Open quantum systems in the ultrastrong coupling limit

Stefano Marcantoni

Université Côte d'Azur, Nice

Quantum Trajectories, ICTS, Bengaluru February 4, 2025

in collaboration with:

Marco Merkli (MUN, St. John's, Canada)

5 Conclusions

Motivation:

- System S interacting with a reservoir R that we cannot control
- Dynamics of S alone is usually very complicated
- ⇒ Rigorous derivation of effective dynamics for S in suitable regimes
 - Previous works in different limits:
 - Singular coupling Hepp, Lieb, Helv. Phys. Acta (1973)
 - Low-density limit Dümke, Comm. Math. Phys (1985)
 - Weak-coupling Davies, Comm. Math. Phys. (1974)
 - ... refined by Merkli Ann. of Phys. (2020)

In this work:

We study yet another limit \rightarrow **ultrastrong (infinite) coupling**! SM, M. Merkli, arXiv:2411.06817

The model:

Finite-level quantum systems interacting with an infinite bosonic reservoir

Total Hamiltonian:

$$H = H_{\rm S} + H_{\rm R} + \frac{\lambda G \otimes \varphi(g)}{\lambda G}$$

Reservoir Hamiltonian:

$$\mathcal{H}_{\mathrm{R}} = \int_{\mathbb{R}^3} \omega(k) a^{\dagger}(k) a(k) d^3k, \qquad ext{e.g.} \quad \omega(k) = |k|,$$

Interaction Hamiltonian:

$$G = \sum_{l=1}^{\nu} \gamma_l \frac{P_l}{P_l}$$
 $\varphi(g) = \frac{1}{\sqrt{2}} \int_{\mathbb{R}^3} (g(k)a^{\dagger}(k) + \text{h.c.})d^3k,$

where $g(k) \in L^2(\mathbb{R}^3, d^3k)$ is a complex valued function, called the form factor

Description of states

- Infinite reservoir: H_R has a continuous spectrum, therefore $e^{-\beta H_R}$ is bounded but not trace-class
- In the thermodynamic limit, states are described in terms of expectation values of the observables (algebraic approach¹)

$$\omega_{\mathrm{R},\beta}(W(f)) = e^{-\frac{1}{4}\langle f, \operatorname{coth}(\beta\omega/2)f \rangle}, \quad W(f) = e^{i\varphi(f)}$$

- Initial system-reservoir state factorized $\omega_{SR} = \omega_S \otimes \omega_R$
- System density matrix in the ultrastrong coupling limit

$$\operatorname{tr}_{\mathrm{S}}(\rho_{\mathrm{S}}(t)\mathsf{A}) = \lim_{|\lambda| \to \infty} \omega_{\mathrm{S}} \otimes \omega_{\mathrm{R}}(\mathsf{e}^{it\mathcal{H}}(\mathsf{A} \otimes 1\!\!1_{\mathrm{R}})\mathsf{e}^{-it\mathcal{H}}),$$

for any $A \in \mathcal{B}(\mathbb{C}^d)$

¹Bratteli & Robinson Operator algebras and quantum statistical mechanics

Condition on g: $g(k) \neq 0$ for $k \in \mathbb{R}^3$ satisfying a < |k| < b for some $0 \le a < b$.

Theorem 1

Assume \blacksquare . Then, for all t > 0, the system density matrix in the ultrastrong coupling limit is given by

$$\rho_{\mathrm{S}}(t) = e^{-it\mathcal{H}_{\mathrm{Z}}}\left(\sum_{l=1}^{\nu} \mathcal{P}_{l}\rho_{\mathrm{S}}\mathcal{P}_{l}\right)e^{it\mathcal{H}_{\mathrm{Z}}},$$

where $H_{\rm Z}$ is the Zeno Hamiltonian

$$H_{\rm Z}=\sum_{l=1}^{\nu}P_lH_{\rm S}P_l.$$

Comments on the result

- If all the projectors *P_l* are rank-one the dynamics is trivial (there is only the nonselective measurement and no real time evolution)
- If at least one projector *P_l* is multidimensional, there is unitary evolution inside the respective subspace, unless *H_s* is completely degenerate in that subspace
- This is the same dynamics obtained in the usual quantum Zeno setting (unitary evolution interspersed with repeated measurements)²

$$\rho_{\rm S} \mapsto \mathcal{U}_t(\rho_{\rm S}) = e^{-itH_{\rm S}}\rho_{\rm S} e^{itH_{\rm S}}.$$
$$\rho_{\rm S}(t, N) = (\mathcal{P}\mathcal{U}_{t/N})^N \rho_{\rm S}.$$
$$\lim_{N \to \infty} \rho_{\rm S}(t, N) = e^{-itH_{\rm Z}} (\sum_n P_n \rho_{\rm S} P_n) e^{itH_{\rm Z}},$$

