
Measurement-induced entanglement transitions in certain tensor networks

Sthitadhi Roy 
ICTS-TIFR, Bengaluru

PRX Quantum 2, 010352 (2021) 

work with A. Nahum (Oxford  ENS, Paris), B. Skinner (OSU), and J. Ruhman (Bar-Ilan)→



Dynamics of quantum entanglement

• Quantum mechanics is operationally a theory of unitary dynamics and non-unitary 
measurements 

• How do quantum correlations and quantum information propagate in the system? 

• We would like to be able to manipulate quantum states and store/retrieve 
information using them… in real time

Google’s Sycamore processor

Why quantum dynamics?



Dynamics of quantum entanglement

• Quantum mechanics is operationally a theory of unitary dynamics and non-unitary 
measurements 

• How do quantum correlations and quantum information propagate in the system? 

• We would like to be able to manipulate quantum states and store/retrieve 
information using them… in real time

Google’s Sycamore processor

Why quantum dynamics?

Why entanglement?

Quantum Entanglement: web of non-local correlations throughout a quantum system

• Entanglement can be used to distinguish phases of quantum matter 

• How strongly is information shared between different parts of a system? 

• How robustly is the information encoded in a quantum state 

• can it be destroyed by local perturbations/errors? 

• How easy is to prepare/manipulate a state and retrieve quantum information from it?
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Measurement-induced entanglement transition
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Measurement rateCritical measurement rate

Volume-law entanglement
S ∼ Ld

Entangled phase
Area-law entanglement

S ∼ Ld−1

Disentangled phase

Competition between entangling unitary dynamics and disentangling (projective) measurements

Skinner et al. 18; Li et al. 18; Chan et al. 18; Choi et al. 20; Szyniszewski et al. 19; Gullans, Huse 19, 20;…..



All-to-all connected tensor network: an exactly solvable model?
tim
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 Haar random unitary= 4 × 4

True measurements

•  

            with Born rule probability  

• Non-trivial, correlated outcome probabilities

|ψ⟩ →
Pi,↑ |ψ⟩
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(1 + ⟨ψ |σz
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• All outcomes spin-up, postselection
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|Pi,↑ |ψ⟩ |
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• No spatial structure  area and volume laws 
have no real meaning 

• A new diagnostic of the phase transition?

⇒



Operator Entanglement Entropy 
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How much quantum information flows through the circuit in time ?
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• No measurements 

• unitary 

•  for all  

•  at all times 

• Maximal and extensive opEE

V ⇒

λj = 1/2N j

Sn(t) = N ln 2

• Only measurements 

•  for all a particular  and  otherwise 
 

 
 

 

•

λj = 1 j 0
| j0⟩ =
| jt⟩ =

Sn(t) = 0

Two ‘trivial’ limits:



All-to-all connected tensor network as a tree tensor network

• Map the unitaries to nodes of the graph 

• Map the worldlines of spins to edges of the graph 

• Some of the edges absent due to measurements

Probability that a site is measured before any 
unitary acts on it:

p =
r

2(1 − r) + r
=

r
2 − r

Also the probability that a given 
branch is killed after a particular 
node



Classical phase transition — a bound for the quantum phase transition

• Idea of minimal cut — minimum number of links to cut to break the circuit apart 
• Key quantity — entanglement membrane tension s0(r)

rclassical
c • Circuit classically disconnected 

between initial and final times 

• Cost of cutting the network is vanishing 

• Classical percolation transition 
determined by circuit geometry
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• Idea of minimal cut — minimum number of links to cut to break the circuit apart 
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• analytically from by mapping to layered Erdös-Rényi graphs

s0(r) ∼ (rclassical
c − r)5/2

Critical scaling:Critical point:
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Entanglement in a tree tensor network
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Entanglement in a tree tensor network

=
P2

a=1 ∏a

a

a

t • quantified by the entanglement entropy  between apex 
and base of tree 

• Bond dimension of 2; two normalised singular values 

 

• For a tree with  generations, denote  

• Rényi entropy between apex and base 

λ2
max + λ2

min = 1

k Zk = λ2
min

Sn =
1

1 − n
ln[Zn

k + (1 − Zk)n]

Quantum information flowing between the base and the 
apex of tree ?    



Recursion relation for entanglement in a tree tensor network

A tree with  generations can be generated from the singular values of three trees with  generationsk + 1 k
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Recursion relation for the singular values

• Non-linear recursion relation 
 

                

• Near a phase transition, , so study a linearised recursion relation 

                     

•  and  depend explicitly on the matrix elements of  (analytically 
tractable)

Zk+1 = {F(Zk, Z′ k, Z′ ′ k ) with probability 1 − p
0 with probability p

Zk+1 ≪ 1

Zk+1 = {A1Zk + A2Z′ k + A3Z′ ′ k with probability 1 − p
0 with probability p

F Ai U



Recursion relation for entanglement in a tree tensor network

Linear recursion relation

Non-linear recursion relation
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Recursion relation for entanglement in a tree tensor network

• Linear recursion related to a travelling wave equation 
 

• front of travelling wave in fictitious time  

• Considerations of velocity selection give at criticality 

 

• Critical point thus obtained from  as    
 
                 

• The averages  can be computed analytically for the 
Haar ensemble yielding the exact critical point
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• Travelling-wave problem in the presence of the non-
linearity to leading order maps onto a variant of Fisher-
KPP equation 

• Critical point stays the same as the linear recursion’s 
travelling wave equation 

• Critical scaling :

Ztyp(k → ∞) ∼ exp( − C/ rc − r)rc =
212 + 75π
362 + 75π

≈ 0.749

Derrida+Spohn’88



Completing the phase diagram
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Summary
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