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• Bose (1924): Photons are bosons : an arbitrary number of indistinguishable photons
can be present at each wavelength, and this alone is su!cient to explain Planck’s
black body spectrum.

• Einstein (1924): If there were non-relativistic bosonic particles, then they would
undergo Bose-Einstein condensation at low temperature i.e. a finite fraction of
them would have zero momentum.

• Sommerfeld (1927): Electrons are fermions: metals can be described by a degenerate
quantum gas of nearly-free electrons.

• Bardeen, Cooper, Schrie”er (1957): Low temperature superconductors can be described
as Bose-Einstein condensates of electron pairs.

• Today: Quantum matter exhibits many emergent phenomena, related to quantum
entanglement. These are crucial to understand modern quantum materials, such
as the high temperature superconductors, and the quantum properties of black holes.



<latexit sha1_base64="rWIxYLj1MElr3SvBJ8hGZdfK24E="></latexit>

• Bose (1924): Photons are bosons : an arbitrary number of indistinguishable photons
can be present at each wavelength, and this alone is su!cient to explain Planck’s
black body spectrum.

• Einstein (1924): If there were non-relativistic bosonic particles, then they would
undergo Bose-Einstein condensation at low temperature i.e. a finite fraction of
them would have zero momentum.

• Sommerfeld (1927): Electrons are fermions: metals can be described by a degenerate
quantum gas of nearly-free electrons.

• Bardeen, Cooper, Schrie”er (1957): Low temperature superconductors can be described
as Bose-Einstein condensates of electron pairs.

• Today: Quantum matter exhibits many emergent phenomena, related to quantum
entanglement. These are crucial to understand modern quantum materials, such
as the high temperature superconductors, and the quantum properties of black holes.



Metals without quasiparticles: the SYK model 
From the SYK model to black holes
From the SYK model to the  
universal 2d-YSYK theory of strange metals

Spin liquids with an energy gap 
Spin liquids without an energy gap 
Experiments on spin liquids 



Theories of spin liquids 
with an energy gap



11/6/21, 11:23 AMAugust Kekulé - Wikipedia

Page 4 of 8https://en.wikipedia.org/wiki/August_Kekulé

The ouroboros, Kekulé's
inspiration for the structure of
benzene.

is single half the time and double half the time. A firmer theoretical basis for a similar idea was
later proposed in 1928 by Linus Pauling, who replaced Kekulé's oscillation by the concept of
resonance between quantum-mechanical structures.[14]

The new understanding of benzene, and hence of all aromatic
compounds, proved to be so important for both pure and applied
chemistry after 1865 that in 1890 the German Chemical Society
organized an elaborate appreciation in Kekulé's honor,
celebrating the twenty-fifth anniversary of his first benzene
paper. Here Kekulé spoke of the creation of the theory. He said
that he had discovered the ring shape of the benzene molecule
after having a reverie or day-dream of a snake seizing its own tail
(this is an ancient symbol known as the ouroboros).[15] This is
likely an example of the exercise of a particular imaginative state,
involving homospatial and janusian processes, followed by
stepwise logical thinking.[16]

A similar humorous depiction of benzene had appeared in 1886 in
the Berichte der Durstigen Chemischen Gesellschaft (Journal of
the Thirsty Chemical Society), a parody of the Berichte der Deutschen Chemischen Gesellschaft,
only the parody had six monkeys seizing each other in a circle, rather than a single snake as in
Kekulé's anecdote.[17] Some historians have suggested that the parody was a lampoon of the snake
anecdote, possibly already well-known through oral transmission even if it had not yet appeared in
print.[18] Others have speculated that Kekulé's story in 1890 was a re-parody of the monkey spoof,
and was a mere invention rather than a recollection of an event in his life.

Kekulé's 1890 speech,[19] in which these anecdotes appeared, has been translated into English.[20]

If one takes the anecdote as reflecting an accurate memory of a real event, circumstances
mentioned in the story suggest that it must have happened early in 1862.[21]

He told another autobiographical anecdote in the same 1890 speech, of an earlier vision of dancing
atoms and molecules that led to his theory of structure, published in May 1858. This happened, he
claimed, while he was riding on the upper deck of a horse-drawn omnibus in London. Once again,
if one takes the anecdote as reflecting an accurate memory of a real event, circumstances related in
the anecdote suggest that it must have occurred in the late summer of 1855.[22]

Lehrbuch der Organischen Chemie (https://gutenberg.beic.it/webclient/DeliveryManager?pi
d=6594362) (in German). 1. Erlangen: Enke. 1859–1861.
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Triangular lattice antiferromagnet

H = J
∑

〈ij〉

!Si · !Sj

Nearest-neighbor model has non-collinear Neel order 
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[Sω, Sε ] = iωωεϑSy

S2
ω = S(S + 1);

S = 1/2

Sz |→↑ = (1/2) |→↑
Sz |↓↑ = ↔(1/2) |↓↑

on each site i

Spin model with S=1/2 per unit cell 



Spin model with S=1/2 per unit cell 

P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974).
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Spin liquid: resonating valence bonds
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Key feature: fractionalization.
Excitations are particle-like,

but cannot be created
by local operators.

The excitations are classified
under distinct

superselection/anyon sectors.



RVB: Z2 spin liquid 
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Read and Sachdev (1990); Wen (1991)

The simplest stable spin liquid (which need not break time-reversal) is
the deconfined phase of a Z2 gauge theory. There are excitations which
cannot be created by any local spin operators: “spinons” which carry unit
Z2 electric charges, and ‘vison’ excitations which carry ω Z2 magnetic flux.

Anyon e (spinon) ε (spinon) m (vison)
Self-statistics boson fermion boson

Spin 1/2 1/2 0

Any pair of e, ε, m are mutual semions.

This structure (“unitary modular tensor category”) is the same as that
found in Kitaev’s toric code (1997).



RVB: Z2 spin liquid 

Fractionalized excitations: a “spinon” 
with spin S=1/2
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Z2 “vortex” with spin S=0: 
a vison (m particle)

N. Read and B. Chakraborty, Phys. Rev. B  40, 7133 (1989)
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Other gapped spin liquids
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• Kalmeyer-Laughlin chiral spin liquid (1987): Excitations are

self-semions, similar to the FQH state of bosons at ω = 1/2.
Requires absence of time-reversal symmetry.

• Kitaev’s non-Abelian Ising anyons (2006). A solvable honeycomb

lattice model with XX, YY, ZZ interactions along three directions

realizes a Z2 spin liquid in which the ε fermions have the spectrum

of massless, relativistic Majoranas. Turning on a time-reversal

breaking perturbation gaps the Majorana fermions, and the visons

acquire a zero mode which turns them into non-Abelian anyons.
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Towards a final phase diagram

[1] L. Wang and A.W. Sandvik, Phys. Rev. Lett. 121, 107202 (2018)

[2] F. Ferrari, F. Becca, Phys. Rev. B 102, 014417 (2020)

[3] Y. Nomura and M. Imada, arXiv:2005.14142

[4] W.-Y. Liu, S.-S. Gong, Y.-B. Li, D. Poilblanc, W.-Q. Chen, Z.-C. Gu, arXiv:2009.01821

Federico Becca Spins and Phonons KITP 23 / 27
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Spin
Liquid

<latexit sha1_base64="pKwMskRqAaVkjg5CkHcESxwvrds=">AAAB7XicdVBNSwMxEM36WetX1aOXYBE9lWyxtseiF09SwX5Au5RsOtvGZrNLkhXK0v/gxYMiXv0/3vw3pu0KKvpg4PHeDDPz/FhwbQj5cJaWV1bX1nMb+c2t7Z3dwt5+S0eJYtBkkYhUx6caBJfQNNwI6MQKaOgLaPvjy5nfvgeleSRvzSQGL6RDyQPOqLFS67p3AiD6hSIpEUIqFRfPiYUl1VqlVj3DbqYUUYZGv/DeG0QsCUEaJqjWXZfExkupMpwJmOZ7iYaYsjEdQtdSSUPQXjq/doqPrTLAQaRsSYPn6veJlIZaT0LfdobUjPRvbyb+5XUTE9S8lMs4MSDZYlGQCGwiPHsdD7gCZsTEEsoUt7diNqKKMmMDytsQvj7F/5NWueSel8hNuVi/yOLIoUN0hE6Ri6qojq5QAzURQ3foAT2hZydyHp0X53XRuuRkMwfoB5y3T0i1jvI=</latexit>

Néel

<latexit sha1_base64="XkBi82enggKB+HoJNbDifR3CLZw=">AAACDXicdVDLSgMxFM3UVx1fVZduglVwVWZG7dRd0Y3LCvYBbSmZ9LYNzWSGJCOUoT/gxl9x40IRt+7d+TemL1DRA4HDOfdwc08Qc6a043xamaXlldW17Lq9sbm1vZPb3aupKJEUqjTikWwERAFnAqqaaQ6NWAIJAw71YHg18et3IBWLxK0exdAOSV+wHqNEG6mTO2oF0GcipSA0yLFtEkkoiLRbILoLtZPLOwXPd32/iA0pnZa80oT4ZxfnHnYLzhR5NEelk/todSOahCZOOVGq6TqxbqdEakY5jO1WoiAmdEj60DRUkBBUO51eM8bHRuniXiTNExpP1e+JlIRKjcLATIZED9RvbyL+5TUT3Su1UybiRIOgs0W9hGMd4Uk1uMskUM1HhhAqmfkrpgMiCTUdKNuUsLgU/09qXsEtFpwbL1++nNeRRQfoEJ0gF/mojK5RBVURRffoET2jF+vBerJerbfZaMaaZ/bRD1jvX8eCnKs=</latexit>

Columnar

<latexit sha1_base64="dKFRFZDDWJkSwAfBT4kyQDBZDYk=">AAAB6nicdVDLTgIxFO3gC/GFunTTSExcTVpABncENy4xCJLAhHRKgYZOZ9J2TMiET3DjQmPc+kXu/BvLw0SNnuQmJ+fcm3vvCWLBtUHow8msrW9sbmW3czu7e/sH+cOjto4SRVmLRiJSnYBoJrhkLcONYJ1YMRIGgt0Fk6u5f3fPlOaRvDXTmPkhGUk+5JQYKzXb9WY/X0AuxrhU9iByvVK5clGyBKPqpedB7KIFCmCFRj//3htENAmZNFQQrbsYxcZPiTKcCjbL9RLNYkInZMS6lkoSMu2ni1Nn8MwqAziMlC1p4EL9PpGSUOtpGNjOkJix/u3Nxb+8bmKGVT/lMk4Mk3S5aJgIaCI4/xsOuGLUiKklhCpub4V0TBShxqaTsyF8fQr/J+2iiysuuikWavVVHFlwAk7BOcDAAzVwDRqgBSgYgQfwBJ4d4Tw6L87rsjXjrGaOwQ84b59PIo3T</latexit>