²see e.g. Misra, Sudarshan JMP 1977 or Facchi et al. PLA 2000

Theorem 2

Assume Let $A \in \mathcal{B}(\mathcal{H}_S)$ and $h \in L^2(\mathbb{R}^3, d^3k)$. We have for all t > 0,

$$\begin{split} \lim_{|\lambda|\to\infty} &\omega_{\rm S} \otimes \omega_{\rm R} \Big(e^{itH} \big(e^{\frac{i}{2}\lambda G{\rm Re}\langle g, \frac{1-e^{i\omega t}}{\omega}h\rangle} A e^{\frac{i}{2}\lambda G{\rm Re}\langle g, \frac{1-e^{i\omega t}}{\omega}h\rangle} \big) \otimes W(h) e^{-itH} \Big) \\ &= \sum_{l=1}^{\nu} \omega_{\rm S} \big(e^{itH_{\rm Z}} P_l A P_l e^{-itH_{\rm Z}} \big) \omega_{\rm R} \big(W(e^{i\omega t}h) \big), \end{split}$$

where H_{Z} is the Zeno Hamiltonian

$$H_{\rm Z}=\sum_{l=1}^{\nu}P_lH_{\rm S}P_l.$$

Generalization to two reservoirs

Total Hamiltonian

$$H = H_{\mathrm{S}} + H_{\mathrm{R1}} + \lambda_1 G_1 \otimes \varphi_1(g_1) + H_{\mathrm{R2}} + \lambda_2 G_2 \otimes \varphi_2(g_2)$$

• Assumption (*) (valid for Gaussian states):

$$\max_{1\leq j\leq n} \sup_{0\leq t_1,t_2,\ldots,t_j\leq t} \left| \omega_{\mathrm{R}1} \Big(\varphi_1(\boldsymbol{e}^{i\omega t_1}\boldsymbol{g}_1)\cdots\varphi_1(\boldsymbol{e}^{j\omega t_j}\boldsymbol{g}_1) \Big) \right| \leq B_n,$$

for some numbers $B_n \ge 0$ satisfying

$$\sum_{n\geq 0}rac{lpha^n}{n!}B_n<\infty$$
 for any $lpha>0.$

Theorem 3

Assume (*) and let P_l , $l = 1, ..., \nu$ be the spectral projections of G_2 . Then, for any observable *A* of the system and any t > 0 we have

$$\lim_{\lambda_{2}|\to\infty} \omega_{S} \otimes \omega_{R1} \otimes \omega_{R2} \left(e^{itH} (A \otimes 1_{R1} \otimes 1_{R2}) e^{-itH} \right)$$
$$= \omega_{S} \otimes \omega_{R1} \left(e^{itH_{Z}} \left(\sum_{l=1}^{\nu} P_{l} A P_{l} \otimes 1_{R1} \right) e^{-itH_{Z}} \right)$$

where H_Z is the Zeno Hamiltonian

$$H_{Z} = \sum_{l=1}^{\nu} P_{l} \big(H_{S} + H_{R1} + \lambda_{1} G_{1} \otimes \varphi_{1}(g_{1}) \big) P_{l}.$$

Example

- Model: Two qubits interacting with two reservoirs
- Choose $G_2 = \sigma_z \otimes \mathbb{1}_2 + \mathbb{1}_1 \otimes \sigma_z$
- The spectral projections of G_2 are $P_+ = |00\rangle\langle 00|$, $P_- = |11\rangle\langle 11|$ (both rank one) and $P_0 = |01\rangle\langle 01| + |10\rangle\langle 10|$ (rank two - effective *qubit*)
- Initial density matrix $(-1 \le z \le 1 \text{ and } 0 \le |c|^2 \le 1 z^2)$

$$\rho_{\rm S} = \frac{1+z}{2} |01\rangle \langle 01| + \frac{1-z}{2} |10\rangle \langle 10| + \frac{c}{2} |01\rangle \langle 10| + \frac{c^*}{2} |10\rangle \langle 01|$$

