systems can exist in time-dependent nonequilibrium states (Oscillating states)
- Prototypical example: Driven under-damped Brownian particle
 - Viscous drive $\gamma(t)$; Noise drive D(t)
 - Potential drive $U(x; \lambda)$ with $\lambda \to \lambda(t)$
- These OS are characterized by $T_b = D/\gamma$ and γ .
 - What are the properties of OS for given T_b as $\gamma
 ightarrow 0?$
- Vanishing viscous limit is singular.
 - We have a singular perturbation theory
- We find two classes of OS behaviour in low viscous limit

• Fokker-Planck equation:

$$\frac{\partial p}{\partial t} = \left[-\frac{\partial}{\partial x} v - \frac{\partial}{\partial v} \left(-\gamma v + f \right) + \frac{D}{\partial v^2} \right] p$$

- Harmonic $f_h = -kx$ and Anharmonic: $f_{ah} = \sum \lambda_n x^n$
- When undriven, the large-time distribution is equilibrium
- When driven
 - viscous drive $\gamma(t)$; noise drive D(t),
 - mechanical drive: k(t) and $\{\lambda_n(t)\}$

then the large-time state is Oscillating state (OS):

$$\lim_{N\to\infty}p(x,v,NT+t)=p_{os}(x,v,t)$$

Low-viscous drives

• Perturbative parameter α $\alpha = \alpha \alpha(t)$ and $T_t = D_t t$

$$\gamma_lpha=lpha\gamma(t)$$
 and ${\it T_b}={\it D}_lpha/\gamma_lpha$

- Inertial term is important; effects of drive are drastic.
- The limit is singular:

 $\lim_{\alpha \to 0} \mathsf{Fokker}\operatorname{-Planck} = \mathsf{Liouville}$

• large t and small α do not commute:

 $\lim_{\alpha \to 0} \lim_{N \to \infty} \neq \lim_{N \to \infty} \lim_{\alpha \to 0}$

• Alternative way of identifying OS is demand periodicity:

$$P(t + T; \alpha; P_{in}) = P(t; \alpha; P_{in})$$

• Follow the standard perturbative steps

- $L_{FP} = L_0 + \alpha L_1$ and $P(t) = \sum \alpha^n P^{(n)}(t)$
- Solve the hierarchy of equations for arbitrary $P_{in}^{(n)}$ where $P_{in} = \sum \alpha^n P_{in}^{(n)}$.
- Impose the non-standard periodicity demand (Floquet theory)
 - Periodicity at $O(\alpha^n)$ uniquely determines OS to (n-1)-th order.
- The algorithm can be employed to moments dynamics, to determine OS moments and in turn P_{os} .

- Consider $U(x) = k_0 x^2$ with drives $\gamma(t)$ and $T_b(t)$ of period $T = 2\pi/\omega$.
- Case 1: When $k_0 \neq n_0^2 \omega^2/4$
 - $P_{os} \rightarrow P_{eq}$ as $\alpha \rightarrow 0$ with T_{eff} .
 - Steady temperature T_s within in spite of varying $T_b(t)$ without.
 - For small α , $T_s = T_s(t)$
- Case 2: When $k_0 = n_0^2 \omega^2 / 4$
 - As $\alpha \rightarrow 0$, P_{os} resonates with time-period T/n_0
 - For small α , OS become *T*-periodic
- The results hold beyond harmonic potentials.