VBS

<latexit sha1_base64="o40XFgii1wDg5ua2xKfR0saqazU=">AAAB7XicbVA9TwJBEJ3DL8Qv1NJmIzGxutxRiCXRxhKNIAlcyN4yByt7e5fdPRNC+A82Fhpj6/+x89+4wBUKvmSSl/dmMjMvTAXXxvO+ncLa+sbmVnG7tLO7t39QPjxq6SRTDJssEYlqh1Sj4BKbhhuB7VQhjUOBD+HoeuY/PKHSPJH3ZpxiENOB5BFn1FipdYeRS2q9csVzvTnIKvFzUoEcjV75q9tPWBajNExQrTu+l5pgQpXhTOC01M00ppSN6AA7lkoaow4m82un5MwqfRIlypY0ZK7+npjQWOtxHNrOmJqhXvZm4n9eJzPRZTDhMs0MSrZYFGWCmITMXid9rpAZMbaEMsXtrYQNqaLM2IBKNgR/+eVV0qq6/oXr31Yr9as8jiKcwCmcgw81qMMNNKAJDB7hGV7hzUmcF+fd+Vi0Fpx85hj+wPn8AWjKjlw=</latexit>

Ref. 7
<latexit sha1_base64="cfMqiAQZDgOKZJ0JJdPtjOqXCD0=">AAAB7XicbVA9TwJBEJ3DL8Qv1NJmIzGxutxRKCXRxhKNIAlcyN4yByt7e5fdPRNC+A82Fhpj6/+x89+4wBUKvmSSl/dmMjMvTAXXxvO+ncLa+sbmVnG7tLO7t39QPjxq6SRTDJssEYlqh1Sj4BKbhhuB7VQhjUOBD+HoeuY/PKHSPJH3ZpxiENOB5BFn1FipdYeRS2q9csVzvTnIKvFzUoEcjV75q9tPWBajNExQrTu+l5pgQpXhTOC01M00ppSN6AA7lkoaow4m82un5MwqfRIlypY0ZK7+npjQWOtxHNrOmJqhXvZm4n9eJzNRLZhwmWYGJVssijJBTEJmr5M+V8iMGFtCmeL2VsKGVFFmbEAlG4K//PIqaVVd/8L1b6uV+lUeRxFO4BTOwYdLqMMNNKAJDB7hGV7hzUmcF+fd+Vi0Fpx85hj+wPn8AWpOjl0=</latexit>

Ref. 8
<latexit sha1_base64="LvFSya3ie0RrOV4O1JCAN02l2ss=">AAAB7XicbVC7TsNAEFzzDOEVoKQ5ESFRWXYKHl0EDWVA5CElVnS+rJMj57N1d0aKovwDDQUI0fI/dPwNl8QFJIy00mhmV7s7YSq4Np737aysrq1vbBa2its7u3v7pYPDhk4yxbDOEpGoVkg1Ci6xbrgR2EoV0jgU2AyHN1O/+YRK80Q+mFGKQUz7kkecUWOlxj1GLrnqlsqe681AlomfkzLkqHVLX51ewrIYpWGCat32vdQEY6oMZwInxU6mMaVsSPvYtlTSGHUwnl07IadW6ZEoUbakITP198SYxlqP4tB2xtQM9KI3Ff/z2pmJLoMxl2lmULL5oigTxCRk+jrpcYXMiJEllClubyVsQBVlxgZUtCH4iy8vk0bF9c9d/65Srl7ncRTgGE7gDHy4gCrcQg3qwOARnuEV3pzEeXHenY9564qTzxzBHzifP2vSjl4=</latexit>

Ref. 9
<latexit sha1_base64="2LTW3ixM9IHE/e0yKiAh6gqR2zQ=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4CkkP6rHoxWMV+wFtKJvtpF262YTdjVBCf4QXD4p49fd489+4bXPQ1gcDj/dmmJkXpoJr43nfztr6xubWdmmnvLu3f3BYOTpu6SRTDJssEYnqhFSj4BKbhhuBnVQhjUOB7XB8O/PbT6g0T+SjmaQYxHQoecQZNVZqP2DkEt/rV6qe681BVolfkCoUaPQrX71BwrIYpWGCat31vdQEOVWGM4HTci/TmFI2pkPsWippjDrI5+dOyblVBiRKlC1pyFz9PZHTWOtJHNrOmJqRXvZm4n9eNzPRdZBzmWYGJVssijJBTEJmv5MBV8iMmFhCmeL2VsJGVFFmbEJlG4K//PIqadVc/9L172vV+k0RRwlO4QwuwIcrqMMdNKAJDMbwDK/w5qTOi/PufCxa15xi5gT+wPn8Ac78jpA=</latexit>

Ref. 10

FIG. 1. Phases of the S = 1/2 J1-J2 antiferromagnet on the square lattice, from the numerical results

of Refs. [7–10], all of which agree that the spin liquid is gapless. Each ellipse in the valence bond solid

(VBS) represents a singlet pair of electrons. Lower part of figure adapted from Ref. [11].

are the nature of the quantum phases of the model, and of the quantum phase transitions between

them, as a function of increasing J2/J1 after the Néel order vanishes at a critical value of J2/J1.

These questions are also the focus of our attention here.

An early proposal [5, 6, 12, 13] was that there was a direct transition from the Néel state to

a valence bond solid (VBS) (see Fig. 1) which restores spin rotation symmetry but breaks lattice

symmetries (followed by a first order transition at larger J2/J1 to a ‘columnar’ state which breaks

spin rotation symmetry, and which we do not address in the present paper). A theory of ‘deconfined

criticality’ was developed [14–16] showing that a continuous Néel-VBS transition was possible, even

though it was not allowed in the Landau-Ginzburg-Wilson framework because distinct symmetries

were broken in the two phases. Evidence has since accumulated for the presence of a VBS phase in

the J1-J2 model, but the nature of the Néel-VBS transition in this model has remained a question
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<latexit sha1_base64="8CcINC4St4B7nIp2AJOWvAighbc="></latexit>

H = J1

X

hi,ji

Si · Sj + J2

X

hhi,jii

Si · Sj

<latexit sha1_base64="x+ZFwThS8syIi1AUvA4ofpqNi7E=">AAAB7XicdZDLSgMxFIYz9VbrrerSTbAILqRkSrV1V3QjriraC7RDyaSZNjSTDElGKEMfwaW6Ebc+kQvfxnQ6gooeCPx8/znknN+PONMGoQ8nt7S8srqWXy9sbG5t7xR399paxorQFpFcqq6PNeVM0JZhhtNupCgOfU47/uRy7nfuqdJMijszjagX4pFgASPYWHR7PagMiiVURghVEYKpQKk4r9XrLoJuRkogq+ag+N4fShKHVBjCsdY9F0XGS7AyjHA6K/RjTSNMJnhEe1YKHFLtJemqM3hkyRAGUtknDEzp94kEh1pPQ992htiM9W9vDk/88C+7F5ug7iVMRLGhgiz+CmIOjYTz0+GQKUoMn1qBiWJ2XUjGWGFibEAFm8PXsfB/0a6U3bPy6U211LjIEsmDA3AIjoELaqABrkATtAABI/AAnsCzI51H58V5XbTmnGxmH/wo5+0T6y+Orw==</latexit>

J2

<latexit sha1_base64="S7XMh/6mMh8+baUrQaH7OFJKnec=">AAAB7XicdZDLSgMxFIYzXmu9VV26CRbBhZSMVFt3RTfiqqK9QDuUTJppQ3MZkoxQhj6CS3Ujbn0iF76N6bSCih4I/Hz/OeScP4w5MxahD29hcWl5ZTW3ll/f2NzaLuzsNo1KNKENorjS7RAbypmkDcssp+1YUyxCTlvh6HLqt+6pNkzJOzuOaSDwQLKIEWwdur3u+b1CEZUQQmWEYCZQJs4r1aqPoD8nRTCveq/w3u0rkggqLeHYmI6PYhukWFtGOJ3ku4mhMSYjPKAdJyUW1ARptuoEHjrSh5HS7kkLM/p9IsXCmLEIXafAdmh+e1N4HIq/7E5io2qQMhknlkoy+ytKOLQKTk+HfaYpsXzsBCaauXUhGWKNiXUB5V0OX8fC/0XzpOSflU5vysXaxTyRHNgHB+AI+KACauAK1EEDEDAAD+AJPHvKe/RevNdZ64I3n9kDP8p7+wTpqI6u</latexit>

J1

<latexit sha1_base64="gP9nVI+DBLu2vAjBdk9jLUbLX04=">AAAB+HicdZDLSgMxFIYz9VbrrerSTbAKFUrJFLV1VxXEjVDBXqCtJZNm2tBMZkgyQh36Hi7Vjbj1XVz4NqbTEVT0QODn+8/hnPxOwJnSCH1Yqbn5hcWl9HJmZXVtfSO7udVQfigJrROf+7LlYEU5E7Sumea0FUiKPYfTpjM6n/rNOyoV88WNHge06+GBYC4jWBt0u5fvBKwA0cEePL246mVzqIgQOkQIxgLF4qRcqdgI2gnJgaRqvex7p++T0KNCE46Vatso0N0IS80Ip5NMJ1Q0wGSEB7RtpMAeVd0ovnoC9w3pQ9eX5gkNY/p9IsKeUmPPMZ0e1kP125vCguP9ZbdD7Va6ERNBqKkgs11uyKH24TQF2GeSEs3HRmAimTkXkiGWmGiTVcbk8PVZ+L9olIr2cfHoupSrniWJpMEO2AV5YIMyqIJLUAN1QIAED+AJPFv31qP1Yr3OWlNWMrMNfpT19gk7UJF+</latexit>

(⇡, 0) AFM

<latexit sha1_base64="qwbajmyLmJGWYMa26YQ2lgc2Bos=">AAAB/HicdZDLSgMxFIYzXmu9jbp0E2yFCqVkitq6qwriRqhgL9AOJZNm2tDMhSRTKEN9EpfqRtz6Ji58G9PpCCp6IOHn+88hJ78TciYVQh/GwuLS8spqZi27vrG5tW3u7DZlEAlCGyTggWg7WFLOfNpQTHHaDgXFnsNpyxldzvzWmArJAv9OTUJqe3jgM5cRrDTqmWa+0A1ZEerrKA/Pr256Zg6VEELHCMFEoEScVapVC0ErJTmQVr1nvnf7AYk86ivCsZQdC4XKjrFQjHA6zXYjSUNMRnhAO1r62KPSjpPNp/BQkz50A6GPr2BCv0/E2JNy4jm608NqKH97M1h0vL/sTqTcqh0zP4wU9cn8LTfiUAVwlgTsM0GJ4hMtMBFMrwvJEAtMlM4rq3P4+iz8XzTLJeu0dHJbztUu0kQyYB8cgAKwQAXUwDWogwYgYAwewBN4Nu6NR+PFeJ23LhjpzB74UcbbJ5cmksg=</latexit>