Choose H_s = G₁ = ε₁σ_z ⊗ I₂ + I₁ ⊗ ε₂σ_z so that z(t) = z while defining Δ = ε₁ - ε₂ the coherence is

$$c(t) = e^{2it\Delta}D(t)c, \qquad D(t) = \omega_{\mathrm{R1}}\Big(W\big(\lambda_1\Delta \frac{e^{i\omega t}-1}{i\omega}g_1\big)\Big),$$

Example

- This is the well-known pure dephasing model
- If ω_{R1} is in thermal equilibrium at inverse temperature β, the decoherence function D(t) has the explicit expression,

$$\mathcal{D}_{\beta}(t) = \exp\Big[-\lambda_1^2\Delta^2\int_{\mathbb{R}^3}|g_1(k)|^2\coth(eta\omega/2)rac{\sin^2(\omega t/2)}{\omega^2}d^3k\Big].$$

 depending on g(k) and β the dynamics can display non-Markovianity, i.e. a lack of CP-divisibility (when D_β(t) is not monotonic in t) (see e.g. Haikka et al. PRA 2013)

Sketch of the proof (Theorem 1)

• Define $K = K_{\lambda} = H_{R} + \lambda G \otimes \varphi(g)$ and use Dyson series

$$e^{itH}e^{-itK} = 1 + \mathcal{D}, \qquad \mathcal{D} = \sum_{n\geq 1} i^n \int_{0\leq t_n\leq\cdots\leq t_1\leq t} H_{\mathrm{S}}(t_n)\cdots H_{\mathrm{S}}(t_1),$$

where $H_{\rm S}(t) = e^{itK}H_{\rm S}e^{-itK}$

Study separately four terms
 ω_S ⊗ ω_R (e^{itH} (A

$$\begin{split} \omega_{\mathrm{S}} & \otimes \omega_{\mathrm{R}} \left(\boldsymbol{e}^{itH} (\boldsymbol{A} \otimes \mathbb{1}_{\mathrm{R}}) \boldsymbol{e}^{-itH} \right) \\ & = \quad \omega_{\mathrm{S}} \otimes \omega_{\mathrm{R}} \left(\boldsymbol{e}^{itK} (\boldsymbol{A} \otimes \mathbb{1}_{\mathrm{R}}) \boldsymbol{e}^{-itK} \right) \\ & \quad + \omega_{\mathrm{S}} \otimes \omega_{\mathrm{R}} \left(\mathcal{D} \boldsymbol{e}^{itK} (\boldsymbol{A} \otimes \mathbb{1}_{\mathrm{R}}) \boldsymbol{e}^{-itK} \right) \\ & \quad + \omega_{\mathrm{S}} \otimes \omega_{\mathrm{R}} \left(\boldsymbol{e}^{itK} (\boldsymbol{A} \otimes \mathbb{1}_{\mathrm{R}}) \boldsymbol{e}^{-itK} \mathcal{D}^{*} \right) \\ & \quad + \omega_{\mathrm{S}} \otimes \omega_{\mathrm{R}} \left(\mathcal{D} \boldsymbol{e}^{itK} (\boldsymbol{A} \otimes \mathbb{1}_{\mathrm{R}}) \boldsymbol{e}^{-itK} \mathcal{D}^{*} \right) \\ & \quad = \quad T_{1} + T_{2} + T_{3} + T_{4}. \end{split}$$

- Start with T₁
- Use that for any operator $A \in \mathcal{B}(\mathbb{C}^d)$,

where
$$f_l = rac{\lambda \gamma_l}{i\omega} g$$
, $l = 1, \dots, \nu$

Therefore

-

$$T_{1} = \omega_{\mathrm{S}} \otimes \omega_{\mathrm{R}} (e^{itK} (A \otimes \mathbb{1}_{\mathrm{R}}) e^{-itK})$$

= $\sum_{l,r=1}^{\nu} \omega_{\mathrm{S}} (P_{l} A P_{r}) e^{-\frac{i}{2} \lambda^{2} (\gamma_{l}^{2} - \gamma_{r}^{2}) \mathrm{Im} \langle g, \frac{e^{-i\omega t} + it\omega}{\omega^{2}} g \rangle} \omega_{\mathrm{R}} (W((e^{i\omega t} - 1)(f_{l} - f_{r}))).$

Explicitly, the expectation of the Weyl reads

$$\omega_{\mathrm{R}}\Big(W\big((\boldsymbol{e}^{i\omega t}-1)(f_{l}-f_{r})\big)\Big)=\boldsymbol{e}^{-\frac{\lambda^{2}}{4}\left\|\mathcal{C}^{1/2}\big[(\gamma_{l}-\gamma_{r})\frac{\boldsymbol{e}^{i\omega t}-1}{i\omega}g\big]\right\|_{L^{2}}^{2}},$$

