Measurement-induced entanglement transitions in certain tensor networks
Lo

—
=

PRX Quantum 2, 010352 (2021)

Sthitadhi Roy
ICTS-TIFR, Bengaluru

work with A. Nahum (Oxford — ENS, Paris), B. Skinner (OSU), and J. Ruhman (Bar-llan)



Dynamics of quantum entanglement

Why quantum dynamics?

e Quantum mechanics is operationally a theory of unitary dynamics and non-unitary
measurements

e How do quantum correlations and quantum information propagate in the system?

e \We would like to be able to manipulate guantum states and store/retrieve
information using them... in real time

Google’s Sycamore processor
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Why entanglement?

Quantum Entanglement: web of non-local correlations throughout a quantum system

e Entanglement can be used to distinguish phases of quantum matter
e How strongly is information shared between different parts of a system?
e How robustly is the information encoded in a quantum state

e can it be destroyed by local perturbations/errors?

e How easy is to prepare/manipulate a state and retrieve quantum information from it”?



Dynamics of quantum entanglement
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Dynamics of quantum entanglement
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Measurement-induced entanglement transition
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Critical measurement rate Measurement rate

Competition between entangling unitary dynamics and disentangling (projective) measurements

Skinner et al. 18; Li et al. 18; Chan et al. 18; Choi et al. 20; Szyniszewski et al. 19; Gullans, Huse 19, 20;.....



All-to-all connected tensor network: an exactly solvable model?
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e No spatial structure = area and volume laws
have no real meaning

e A new diagnostic of the phase transition?



Operator Entanglement Entropy

How much quantum information flows through the circuit in time ?

— quantified by the Operator Entanglement Entropy of V
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Operator Entanglement Entropy

Two ‘trivial’ limits:

How much quantum information flows through the circuit in time ?

— quantified by the Operator Entanglement Entropy of V

Operator Entanglement Entropy

Singular value decomposition  V(#) = Z A; 72 {Jol  with normalisation Z

No measurements

V = unitary
- N ;
A= 1/27 for all j
S, (f) = N In2 at all times

Maximal and extensive opEE
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e Only measurements

o A; = 1foralla particular j and 0 otherwise
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All-to-all connected tensor network as a tree tensor network

[\ e Map the unitaries to nodes of the graph

o Map the worldlines of spins to edges of the graph

# ¢ e Some of the edges absent due to measurements
Probability that a site is measured before any —~
unitary acts on it: /

Also the probabillity that a given
— branch is killed after a particular

:2(1—r)+r 2 —r node

r r
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Classical phase transition — a bound for the quantum phase transition

e |[dea of minimal cut — minimum number of links to cut to lbreak the circuit apart

e Key quantity — entanglement membrane tension So(r)
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between initial and final times
e (Cost of cutting the network is vanishing

e (lassical percolation transition
determined by circuit geometry



Classical phase transition — a bound for the quantum phase transition

e |[dea of minimal cut — minimum number of links to cut to lbreak the circuit apart

e Key quantity — entanglement membrane tension so(r)

Critical point: Critical scaling:
o So(”) o (r§1a881cal - 7’)5/2

e analytically from by mapping to layered Erd0s-Rényi graphs
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Phase diagram so far...
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Phase diagram so far...
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Entanglement in a tree tensor network

Quantum information flowing between the base and the
apex of tree ?
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Entanglement in a tree tensor network

Quantum information flowing between the base and the
apex of tree ?

' — Zazl Ag e guantified by the entanglement entropy between apex
and base of tree
I ?i K\ ‘! e Bond dimension of 2; two normalised singular values
AT HRHARHRHAH
Apax + A2 =1

e For a tree with k generations, denote 7, = ’ﬁnn

e Rényi entropy between apex and base

1
S, = ln[Z,’;’ + (1 —2)"]
1l —n



Recursion relation for entanglement in a tree tensor network

A tree with k + 1 generations can be generated from the singular values of three trees with k generations

Recursion relation for the singular values

/\ e Non-linear recursion relation

U S F(Z,,7Z,,7Z) with probability 1 — p
L1 00 with probability p

A m M e Near a phase transition, Z,, ; << 1, so study a linearised recursion relation
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a,b,c,d=1

~ AZ, + AZp + AsZ) with probability 1 — p
1771 0 with probability p

e I"and A, depend explicitly on the matrix elements of U (analytically
tractable)



Recursion relation for entanglement in a tree tensor network

Linear recursion relation
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Non-linear recursion relation
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Recursion relation for entanglement in a tree tensor network

Linear recursion related to a travelling wave equation

Derrida+Spohn’88
In Ztyp(k) — front of travelling wave in fictitious time k B E
N
Considerations of velocity selection give at criticality if
E]
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Critical point thus obtained from ¢
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The averages (Al.l/ 2 can be computed analytically for the
Haar ensemble yielding the exact critical point
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Travelling-wave problem in the presence of the non-

inearity
KPP ec

to leading order maps onto a variant of Fisher-
uation

Ciritical

noint stays the same as the linear recursion’s

travelling wave equation

Critical scaling :

Ziyp(k — 00) ~ exp( = C/\/rc - r)




Completing the phase diagram
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