(⇡,⇡) AFM

1. L. Wang and A. W. Sandvik,  Phys. Rev. Lett. 121, 107202 (2018)

2. F. Ferrari and F. Becca, Phys. Rev. B 102, 014417 (2020)

3. Y. Nomura and M. Imada, Phys. Rev. X 11, 031034 (2021)

4. W.-Y. Liu, S.-S. Gong, Y.-B. Li, D. Poilblanc, W.-Q. Chen, and  

Z.-C. Gu, Science Bulletin 67, 1034 (2022)
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S=1/2 square lattice



<latexit sha1_base64="8ed0GZGhTgVKrmos80Tkrf4/uPE="></latexit>

H =
X

i<j

JijSi · Sj

<latexit sha1_base64="QcWA/QRWhG2TnQixTBgO8XGRFLE=">AAAB/HicdZDNSgMxFIUz9a/Wv1GXboJFcCElU9TWXdGNy4q2FdqhZNK0Dc0kQ5KplKE+iUt1I259Exe+jel0BBW9EDh8517uzQkizrRB6MPJLSwuLa/kVwtr6xubW+72TlPLWBHaIJJLdRtgTTkTtGGY4fQ2UhSHAaetYHQx81tjqjST4sZMIuqHeCBYnxFsLOq67jUZ3jExoAoGUkuhu24RlRBCxwjBVKBUnFWqVQ9BLyNFkFW96753epLEIRWGcKx120OR8ROsDCOcTgudWNMIkxEe0LaVAodU+0l6+RQeWNKDfansEwam9PtEgkOtJ2FgO0Nshvq3N4NHQfiX3Y5Nv+onTESxoYLMd/VjDo2EsyRgjylKDJ9YgYli9lxIhlhhYmxeBZvD12fh/6JZLnmnpZOrcrF2niWSB3tgHxwCD1RADVyCOmgAAsbgATyBZ+feeXRenNd5a87JZnbBj3LePgHc9JTj</latexit>

Schwinger bosons

<latexit sha1_base64="yOcOiXjk9xhCVVR2bwes/u2Rgfk="></latexit>

hb↵i 6= 0:
Néel order

<latexit sha1_base64="/dXu8mJn93I4H6Dk/Jc4Bzzux34="></latexit>

hb↵i = 0:
Spin liquid

<latexit sha1_base64="OvNMfyo5yCtzCLcyZblCoDc4Zsc="></latexit>

Si =
1

2
b†i↵�↵�bi� ,

N=2X

↵=1

b†i↵bi↵ = nb = 2S

(a)

(b)

(a)

(b)

or

<latexit sha1_base64="L3AsDXUhuhVAM6NOmKYsd3Hm58o=">AAACMHicdVDLThsxFPXQlkfaQgpLNlYjJLoZeUIesEN0w5KqTUBiosjjuUmseOyRfYcSjfIj/Qy+gG35ArqquuimX1FPCAuqciVLV+ece6/PSXIlHTL2I1h58fLV6tr6Ru31m7ebW/V3231nCiugJ4wy9iLhDpTU0EOJCi5yCzxLFJwn048Vf34F1kmjv+Ash0HGx1qOpODooWG9FScwlroUoBHsvNbnCrQAmhidUmeUTOl+/+Tzh1oMOn1UDesNFrKj6LDZoSyMjlrtLvMNO2h3ozaNQraoBlnW2bD+O06NKDI/LhR37jJiOQ5KblEKBfNaXDjIuZjyMZQLT3O656GUjoz1TyNdoE90PHNuliVemXGcuH+5Cvwfd1ng6HBQSp0X6J0+HBoViqKhVUA0lRYEqhnlorJbcPT/EBNuufDe/S4HPmU9xkkZI1zjV5n6S2VL6iqXR/P0+abfDKNO2PnUbByfLBNaJ7vkPdknEemSY3JKzkiPCPKN3JLv5C64Ce6Dn8GvB+lKsJzZIU8q+PMXQdWqqw==</latexit>

Valence bond solid (VBS)

N. Read and S. Sachdev, Phys. Rev. Lett. 62, 1694 (1989) 
N. Read and S. Sachdev, Phys. Rev. B 42, 4568 (1990)

<latexit sha1_base64="8gbN+8YS4bfmsF00Uu40mfJKLdk=">AAAB73icdZDNSgMxFIUz9a/Wv6pLN8EiuJCakdLWXdGNK6ngtIV2KJk0bUOTzJhkhDL0GVyqG3HrA7nwbUynI6johcDhO/eSe08QcaYNQh9Obml5ZXUtv17Y2Nza3inu7rV0GCtCPRLyUHUCrClnknqGGU47kaJYBJy2g8nl3G/fU6VZKG/NNKK+wCPJhoxgY5F3fSr7Qb9YQmWEUAUhmAqUivNave4i6GakBLJq9ovvvUFIYkGlIRxr3XVRZPwEK8MIp7NCL9Y0wmSCR7RrpcSCaj9Jl53BI0sGcBgq+6SBKf0+kWCh9VQEtlNgM9a/vTk8CcRfdjc2w7qfMBnFhkqy+GsYc2hCOD8eDpiixPCpFZgoZteFZIwVJsZGVLA5fB0L/xets7JbLVdvKqXGRZZIHhyAQ3AMXFADDXAFmsADBDDwAJ7As3PnPDovzuuiNedkM/vgRzlvn3a7j5U=</latexit>

N/nb
<latexit sha1_base64="nEbmQBx6fpy8uVuSRSIx1FuUL9E="></latexit>

L = |(@µ � iaµ)z↵|2 + s|z↵|2 + u|z↵|4 + Lmonopole

<latexit sha1_base64="KlLq5Tmp0kWuKhXk5BnHNwHGjMM=">AAACb3icdVBbaxQxFM6MtzpeuuqDiiAHt0ILdckUtetbsS8+KKzgtoXNumQyZ2ZDM8mYZCzDsL74G33wJ/joPzC73YKKHgh8fBdOzpfVSjpP6fcovnT5ytVrG9eTGzdv3d7s3bl75ExjBY6FUcaeZNyhkhrHXnqFJ7VFXmUKj7PTw6V+/Bmtk0Z/8G2N04qXWhZScB+oWe8ry7CUuhOoPdpF8g65flZIVDm4WmpQ8lMjc8bgTPo5lLyuMYfMOKOlWDmMdgPGvjCWvDVngBpt2cIWq7ifZ1l3OFp8TLdgvJ3uhHBTIvg5GtsmDHV+sXTW69MBpfQ5pbACdAVe7Q+HKYV0zfTJekaz3jeWG9FUIS4Ud26S0tpPO269FAoXCWsc1lyc8hInAWpeoZt2q7IW8DQwORTGhqc9rNjfEx2vnGurLDiXR7i/tSW5m1X/kieNL4bTTuq68ajF+a6iUeANLMuHXFoUXrUBcGFl+C6IObdchBpcEnq4OBb+D472BunLwYv3e/2D1+tGNsgj8oRsk5TskwPyhozImAjyI9qMHkQPo5/x/fhxDOfWOFpn7pE/Jt75BRJbu70=</latexit>

Mean-field spin liquid
with gapped bosonic spinons.

Low energy CP1 U(1) gauge theory
<latexit sha1_base64="ZKw7+kPNnUCNHnID0LJkVNV0G8k="></latexit>

z↵ ⇠ bA↵ + "↵�b
†
B�

S=1/2 square lattice



<latexit sha1_base64="8ed0GZGhTgVKrmos80Tkrf4/uPE="></latexit>
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i<j

JijSi · Sj

<latexit sha1_base64="4umhIWyCWP0bNIpyE/QUI3k+XfM="></latexit>
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1

2
f†
i↵�↵�fi� ,

X

↵=",#
f†
i↵fi↵ = 1

<latexit sha1_base64="kUdVKvNjBzPk7NWjwprsQZ8wFRs=">AAAB/nicdZBNSwMxEIaz9bt+rXr0EiyCBynZorbeil48Klot1FKy6WwbmmSXJKuWRfCXeFQv4tU/4sF/Y7pWUNE5vTzvDDPzhongxhLy7hUmJqemZ2bnivMLi0vL/srquYlTzaDBYhHrZkgNCK6gYbkV0Ew0UBkKuAgHhyP/4gq04bE6s8ME2pL2FI84o9ahjr96yvrXXPVA4wi0dMx0/BIpE0J2CMG5ILnYr9ZqAcHBmJTQuI47/ttlN2apBGWZoMa0ApLYdka15UzAbfEyNZBQNqA9aDmpqATTzvLbb/GmI10cxW5/rCzO6feJjEpjhjJ0nZLavvntjeB2KP+yW6mNau2MqyS1oNjnrigV2MZ4lAXucg3MiqETlGnuzsWsTzVl1iVWdDl8PYv/F+eVcrBX3j2plOoH40Rm0TraQFsoQFVUR0foGDUQQzfoHj2iJ+/Oe/CevZfP1oI3nllDP8p7/QBwa5XG</latexit>

Schwinger fermions

I. Affleck and J.B. Marston, PRB 37, 3774 (1988)

<latexit sha1_base64="NyFE/bDdH9Xkejt8orEmIdkRW50="></latexit>

⇡-flux mean-field theory

with gapless spinons at 2 Dirac points.

Low energy theory of Nf = 2

Dirac fermions  s coupled to

an emergent SU(2)N gauge field.

Confining order parameters

are Néel and VBS states,

with a global SO(5)f symmetry!

Dual to CP1
U(1) gauge theory.

<latexit sha1_base64="pZy2pKy9zimfVgaRlKBqI8AOmH0="></latexit>
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hiji
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†
j↵fi↵

⌘
, "k = 2J

q
sin2(kx) + sin2(ky)

-flux Spin liquidπ
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1/2 quantum spin liquids. Using effective spin interactions from PFFRG as an input for the Fock equation and
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we find that in the regime of maximal frustration a SU(2) π -flux state with Dirac spinons yields the largest
mean-field amplitudes. For the kagome model, we identify a gapless Z2 spin liquid with a small circular spinon
Fermi surface and approximate Dirac cones at low but finite energies.

DOI: 10.1103/PhysRevB.99.100405

Introduction. The investigation of fractional quasiparticles
has developed into one of the most active research topics in
modern condensed-matter physics. In general, fractionaliza-
tion occurs whenever the excitations of a many-body system
carry quantum numbers which are fractions of those of the
actual elementary constituents. Lately, fractionalization has
attracted increasing interest in the context of magnetic sys-
tems where, among other examples [1,2], it manifests through
monopole excitations in classical spin ice systems [3–6] or
through spinons in spin-1/2 quantum spin liquids [7,8].