- In the limit λ → ∞ the expression tends to 0 unless the term multiplying λ is vanishing
- This selects the case l = r and therefore

$$\lim_{|\lambda|\to\infty}T_1=\sum_{l=1}^{\nu}\omega_{\rm S}(P_lAP_l),\qquad t>0.$$

• Now we look at T_2 ... then T_3 and T_4 are treated similarly

• The term T₂ reads

$$\begin{split} T_{2} &= \omega_{\mathrm{S}} \otimes \omega_{\mathrm{R}} \big(\mathcal{D} \boldsymbol{e}^{itK} (\boldsymbol{A} \otimes 1\!\!1_{\mathrm{R}}) \boldsymbol{e}^{-itK} \big) \\ &= \sum_{l,r=1}^{\nu} \boldsymbol{e}^{-\frac{i}{2}\lambda^{2} (\gamma_{l}^{2} - \gamma_{r}^{2}) \mathrm{Im} \langle \boldsymbol{g}, \frac{\boldsymbol{e}^{-i\omega t} + it\omega}{\omega^{2}} \boldsymbol{g} \rangle} \sum_{n \geq 1} i^{n} \int_{0 \leq t_{n} \leq \cdots \leq t_{1} \leq t} \\ &\times \omega_{\mathrm{S}} \otimes \omega_{\mathrm{R}} \Big(H_{\mathrm{S}}(t_{n}) \cdots H_{\mathrm{S}}(t_{1}) P_{l} \boldsymbol{A} P_{r} \ \boldsymbol{W} \big((\boldsymbol{e}^{i\omega t} - 1)(f_{l} - f_{r}) \big) \Big). \end{split}$$

- Use \triangle to rewrite each term $H_{\rm S}(t_j)$
- Combine together the Weyl ops. appearing after the substitution

$$\begin{split} T_{2} &= \omega_{\mathrm{S}} \otimes \omega_{\mathrm{R}} \big(\mathcal{D} \boldsymbol{e}^{itK} (\boldsymbol{A} \otimes 1\!\!1_{\mathrm{R}}) \boldsymbol{e}^{-itK} \big) \\ &= \sum_{l_{0}, \dots, l_{n}, r_{0}=1}^{\nu} \sum_{n \geq 1} i^{n} \int_{0 \leq t_{n} \leq \dots \leq t_{1} \leq t} \boldsymbol{e}^{-i\Phi(\lambda)} \omega_{\mathrm{S}} \big(P_{l_{n}} H_{\mathrm{S}} P_{l_{n-1}} \cdots P_{l_{1}} H_{\mathrm{S}} P_{l_{0}} \boldsymbol{A} P_{r_{0}} \big) \\ &\times \omega_{\mathrm{R}} \Big(W \big(\sum_{j=1}^{n} (\boldsymbol{e}^{it_{j}\omega} - 1)(f_{l_{j}} - f_{l_{j-1}}) \big) W \big((\boldsymbol{e}^{it\omega} - 1)(f_{l_{0}} - f_{r_{0}}) \big) \Big), \end{split}$$

• $\omega_{\rm R}(W(\lambda\eta)) = e^{-\frac{\lambda^2}{4} \|C^{1/2}\eta\|_{L^2}^2}$ with a complicated function η

- the Dyson series converges uniformly in λ and we can exchange the limit $\lambda \to \infty$ with the series
- by means of the dominated converge theorem, we can exchange $\lambda \to \infty$ and the multiple integrations
- the limit selects the case when all the projections are equal $r_0 = l_0 = l_1 = \cdots = l_n$ and in this case also the phase vanishes
- after computing analogously T₃ and T₄ the series is resummed

Conclusions

- We computed the reduced dynamics of an open quantum system in the ultrastrong coupling limit $\lambda \to \infty$
- It consists of a nonselective measurement onto the eigenbasis of the coupling *G* and a unitary evolution with an effective Zeno Hamiltonian (related to the quantum Zeno effect)
- The proof can be generalized to the case of two reservoirs, when λ_1 is finite and $\lambda_2 \to \infty$
- In this case the reduced dynamics of the system is richer and it can be non-Markovian

Outlook

- scaling time to slow down the nonselective measurement
- corrections for finite but large λ

Thank you for your attention!