In the latter scenario, strong magnetic frustration effects
and large quantum fluctuations hinder a spin system from
developing conventional long-range magnetic order [9]. As a
consequence, the bosonic S = 1 spin-wave excitations of an
ordered state can decompose into fractional and deconfined
quasiparticles with spin S = 1/2, called spinons [10,11]. Be-
yond one dimension (1D), the low-energy theory of quantum
spin liquids also requires a coupling of the spinons to an
emergent gauge field which may enrich the system with any-
onic quasiparticle statistics [12] and topologically protected
ground-state degeneracies [13]. In two dimensions (2D), the
existence of fractionalized excitations in quantum spin liquids
is well established for only a handful of systems, namely,
the S = 1/2 Kalmeyer-Laughlin Abelian [14] and an S = 1
non-Abelian chiral spin liquid [15], the resonating-valence
bond phase in the quantum dimer model on the triangular
lattice [16], and the Kitaev model spin liquid [17].

The theoretical prediction of fractionalization in quantum
many-body systems starting from a “bare” Hamiltonian is
a notoriously difficult problem. Particularly, for a generic
frustrated Heisenberg model Ĥ =

∑
(i, j) Ji j Ŝi · Ŝ j already the

numerical identification of a spin-liquid ground state poses
a significant challenge. The characterization of its emergent

excitations (such as spinon band structures and the type of
gauge field they are associated with) represents an even more
difficult endeavor. Important but somewhat indirect insight
into spinon properties can be gained from the scaling of the
entanglement entropy calculated by density-matrix renormal-
ization group (DMRG) [18,19] (which recently even allowed
for a qualitative investigation of emergent Dirac spinons in
the kagome spin liquid [20]). Furthermore, variational Monte
Carlo (VMC) allows one to identify the free fermion model
with the lowest variational energy of its Gutzwiller-projected
ground state, however, this free fermion model does not
necessarily describe the system’s spinon excitations (yet, it
has recently met with some success in describing spinon
excitations [21,22]).

In this Rapid Communication we develop and apply a nu-
merical technique based on pseudofermion functional renor-
malization group (PFFRG) [23] which directly calculates low-
energy effective theories of fermionic spinons in a quantum
spin liquid. Within our method, we first calculate renormal-
ized spin interactions via one-loop PFFRG by integrating out
energy modes of the system down to a low but finite scale ".
These effective interactions are then used in a Fock-like mean-
field scheme treating the remaining low-energy modes and al-
lowing us to determine the kinetic terms of an effective spinon
theory (including spinon hopping and singlet pairing). This
approach combines the strengths of PFFRG which captures
significant parts of the system’s quantum fluctuations with
the advantages of a mean-field treatment wherein emergent
spinon properties (that would not follow from a PFFRG
calculation alone) may be determined self-consistently (see
also Refs. [24,25] for related works on Hubbard models).
We apply our approach to spin-liquid candidate systems on
the square and kagome lattices where the possible Ansätze
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FIG. 1. Total amplitudes ξ = (|t |2 + |"|2)1/2 from plain mean
field [Eq. (2)] for the Z2Azz13 and Z2Bzz13 states on the square lat-
tice with J2/J1 = 0.55. Also shown is the amplitude of the imaginary
second-neighbor idxy pairing which appears on top of the Z2Azz13
state. Note that the plain mean-field amplitudes are defined as a
function of temperature instead of #. Inset: Illustration of both states
where red lines (blue dots) denote negative hoppings (pairings) while
otherwise the amplitudes are positive.

J1-J2 square lattice Heisenberg model. We first present
results for the J1-J2 Heisenberg model on the 2D square
lattice with antiferromagnetic J1, J2 > 0. In a regime around
J2/J1 = 0.55, most numerical methods (including PFFRG
[23]) predict a nonmagnetic ground state [61–66] represent-
ing a promising quantum spin-liquid candidate due to small
valence-bond dimer susceptibilities [23].

To illustrate our combined PFFRG plus mean-field proce-
dure and to benchmark with previous studies we first discuss
the results of a plain mean-field treatment using Eq. (2)
with bare couplings Ji j and no renormalized self-energy $#

inserted. We set J2/J1 = 0.55 and proceed successively by
starting with nearest-neighbor amplitudes t1,"1 and then
add second-neighbor terms t2,"2. On the nearest-neighbor
level, the two PSGs labeled Z2Azz13 and Z2Bzz13 (see
Ref. [26]) already cover all possible hopping/pairing terms
(which can always be chosen real). The Z2Azz13 state has
isotropic hopping t1 and dx2−y2 pairing "1 while Z2Bzz13
exhibits staggered hopping t1 and pairing "1 (see the inset of
Fig. 1 for illustrations). Our plain mean-field results in Fig. 1
indicate that below T ≈ 0.19J1 the state Z2Azz13 acquires
the largest amplitudes and, hence, appears to be preferred.
Furthermore, we find equal hopping and pairing t1 = "1 for
this state, in which case it can be shown that Z2Azz13 actually
becomes gauge equivalent to the well-known SU(2) π -flux
state (denoted SU2Bn0 in Ref. [26]) with π flux through every
elementary square plaquette.

Next, we consider second-neighbor terms on top of the
preferred π -flux state. The only symmetry-allowed ampli-
tudes are real isotropic or real dxy hoppings t2. Interestingly,
neither of the two become finite in this approach. In fact,
the only finite (albeit small) second-neighbor term we find
is an imaginary idxy pairing "2 which breaks time-reversal
invariance, hence, signaling a chiral spin liquid (see the green
line in Fig. 1). Most importantly, this chiral state agrees with
the one identified in the mean-field treatment of Ref. [26],
confirming the correctness of our considerations. The band
structure is shown in Fig. S2 [67].

FIG. 2. Total amplitudes ξ = (|t |2 + |"|2)1/2 from full PFFRG
plus mean field [Eq. (3)] for the Z2Azz13 and Z2Bzz13 states on the
square lattice with J2/J1 = 0.55. The inset shows ξ for both states at
small # → 0 within a wider range of J2/J1.

We now repeat this analysis for the full PFFRG plus mean-
field approach. Our results for the nearest-neighbor ampli-
tudes of the Z2Azz13 and Z2Bzz13 states are shown in Fig. 2.
Interestingly, the overall result remains rather unchanged,
particularly, we again find the Z2Azz13 state to be preferred.
As before, the nearest-neighbor amplitudes are identical
(t1 = "1) which suggests a SU(2) π -flux state. Considering
longer-range terms, we do not detect any of the aforemen-
tioned second-neighbor amplitudes, not even the chiral idxy
term. Hence, we conclude that the previous detection of a
chiral spin liquid was an artifact of the plain mean-field
treatment. As shown in Fig. 3, the SU(2) π -flux state which
we propose for this system features four gapless spinon Dirac
cones with nodal Fermi points at k = (±π

2 ,±π
2 ). We also

calculated the amplitude ξ of both states within an extended
region of J2/J1 and find that Z2Azz13 remains stable through-
out the magnetically disordered regime (which ranges approx-
imately from J2/J1 = 0.4 to 0.6). Particularly, deep within
the Néel (collinear) ordered phase at J2 ! 0.4J1 (J2 " 0.6J1)
the amplitudes ξ are seen to vanish, confirming a direct
connection to strong quantum fluctuations [71].

FIG. 3. Spinon bands from PFFRG plus Fock mean-field in the
limit # → 0 for (a) the Z2Azz13 state of the square lattice Heisen-
berg antiferromagnet and (b) the Z2[0, π ]α state of the kagome
Heisenberg antiferromagnet. In (b), only the negative part of the
spectrum is shown while the positive part is the exact particle-hole
transformed counterpart. The gray region is the first Brillouin zone
with the Fermi surface indicated by black rings (the nearest-neighbor
lattice constant is always set to one).
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We investigate the spin- 1
2 Heisenberg model on the triangular lattice in the presence of nearest-neighbor J1

and next-nearest-neighbor J2 antiferromagnetic couplings. Motivated by recent findings from density-matrix
renormalization group (DMRG) claiming the existence of a gapped spin liquid with signatures of spontaneously
broken lattice point group symmetry [Zhu and White, Phys. Rev. B 92, 041105 (2015) and Hu, Gong, Zhu, and
Sheng, Phys. Rev. B 92, 140403 (2015)], we employ the variational Monte Carlo (VMC) approach to analyze
the model from an alternative perspective that considers both magnetically ordered and paramagnetic trial states.
We find a quantum paramagnet in the regime 0.08 ! J2/J1 ! 0.16, framed by 120◦ coplanar (stripe collinear)
antiferromagnetic order for smaller (larger) J2/J1. By considering the optimization of spin-liquid wave functions
of a different gauge group and lattice point group content as derived from Abrikosov mean-field theory, we
obtain the gapless U(1) Dirac spin liquid as the energetically most preferable state in comparison to all symmetric
or nematic gapped Z2 spin liquids so far advocated by DMRG. Moreover, by the application of few Lanczos
iterations, we find the energy to be the same as the DMRG result within error bars. To further resolve the intriguing
disagreement between VMC and DMRG, we complement our methodological approach by the pseudofermion
functional renormalization group (PFFRG) to compare the spin structure factors for the paramagnetic regime
calculated by VMC, DMRG, and PFFRG. This model promises to be an ideal test bed for future numerical
refinements in tracking the long-range correlations in frustrated magnets.

DOI: 10.1103/PhysRevB.93.144411

I. INTRODUCTION

Quantum antiferromagnetic models on two-dimensional
frustrated lattices provide a natural habitat for the birth of
novel quantum spin-liquid states [1–3], whose search has been
a keynote of contemporary condensed matter physics [4]. For
example, spin- 1

2 Heisenberg models defined on the kagome
lattice have been shown to potentially host exotic spin liquids,
sometimes with controversial findings from different numeri-
cal methods. This includes potential microscopic models for
the chiral spin liquid as originally described by Kalmeyer and
Laughlin and similar states [5–20], the gapped (topological)Z2
spin liquid proposed to describe the properties of the nearest-
neighbor model of this highly frustrated lattice [21–24], the
foundation of paradigmatic gapless spin liquids such as the
U(1) Dirac spin liquid and algebraic spin liquids [25–28],
and attempts to resolve magnetic phase diagrams assisting
the experimental investigation of Herbertsmithite crystals and
polymorphs thereof [29–33].

Another prominent candidate model conjectured to host a
quantum paramagnetic ground state is the spin- 1

2 triangular
lattice with both antiferromagnetic nearest-(J1) and next-
nearest-neighbor (J2) couplings [34,35]. Although there are
several compounds in which magnetic moments lie on stacked
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layers with a triangular geometry, most of them have sizable
distortions, leading to spatial anisotropies along different
directions [36,37]. Very recently, it has been claimed that
Ba3CoSb2O9 gives an almost perfect realization of a spin- 1

2
equilateral triangular lattice antiferromagnet, with both J1
and J2 couplings [38]. From a theoretical point of view, the
classical limit of the J1-J2 model has three different phases:
for J2/J1 < 1/8, the system has three-sublattice 120◦ coplanar
order, for 1/8 < J2/J1 < 1 it is infinitely degenerate (with
four-sublattice periodicity, in which the only constraint is to
have the four spins sum to zero), and for J2/J1 > 1 it features
generic incommensurate spiral structures. By including spin-
wave fluctuations, both at the lowest (first) and second
orders, the coplanar phase remains stable, while the accidental
degeneracy of the intermediate phase is lifted in favor of a
stripe collinear order with two-sublattice periodicity [35,39].
Naturally, quantum paramagnetic domains tend to emerge in
the vicinity of classical transition points, i.e., J2/J1 = 1/8
and J2/J1 = 1; however, their actual stabilization is not
clear within spin-wave approaches [35,39]. Subsequent works
have shown conflicting results on the possible existence,
extent, and nature of nonmagnetic phases [39–46]. Some
more recent studies have vouched for the existence of a
quantum paramagnet in the vicinity of J2/J1 = 1/8, while the
problem of the precise identification of its nature and extent in
parameter space remains an open issue: a Schwinger-boson
approach found the corresponding window to be 0.12 !
J2/J1 ! 0.19 with no further clarification of the nature of the
paramagnetic state [45], while a high-order coupled-cluster
method (CCM) study predicted a quantum paramagnet for
0.060(10) " J2/J1 " 0.165(5) [46], with a spin-triplet gap
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which vanishes in the entire paramagnetic regime [47]. In
addition, two different variational Monte Carlo (VMC) studies
claimed for a gapless spin liquid close to J2/J1 = 1/8: Kaneko
and co-workers [48] used a full optimization of the pairing of a
Gutzwiller-projected BCS wave function [obtaining a critical
spin liquid for 0.10(1) ! J2/J1 ! 0.135(5)] and Mishmash
and collaborators [49] considered few variational Ansätze to
describe both magnetic and nonmagnetic phases (here, they
obtained evidence for a gapless nodal d-wave spin liquid for
0.06 " J2/J1 " 0.17). In the former case, the full optimization
of the pairing function faces technical difficulties, which
make it difficult to reach true energy minima; in the latter
one, the variational states are relatively simple and do not
exhaust the rich variety of states that can be obtained within
the fermionic representation of Gutzwiller-projected states.
Indeed, the variational energies that we get are much better
than those of these two papers, indicating the high accuracy of
the present approach.

By contrast, density-matrix renormalization group
(DMRG) studies find a gapped Z2 topological spin liquid
for 0.06 " J2/J1 " 0.17 [50] and 0.08 " J2/J1 " 0.16 [51],
with signatures of possible spontaneously broken rotational
symmetry. Following this proposal, Zheng, Mei, and Qi, [52],
and, in an independent work, Lu [53] have performed a
classification of symmetric and nematic Z2 spin liquids, and
pointed out promising candidates at the fermionic mean-
field level. This approach was extended by Bieri, Lhuillier,
and Messio [54] to include chiral spin liquids as well. A
bosonic mean-field classification has likewise been accom-
plished [55,56], with some of the states addressed already in
earlier works [57,58].

In this paper, we address the J1-J2 Heisenberg model on
the triangular lattice from the viewpoint of versatile Gutzwiller
projected Abrikosov-fermion wave functions (optionally sup-
plemented by Lanczos optimization), which we implemented
by using efficient VMC techniques. To enable a comparison of
the variational energies, we also perform DMRG and Lanczos
diagonalizations for specific regions in parameter space. In
order to resolve the magnetic susceptibility profile in the
paramagnetic regime, we employ pseudofermion functional
renormalization group (PFFRG) calculations, the results of
which are then compared with analogous results from DMRG
and VMC. Our main VMC results are summarized as follows:
a spin-liquid phase is stabilized for 0.08 " J2/J1 " 0.16
(Fig. 1), in excellent agreement with DMRG [50,51] and
CCM [46]. Within the spin-liquid regime, however, we find
no signal of stabilization for any of the gapped symmetric
or nematic Z2 states proposed in Refs. [52,53]. In particular,
the gapped Z2 spin liquids are found to have higher energies
compared to the gapless U(1) Dirac spin liquid (DSL); the
gapless Z2 spin liquids suffer the same fate. We find that
nematic order only onsets simultaneously with collinear anti-
ferromagnetic order, which is also supported by the analysis
of nematic response functions in PFFRG. On performing a
couple of Lanczos optimization steps on the VMC variational
result, followed by a zero-variance extrapolation, we obtain
estimates of the exact ground-state and S = 2 excited-state
energies on different cluster sizes. Our estimate of the ground-
state energy on finite-systems is in excellent agreement with

(a) 120 AF (c) Stripe AF(b) Spin liquid
J2/J10.160.080

FIG. 1. Schematic illustrations of the coplanar three-sublattice
(black, blue, and red) magnetic order on the triangular lattice
(a), the resonating-valence bond spin liquid (b), and the collinear
two-sublattice (blue and red) stripe magnetic order (c). The phase
diagram, as obtained by using variational Monte Carlo method is
also reported. Note that the DSL found here can be represented as a
resonating-valence bond spin liquid with a power-law distribution of
bond amplitudes.

exact diagonalization and other numerical methods. In the
thermodynamic limit, our estimate of the ground-state energy
is equal to the one obtained by DMRG, within error bars.
However, in contrast to DMRG results, which found a finite
spin excitation gap, the S = 2 gap computed in VMC is found
to extrapolate to zero (within error bars) in the thermodynamic
limit. These findings strongly point to a gapless spin liquid
ground state, yielding a clear disagreement with the findings
by DMRG.

The article is organized as follows. In Sec. II, we describe
the model Hamiltonian and discuss its finite-size spectra
obtained from exact diagonalization, followed by a description
of the pseudofermion spin representation framework. In
Sec. III, the variational Monte Carlo method, the associated
wave functions, and the pseudofermion functional renormal-
ization group method are explained. In Sec. IV, we present the
results on, the energy optimization of competing variational
states, spin excitation gap, spin structure factors, followed by a
discussion of the findings from different methods. Conclusions
are given in Sec. V.

II. MODEL

The Hamiltonian for the spin- 1
2 Heisenberg J1-J2 antifer-

romagnetic model is

H = J1

∑

〈i,j〉
Si · Sj + J2

∑

〈〈i,j〉〉
Si · Sj , (1)

where both J1 and J2 are positive; 〈i,j 〉 and 〈〈i,j 〉〉 denote
sums over nearest-neighbor (NN) and next-nearest-neighbor
(NNN) pairs of sites, respectively. Si = (Sx

i ,S
y
i ,Sz

i ) denotes
the spin operator acting on a spin- 1

2 at site i. All energies will
be given in units of J1.

A. Finite-size spectra

Before discussing our main results based on VMC and
PFFRG approaches (see Sec. IV), we would like to show
the results of exact diagonalizations on a small 6 × 6 cluster.
All eigenstates can be classified according to their quantum
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Quantum electrodynamics in 2þ 1 dimensions (QED3) has been proposed as a critical field theory
describing the low-energy effective theory of a putative algebraic Dirac spin liquid or of quantum phase
transitions in two-dimensional frustrated magnets. We provide compelling evidence that the intricate
spectrum of excitations of the elementary but strongly frustrated J1-J2 Heisenberg model on the triangular
lattice is in one-to-one correspondence to a zoo of excitations from QED3, in the quantum spin liquid
regime. This evidence includes a large manifold of explicitly constructed monopole and bilinear excitations
of QED3, which is thus shown to serve as an organizing principle of phases of matter in triangular lattice
antiferromagnets and their low-lying excitations. Moreover, we observe signatures of emergent valence-
bond solid (VBS) correlations, which can be interpreted either as evidence of critical VBS fluctuations of
an emergent Dirac spin liquid or as a transition from the 120° Néel order to a VBS whose quantum critical
point is described by QED3. Our results are obtained by comparing ansatz wave functions from a parton
construction to exact eigenstates obtained using large-scale exact diagonalization up to N ¼ 48 sites.

DOI: 10.1103/PhysRevX.14.021010 Subject Areas: Computational Physics,
Condensed Matter Physics,
Strongly Correlated Materials

I. INTRODUCTION

The emergence of collective equations of motion from
seemingly unrelated microscopic interactions is one of the
most fascinating aspects of many-body physics. Strongly
correlated electrons can realize intriguing quantum field
theories (QFT) as their low-energy effective description,
which otherwise are used to describe the fundamental laws
of elementary particles. Quantum spin liquids (QSL) in
frustrated magnetism are a particularly exciting instance of
emergent QFTs [1]. Topological QFTs describe certain
gapped QSLs that have been shown both analytically and
numerically to emerge in local spin models, which includes
the emergentZ2 lattice gauge theory in the toric code or the

Kitaev’s honeycomb model [2] as well as Chern-Simons
theories realized in chiral spin liquids [3,4], which have
been discovered in simple Heisenberg-like Hamiltonians
on the triangular and kagome lattice [5–11].
The arguably most widely known QFT is quantum

electrodynamics (QED). While on one hand, it is the
fundamental theory of fermions coupled to a U(1) gauge
field describing the physics of elementary electrons and
photons, it has also been discussed as an emergent field
theory in frustrated magnets. Remarkably, QED in three
spatial dimensions can be realized in pyrochlore spin-ice
compounds [12–14]. Condensed matter systems also allow
for the realization of QED in less than three spatial
dimensions. The physics of QED in 2þ 1 dimensions
(QED3) is considered to be more strongly coupled than its
3þ 1-dimensional counterpart while exhibiting a richer
phenomenology than the confining 1þ 1-dimensional
QED, also referred to as the Schwinger model. However,
the physics of QED3 is still a subject of intense research.
Previously, QED3 has been suggested as an effective

field theory for so-called algebraic or Dirac spin liquids
(DSL) in quantum magnets [15–17]. While model wave
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which yields oBn ¼ 1 if jψni is an element of the space B
and oBn ¼ 0 if the state is orthogonal.
By construction, nonzero overlaps are only found with

states at momenta Γ or M due to the momentum con-
servation of the Gutzwiller projection. An overview of all
states with significant overlap is shown by yellow and
green symbols in Fig. 4. Prominently, the bilinear excita-
tions have a sizable overlap of up to oB0

n ≈ 0.74, with the
low-lying S ¼ 1 Γ:B1 level belonging to the tower of states
of the 120° Néel state along with the S ¼ 1 K:A1 level,
which we previously found to have large overlaps with the
triplet-monopole excitation. Interestingly, the lowest-lying
S ¼ 0 level at M.B2 also has sizable overlaps of up to
oB0
n ≈ 0.54. Regarding the point-group quantum numbers,

some quantitative predictions have been made in Ref. [48]:
The bilinear excitations are expected at Γ orM, and they are
all odd under reflection. We confirm large overlaps with
odd states (Γ:E2 or M:B2), but we also find states that are
even under reflection. As Ref. [48] considered the N2

f ¼ 16

neutral bilinear field operators, the torus geometry with its
more complex excitation spectrum explains this discrep-
ancy in the number of bilinear states, as emphasized
in Ref. [43].
Furthermore, we have considered bilinear excitations

with a minimal momentum transfer distinct from Γ and
M, which are degenerate in energy before projectionwith the
already-considered set. This case yields another set of 48
Sz ¼ 0 ansatz wave functions. Again, we find these states to
be linearly independent, spanning a space we call B1. Many
low-lying exact eigenstates are found to have significant
overlaps oB1

n with this space (cf. Fig. 4). Most notably,
the low-lying Y0:B state has overlaps of up to oB1

n ≈ 0.67.
We emphasize the large number of low-lying bilinear

excitations, 24ðk ¼ Γ;MÞ þ 48ðk ≠ Γ;MÞ ¼ 72 states with
Sz ¼ 0 and another 72 stateswith totalSz ¼ %1 expected for
the DSL on the torus. Thus, there are a total of 144 low-lying
bilinear excitations of the parton ansatz (cf. Appendix F).
The counting described is valid whenever each Dirac point
has three symmetric neighboring momenta whose quasi-
particle energy bands have exactly the same energy. This
case holds for both the N ¼ 36- and N ¼ 48-site clusters in
this paper, as well as, more generically, 6N × 6N clusters
for N ≥ 1.
As a remarkable result of this construction, we find that

almost the entire complex and dense low-energy spectrum
in the paramagnetic regime have significant overlaps, with
either the vacuum state, monopoles, or bilinear excitations,
as is perfectly visible in Fig. 4. Again, the overlaps of the
bilinear excitations are maximized in the paramagnetic
regime while sharply dropping off in the stripy phase. Quite
interestingly, even in the 120° Néel phase, some overlaps
are still significant. We interpret this as a sign that the 120°
Néel is a natural descendant of the DSL, while the collinear
stripy phase has not been identified as an instability of
the DSL.

E. Quantum dimer model

While we have a way to construct “model states” for the
vacuum, the monopoles, and the fermion bilinear excita-
tions, we are not aware of a correspondingly simple way to
construct the gauge-field states of QED3 on the torus. At
Nf → ∞, the photon modes have been calculated for the
square torus [43], and the softest gauge-field excitation lies
even below the first bilinear level on the square torus. At
Nf ¼ 4, there are no corresponding results available.
Therefore, we pursue a rather different avenue here by

investigating the energy spectrum of the hardcore quantum
dimer model (QDM) on the triangular lattice and compar-
ing it to the J1-J2 Heisenberg model on the same finite-size
clusters. There are two different points of view on this
procedure. The first one is that there is a long history in
frustrated quantum magnetism to investigate QDMs as
effective models for the singlet subspace of S ¼ 1=2
Heisenberg Hamiltonians in magnetically disordered
phases, such as VBS or spin liquid phases [50,65–68].
Most of these applications were for square and kagome
lattices, but none for the triangular lattice so far [69]. The
other point of view is to consider the QDM as a quantum
link model for a pure gauge theory, possibly with static
background charges [70]. In this context, however, the
triangular lattice QDM would be expected to describe a Z2

gauge theory and not a Uð1Þ theory. The tension between
these two points of view needs to be clarified in future work
in view of our findings below.
The triangular lattice QDM was shown [71] to host an

intriguing Z2 spin liquid for values of V=t∈ ½0.8; 1', i.e., in
the vicinity of the Rokhsar-Kivelson point V=t ¼ 1. For
smaller V=t values, a valence-bond solid with a 12-site unit

FIG. 4. Overlaps of low-energy levels at J2=J1 ¼ 0.125 with
the QED3 ansatz wave functions from Gutzwiller projection. For
the vacuum and monopole states, we show on, whereas for the
bilinear excitations, oB0;1

n is shown. The diameter of the colored
circles is proportional to the overlap with the state at the center of
the circle. We observe that almost every eigenstate in the dense
low-energy ED spectrum has significant overlap with only one of
the various excitation ansatz types.
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correlated electrons can realize intriguing quantum field
theories (QFT) as their low-energy effective description,
which otherwise are used to describe the fundamental laws
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frustrated magnetism are a particularly exciting instance of
emergent QFTs [1]. Topological QFTs describe certain
gapped QSLs that have been shown both analytically and
numerically to emerge in local spin models, which includes
the emergentZ2 lattice gauge theory in the toric code or the

Kitaev’s honeycomb model [2] as well as Chern-Simons
theories realized in chiral spin liquids [3,4], which have
been discovered in simple Heisenberg-like Hamiltonians
on the triangular and kagome lattice [5–11].
The arguably most widely known QFT is quantum

electrodynamics (QED). While on one hand, it is the
fundamental theory of fermions coupled to a U(1) gauge
field describing the physics of elementary electrons and
photons, it has also been discussed as an emergent field
theory in frustrated magnets. Remarkably, QED in three
spatial dimensions can be realized in pyrochlore spin-ice
compounds [12–14]. Condensed matter systems also allow
for the realization of QED in less than three spatial
dimensions. The physics of QED in 2þ 1 dimensions
(QED3) is considered to be more strongly coupled than its
3þ 1-dimensional counterpart while exhibiting a richer
phenomenology than the confining 1þ 1-dimensional
QED, also referred to as the Schwinger model. However,
the physics of QED3 is still a subject of intense research.
Previously, QED3 has been suggested as an effective
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of the 120° Néel state along with the S ¼ 1 K:A1 level,
which we previously found to have large overlaps with the
triplet-monopole excitation. Interestingly, the lowest-lying
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neutral bilinear field operators, the torus geometry with its
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ancy in the number of bilinear states, as emphasized
in Ref. [43].
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already-considered set. This case yields another set of 48
Sz ¼ 0 ansatz wave functions. Again, we find these states to
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excitations, 24ðk ¼ Γ;MÞ þ 48ðk ≠ Γ;MÞ ¼ 72 states with
Sz ¼ 0 and another 72 stateswith totalSz ¼ %1 expected for
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The counting described is valid whenever each Dirac point
has three symmetric neighboring momenta whose quasi-
particle energy bands have exactly the same energy. This
case holds for both the N ¼ 36- and N ¼ 48-site clusters in
this paper, as well as, more generically, 6N × 6N clusters
for N ≥ 1.
As a remarkable result of this construction, we find that

almost the entire complex and dense low-energy spectrum
in the paramagnetic regime have significant overlaps, with
either the vacuum state, monopoles, or bilinear excitations,
as is perfectly visible in Fig. 4. Again, the overlaps of the
bilinear excitations are maximized in the paramagnetic
regime while sharply dropping off in the stripy phase. Quite
interestingly, even in the 120° Néel phase, some overlaps
are still significant. We interpret this as a sign that the 120°
Néel is a natural descendant of the DSL, while the collinear
stripy phase has not been identified as an instability of
the DSL.

E. Quantum dimer model

While we have a way to construct “model states” for the
vacuum, the monopoles, and the fermion bilinear excita-
tions, we are not aware of a correspondingly simple way to
construct the gauge-field states of QED3 on the torus. At
Nf → ∞, the photon modes have been calculated for the
square torus [43], and the softest gauge-field excitation lies
even below the first bilinear level on the square torus. At
Nf ¼ 4, there are no corresponding results available.
Therefore, we pursue a rather different avenue here by

investigating the energy spectrum of the hardcore quantum
dimer model (QDM) on the triangular lattice and compar-
ing it to the J1-J2 Heisenberg model on the same finite-size
clusters. There are two different points of view on this
procedure. The first one is that there is a long history in
frustrated quantum magnetism to investigate QDMs as
effective models for the singlet subspace of S ¼ 1=2
Heisenberg Hamiltonians in magnetically disordered
phases, such as VBS or spin liquid phases [50,65–68].
Most of these applications were for square and kagome
lattices, but none for the triangular lattice so far [69]. The
other point of view is to consider the QDM as a quantum
link model for a pure gauge theory, possibly with static
background charges [70]. In this context, however, the
triangular lattice QDM would be expected to describe a Z2

gauge theory and not a Uð1Þ theory. The tension between
these two points of view needs to be clarified in future work
in view of our findings below.
The triangular lattice QDM was shown [71] to host an

intriguing Z2 spin liquid for values of V=t∈ ½0.8; 1', i.e., in
the vicinity of the Rokhsar-Kivelson point V=t ¼ 1. For
smaller V=t values, a valence-bond solid with a 12-site unit

FIG. 4. Overlaps of low-energy levels at J2=J1 ¼ 0.125 with
the QED3 ansatz wave functions from Gutzwiller projection. For
the vacuum and monopole states, we show on, whereas for the
bilinear excitations, oB0;1

n is shown. The diameter of the colored
circles is proportional to the overlap with the state at the center of
the circle. We observe that almost every eigenstate in the dense
low-energy ED spectrum has significant overlap with only one of
the various excitation ansatz types.
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cell is realized with an estimated parameter extent in
V=t∈ ½−0.75" 0.25; 0.8# [71,72]. Our own exact diago-
nalization spectra shown in Fig. 11 suggest that V=t ¼
−1.0 is still within the VBS phase for the considered
clusters. For even more negative values of V=t, a columnar
VBS phase is found.
Interestingly, we find that many singlet levels of the low-

energy spectrum of the Heisenberg model at J2=J1 ¼ 0.125
are surprisingly well reproduced by the low-energy spec-
trum of the QDM at V=t ¼ −1.0; see Fig. 5(a). We observe
that the first excited state in both cases is a singlet at Γ:E2.
The next low-lying excitations are two excitations at X1:A
and X2:B for both the QDM and the spin model. These
excitations are then followed by two singlet excitations at
M:B1 andM:B2. Moreover, we observe a low-lying singlet
state at K:E, which cannot be described as a monopole or
bilinear excitation; see Fig. 4. These momenta are exactly
what is expected for a lozenge VBS (cf. Table I). However,
we could not match all of the respective point group irreps,
which can differ in a spin model, where nontrivial phases of
the resonating dimers can occur. This unexpected (but not
perfect) similarity of the low-energy spectrum of the two
models raises the possibility that the QED3 region of the
triangular lattice is actually unstable and flows to a
confining phase in the IR. The known QDM phase diagram
suggests that this confining phase could be a 12-site unit-
cell VBS. In order to probe for this possibility, we have

calculated the dimer-dimer correlations of both models in
Figs. 5(b) and 5(c). While the qualitative agreement
between the correlations of the two models is remarkable,
in the spin model the correlations decay faster with distance
[73]. It will be interesting for future research to explore
whether there is a small but finite VBS order parameter in
the spin liquid region or whether these correlations are
ultimately just the critical VBS fluctuations expected in the
QED3 Dirac spin liquid.

V. DISCUSSION AND CONCLUSION

In this work, we have revealed a rather compelling one-to-
one correspondence between the elementary excitations of
QED3 and the excitations of the triangular J1-J2 Heisenberg
model (see Fig. 4). Even though the structure of low-energy
excitations in the paramagnetic regime is rather complex, we
have demonstrated that monopole and bilinear excitations of
the π-flux ansatz have comprehensive overlaps with almost
all low-lying eigenstates. Thus, we can compellingly con-
clude QED3 to be the organizing principle of the phases of
matter in and close to the paramagnetic regime. Moreover,
we have pointed out a close resemblance between the dimer
correlations and low-lying energy spectrum of the J1-J2
model in the paramagnetic regime and the quantum
dimer model in the valence-bond solid phase on both the
N ¼ 36- and N ¼ 48-site clusters. This finding could
constitute evidence for a valence-bond solid being realized,
as also found in recent large-scale DMRG simulations
pointing out quasi-long-range dimer order [32]. In light
of our findings, we discuss possible scenarios for the phase
diagram of the J1-J2 model.
A transition from the 120° Néel phase to the 12-site

valence-bond solid appears to be a possible scenario. From
a field theoretical perspective, such a transition can be
described by a deconfined quantum critical point [74–76].
As pointed out in Ref. [77], this precise critical point on the
triangular lattice would be described by an Nf ¼ 4 QED3

with an emergent PSUð4Þ ¼ SUð4Þ=Z4 symmetry. As a
consequence of this enhanced symmetry, an exact degen-
eracy between the singlet and triplet monopoles in the
spectrum should be observed. Indeed, we find that the energy
levels of the two types of monopoles are close to being
degenerate at the critical point J2=J1 ¼ 0.09, while a larger
splitting between these levels is observed throughout the
remaining paramagnetic regime. In the case of an extended
DSL region, the same degeneracy between singlet and triplet
monopoles would be expected, while our results show
growing energy splitting between them as J2=J1 ≳ 0.1.
A second scenario is that the paramagnetic regime

indeed realizes a stable Dirac spin liquid phase. Even
though we do not observe the expected degeneracy
between the two monopole excitations to be realized, we
cannot rule out that the remaining energy splitting is
still a finite-size effect. Recent work is concerned with
the stability of a DSL as a function of Nf [37,38,40], and

FIG. 5. (a) Comparison of the low-lying energy spectrum of the
J1-J2 model at J2=J1 ¼ 0.125 and the QDM model at V=t ¼
−1.0 on the N ¼ 48 cluster. The filled (open) circles denote even
(odd) spin levels. The QDM is only expected to reproduce filled
levels because it cannot describe states with total spin S > 0.
(b) Connected dimer correlations hðSz0Sz1ÞðSzi SzjÞic of the ground
state from ED of the J1-J2 model at J2=J1 ¼ 0.125 on the N ¼
48 cluster. (c) Connected dimer correlations of the QDM in the
VBS phase at V=t ¼ −1.0. We observe a close resemblance
between these patterns.
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Quantum electrodynamics in 2þ 1 dimensions (QED3) has been proposed as a critical field theory
describing the low-energy effective theory of a putative algebraic Dirac spin liquid or of quantum phase
transitions in two-dimensional frustrated magnets. We provide compelling evidence that the intricate
spectrum of excitations of the elementary but strongly frustrated J1-J2 Heisenberg model on the triangular
lattice is in one-to-one correspondence to a zoo of excitations from QED3, in the quantum spin liquid
regime. This evidence includes a large manifold of explicitly constructed monopole and bilinear excitations
of QED3, which is thus shown to serve as an organizing principle of phases of matter in triangular lattice
antiferromagnets and their low-lying excitations. Moreover, we observe signatures of emergent valence-
bond solid (VBS) correlations, which can be interpreted either as evidence of critical VBS fluctuations of
an emergent Dirac spin liquid or as a transition from the 120° Néel order to a VBS whose quantum critical
point is described by QED3. Our results are obtained by comparing ansatz wave functions from a parton
construction to exact eigenstates obtained using large-scale exact diagonalization up to N ¼ 48 sites.
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I. INTRODUCTION

The emergence of collective equations of motion from
seemingly unrelated microscopic interactions is one of the
most fascinating aspects of many-body physics. Strongly
correlated electrons can realize intriguing quantum field
theories (QFT) as their low-energy effective description,
which otherwise are used to describe the fundamental laws
of elementary particles. Quantum spin liquids (QSL) in
frustrated magnetism are a particularly exciting instance of
emergent QFTs [1]. Topological QFTs describe certain
gapped QSLs that have been shown both analytically and
numerically to emerge in local spin models, which includes
the emergentZ2 lattice gauge theory in the toric code or the

Kitaev’s honeycomb model [2] as well as Chern-Simons
theories realized in chiral spin liquids [3,4], which have
been discovered in simple Heisenberg-like Hamiltonians
on the triangular and kagome lattice [5–11].
The arguably most widely known QFT is quantum

electrodynamics (QED). While on one hand, it is the
fundamental theory of fermions coupled to a U(1) gauge
field describing the physics of elementary electrons and
photons, it has also been discussed as an emergent field
theory in frustrated magnets. Remarkably, QED in three
spatial dimensions can be realized in pyrochlore spin-ice
compounds [12–14]. Condensed matter systems also allow
for the realization of QED in less than three spatial
dimensions. The physics of QED in 2þ 1 dimensions
(QED3) is considered to be more strongly coupled than its
3þ 1-dimensional counterpart while exhibiting a richer
phenomenology than the confining 1þ 1-dimensional
QED, also referred to as the Schwinger model. However,
the physics of QED3 is still a subject of intense research.
Previously, QED3 has been suggested as an effective

field theory for so-called algebraic or Dirac spin liquids
(DSL) in quantum magnets [15–17]. While model wave
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The low-lying states match those of

the quantum dimer model,

indicating a nearly-critical charge-2

Higgs field in Nf = 4 QED.



FIG. 1. We plot the phase diagram of an O(4) vector model coupled to an odd Z2 gauge field on a

triangular lattice, as determined through classical Monte Carlo simulations. The model exhibits three

phases, which correspond to a quantum spin liquid,
→
12 ↑

→
12 VBS, and coplanar antimagnetic order

when regarded as an e!ective model of spin-1/2 Heisenberg antiferromagnetism on the triangular lattice.

Algorithmic limitations discussed later prevent clear establishment of the location of the magnetic phase

transition.

II. CONNECTION BETWEEN EFFECTIVE MODEL AND QUANTUM MAGNETISM

We first outline a derivation of the e!ective model to be studied, and analyze its possible phases.

Our starting point is the spin-1/2 Heisenberg antiferromagnet on the triangular lattice,

H =
∑

ij

Jij
ωSi · ωSj , (1)

4

H. Shackleton and S. Sachdev, arXiv:2311.01572.

<latexit sha1_base64="9d+p+H+bvwsjK/ePnUBLVq0eBZw="></latexit>

Z =
∑

sj,j+µ̂=±1

∏

j

∫
dzjωω

(
∑

ω

ωz
2
jω → 1

)

↑




∏

j

sj,j+ε



 exp (→H[zω, s])

H[zω, s] = →J

2

∑

→j,µ↑

sj,j+µ̂

(
z
↓
j,ωzj+µ̂,ω + c.c

)

→K

∑

↔↭

∏

↔↭
sj,j+µ̂

<latexit sha1_base64="Pq6M3AuY+BDsZKVDnQ1sXJG0/ME="></latexit>

Sign-problem-free QMC of
odd Z2 gauge theory sj,j+µ̂

coupled to bosonic spinons zjω.

S=1/2 triangular and kagome lattices

Triangular lattice antiferromagnet

H = J
∑

〈ij〉

!Si · !Sj

Nearest-neighbor model has non-collinear Neel order 

<latexit sha1_base64="PBW7Q+qDHVlH3mHQoJCoGbeVUWk="></latexit>
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S2
ω = S(S + 1);

S = 1/2
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Sz |↓↑ = ↔(1/2) |↓↑

on each site i

Spin model with S=1/2 per unit cell 

Spin model with S=1/2 per unit cell 

P. Fazekas and P. W. Anderson, Philos. Mag. 30, 23 (1974).

<latexit sha1_base64="44EQSLd248yeLy8H80pBg3XRVUI="></latexit>

|Gi =
X

D
cD |Di

D ! dimer covering

of lattice

Spin liquid: resonating valence bonds
<latexit sha1_base64="fpzmcPrOyFWnLeqKEhS2W2xQOMQ="></latexit>

=
1p
2
(| "#i � | #"i) = 1p

2

⇣
B†

1 �B†
2

⌘
|0i

Berry 
phase



Experiments on 
spin liquids



2

FIG. 1. Triangular lattice quantum spin liquid (QSL). Panel a shows
the NaYbSe2 crystal structure. Panel b shows the conceptual phase
diagram of CsYbSe2, KYbSe2, and NaYbSe2 as a function of fitted
J2/J1 values [30]. The theoretical boundary to the quantum spin liq-
uid phase for the isotropic model is detected by neural quantum state
(NQS) simulations at J2/J1 ↭ 0.063 ± 0.001 (see Supplemental Ma-
terials) locating NaYbSe2 well within the QSL phase. Panel c shows
schematics for potential gapped phases on the triangular lattice: the
gapped Z2 QSL as resonating valence bond (left), a chiral QSL (cen-
ter), and a particular ordering pattern [14] for a 12-site valence bond
solid (right). Note: overlapping ovals represent resonating singlet
bonds.

disorder (as in the ill-fated Yb3+ QSL candidates YbMgGaO4
[31] and Yb2Ti2O7 [32]). To further clarify NaYbSe2, we
measured the inelastic neutron spectra, AC calorimetry, and
AC susceptibility with high quality samples. We observe co-
herent excitations, lack of magnetic order, and evidence in
bulk susceptibility of a 2.1 µeV gap at low temperature. This
is strong evidence for a QSL ground state in NaYbSe2 and a
gapped QSL on the triangular lattice.

The neutron spectra at 100 mK, shown in Fig. 5, show a
highly dispersive continuum of excitations with a well-defined
lower bound, similar to KYbSe2 [28] (see supplemental ma-
terials for experimental details). This is qualitatively different
from the spectra measured by Dai et al [27] on the 3% Yb/Na
site-mixed sample which in contrast showed smeared our con-
tinua in k-space and diffuse spectra extending to low energies
in many regions of reciprocal space. (Later in the text, we will
explain why we believe our samples are free from mixing dis-
order.) Here, the only region of reciprocal space which has ap-
preciable intensity down to low energies is (1/3, 1/3, 0), corre-
sponding to the 120→ magnetic order seen in sister compounds
KYbSe2 [28] and CsYbSe2 [29]. Down to 50 µeV (the limit
before the incoherent scattering on the elastic line obscures
the scattering energy for the incident energy of Ei = 1 meV),
no gap in the spectrum is resolved.

For comparison we also show matrix product state (MPS)
calculated spectra in 5f-i with J2/J1 = 0.071 (this value de-

rived from finite field non-linear spin wave fits [30]), at vary-
ing levels of exchange anisotropy ∆ (see Supplemental Ma-
terials). The boundary to the quantum spin liquid phase for
the isotropic model is at J2/J1 = 0.063 calculated using neu-
ral quantum states (see Supplemental Materials) locating the
material in the theoretically predicted QSL phase for weak
anisotropies. Because of finite size lattice effects the calcu-
lated spectra are gapped, and it is difficult to make quantitative
comparisons between theory and neutron experiments. Never-
theless, the calculated spectra are consistent with the observed
spectra, corroborating the idea that a J2/J1 model with easy-
plane anisotropy is an appropriate model for NaYbSe2.

Despite intensity concentrated at (1/3, 1/3, 0) and similar
spectra to CsYbSe2 and KYbSe2, we observe no static mag-
netic order in NaYbSe2 in neutron scattering measurements
down to 100 mK. No magnetic ordering features are visible
in heat capacity down to 100 mK either, as shown in Fig. 3.
(Note also that our sample has similar low-temperature spe-
cific heat to those reported in Refs. [25, 33]. If the C/T max-
imum at 800 mK is an indication of sample quality, our sam-
ple is free from the site mixing reported in Ref. [27].) To test
whether applied hydrostatic pressure can induce order—as in
KYbSe2 wherein pressure enhanced TN [30]—we also mea-
sured AC calorimetry under pressure (see Supplemental Mate-
rials) shown in Fig. 3b. Up to 2.0 GPa, no sharp feature as ex-
pected for an ordering transition is seen in the data (pressure-
dependent thermalization issues cause the low-T specific heat
to increase at low T , but this is a known artifact and would not
mask a sharp ordering transition).

Also in Fig. 3c we compare NaYbSe2 heat capacity to
KYbSe2, with the temperature axis rescaled by the fitted J1
[30]. This shows not only a lack of ordering transition, but
also a smaller kBT/J1 ↑ 0.2 maximum heat capacity and
greater low-temperature heat capacity in NaYbSe2 relative
to KYbSe2. Comparing this to thermal pure quantum state
(TPQ) simulations of the 27-site 2D triangular lattice in Fig.
3d, these trends are beautifully explained with a larger J2/J1
in NaYbSe2: the low-temperature heat capacity is largest
when J2/J1 ↑ 0.07 and the kBT/J1 = 0.2 bump is suppressed
with larger J2. Because the TPQ simulations are of a finite
size cluster which induces an artificial energy gap, the low-
est temperature trends are not quantitatively accurate. How-
ever, on a qualitative level, this is remarkable confirmation
that NaYbSe2 is indeed closer to or inside the triangular QSL
phase.

To investigate the magnetic state to lower temperatures, we
measured AC susceptibility down to 20 mK with AC and DC
field applied along the a and c directions on NaYbSe2 (see
Supplemental Materials). In this case we observe a clear
magnetization plateau in the B ↓ a direction at 5 T, but not
for B ↓ c (note these data were collected simultaneously on
two separate crystals mounted on two separate susceptome-
ters mounted on the same dilution refrigerator). This agrees
with previous measurements [25], and indicates an easy-plane
exchange anisotropy in NaYbSe2: in the perfectly isotropic
triangular model, 1/3 magnetization plateaux appear both in-
plane and out-of-plane, but the out-of-plane plateau is sup-
pressed by planar anisotropy [34–36], although the in-plane
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FIG. 1. Triangular lattice quantum spin liquid (QSL). Panel a shows
the NaYbSe2 crystal structure. Panel b shows the conceptual phase
diagram of CsYbSe2, KYbSe2, and NaYbSe2 as a function of fitted
J2/J1 values [30]. The theoretical boundary to the quantum spin liq-
uid phase for the isotropic model is detected by neural quantum state
(NQS) simulations at J2/J1 ↭ 0.063 ± 0.001 (see Supplemental Ma-
terials) locating NaYbSe2 well within the QSL phase. Panel c shows
schematics for potential gapped phases on the triangular lattice: the
gapped Z2 QSL as resonating valence bond (left), a chiral QSL (cen-
ter), and a particular ordering pattern [14] for a 12-site valence bond
solid (right). Note: overlapping ovals represent resonating singlet
bonds.

disorder (as in the ill-fated Yb3+ QSL candidates YbMgGaO4
[31] and Yb2Ti2O7 [32]). To further clarify NaYbSe2, we
measured the inelastic neutron spectra, AC calorimetry, and
AC susceptibility with high quality samples. We observe co-
herent excitations, lack of magnetic order, and evidence in
bulk susceptibility of a 2.1 µeV gap at low temperature. This
is strong evidence for a QSL ground state in NaYbSe2 and a
gapped QSL on the triangular lattice.

The neutron spectra at 100 mK, shown in Fig. 5, show a
highly dispersive continuum of excitations with a well-defined
lower bound, similar to KYbSe2 [28] (see supplemental ma-
terials for experimental details). This is qualitatively different
from the spectra measured by Dai et al [27] on the 3% Yb/Na
site-mixed sample which in contrast showed smeared our con-
tinua in k-space and diffuse spectra extending to low energies
in many regions of reciprocal space. (Later in the text, we will
explain why we believe our samples are free from mixing dis-
order.) Here, the only region of reciprocal space which has ap-
preciable intensity down to low energies is (1/3, 1/3, 0), corre-
sponding to the 120→ magnetic order seen in sister compounds
KYbSe2 [28] and CsYbSe2 [29]. Down to 50 µeV (the limit
before the incoherent scattering on the elastic line obscures
the scattering energy for the incident energy of Ei = 1 meV),
no gap in the spectrum is resolved.

For comparison we also show matrix product state (MPS)
calculated spectra in 5f-i with J2/J1 = 0.071 (this value de-

rived from finite field non-linear spin wave fits [30]), at vary-
ing levels of exchange anisotropy ∆ (see Supplemental Ma-
terials). The boundary to the quantum spin liquid phase for
the isotropic model is at J2/J1 = 0.063 calculated using neu-
ral quantum states (see Supplemental Materials) locating the
material in the theoretically predicted QSL phase for weak
anisotropies. Because of finite size lattice effects the calcu-
lated spectra are gapped, and it is difficult to make quantitative
comparisons between theory and neutron experiments. Never-
theless, the calculated spectra are consistent with the observed
spectra, corroborating the idea that a J2/J1 model with easy-
plane anisotropy is an appropriate model for NaYbSe2.

Despite intensity concentrated at (1/3, 1/3, 0) and similar
spectra to CsYbSe2 and KYbSe2, we observe no static mag-
netic order in NaYbSe2 in neutron scattering measurements
down to 100 mK. No magnetic ordering features are visible
in heat capacity down to 100 mK either, as shown in Fig. 3.
(Note also that our sample has similar low-temperature spe-
cific heat to those reported in Refs. [25, 33]. If the C/T max-
imum at 800 mK is an indication of sample quality, our sam-
ple is free from the site mixing reported in Ref. [27].) To test
whether applied hydrostatic pressure can induce order—as in
KYbSe2 wherein pressure enhanced TN [30]—we also mea-
sured AC calorimetry under pressure (see Supplemental Mate-
rials) shown in Fig. 3b. Up to 2.0 GPa, no sharp feature as ex-
pected for an ordering transition is seen in the data (pressure-
dependent thermalization issues cause the low-T specific heat
to increase at low T , but this is a known artifact and would not
mask a sharp ordering transition).

Also in Fig. 3c we compare NaYbSe2 heat capacity to
KYbSe2, with the temperature axis rescaled by the fitted J1
[30]. This shows not only a lack of ordering transition, but
also a smaller kBT/J1 ↑ 0.2 maximum heat capacity and
greater low-temperature heat capacity in NaYbSe2 relative
to KYbSe2. Comparing this to thermal pure quantum state
(TPQ) simulations of the 27-site 2D triangular lattice in Fig.
3d, these trends are beautifully explained with a larger J2/J1
in NaYbSe2: the low-temperature heat capacity is largest
when J2/J1 ↑ 0.07 and the kBT/J1 = 0.2 bump is suppressed
with larger J2. Because the TPQ simulations are of a finite
size cluster which induces an artificial energy gap, the low-
est temperature trends are not quantitatively accurate. How-
ever, on a qualitative level, this is remarkable confirmation
that NaYbSe2 is indeed closer to or inside the triangular QSL
phase.

To investigate the magnetic state to lower temperatures, we
measured AC susceptibility down to 20 mK with AC and DC
field applied along the a and c directions on NaYbSe2 (see
Supplemental Materials). In this case we observe a clear
magnetization plateau in the B ↓ a direction at 5 T, but not
for B ↓ c (note these data were collected simultaneously on
two separate crystals mounted on two separate susceptome-
ters mounted on the same dilution refrigerator). This agrees
with previous measurements [25], and indicates an easy-plane
exchange anisotropy in NaYbSe2: in the perfectly isotropic
triangular model, 1/3 magnetization plateaux appear both in-
plane and out-of-plane, but the out-of-plane plateau is sup-
pressed by planar anisotropy [34–36], although the in-plane
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The Heisenberg triangular-lattice quantum spin liquid and its phase 
transitions to nearby magnetic orders have received much theoretical 
attention, but clear experimental manifestations of these states are rare. 
Here we demonstrate that a spin-half delafossite material, namely, KYbSe2, 
shows close proximity to the triangular-lattice Heisenberg quantum spin 
liquid. Using neutron scattering, we identify a di!use continuum with a sharp 
lower bound within the measured spectra. Applying entanglement witnesses 
to the data indicates multipartite entanglement spread between its 
neighbours, and an analysis of its magnetic-exchange couplings reveals close 
proximity to the theoretical quantum spin-liquid phase. The key features of 
the data are reproduced by Schwinger boson theory and tensor network 
calculations with a substantial next-nearest-neighbour coupling. The 
strength of the dynamical structure factor at the Brillouin-zone K point shows 
a scaling collapse down to 0.3 K, indicating the existence of a second-order 
quantum phase transition. Comparing this with previous theoretical work 
suggests that the proximate phase at a larger next-nearest-neighbour 
coupling is a gapped ℤ
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A quantum spin liquid (QSL) is an elusive state of matter where magnetic 
degrees of freedom on a lattice are in a highly entangled, fluctuating 
ground state with exotic quasiparticle excitations1–4. The quasipar-
ticles are of singular interest, for example, in quantum information 
applications2,5, but have been—together with the extended entangle-
ment—frustratingly difficult to experimentally identify.

The search for a QSL is a very active field of research with many 
candidate QSL materials: from organic materials6,7 to two-dimensional 
(2D) kagome minerals8 to rare-earth pyrochlores9,10. However, despite 
tremendous effort, no material has unambiguously been shown to 
realize a genuine QSL. This is partly because many studies focus on 
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Proximate spin liquid and fractionalization 
in the triangular antiferromagnet KYbSe2
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T. P. Devereaux    11,12, R. Movshovich    9, J. E. Moore    5,6, C. D. Batista    2,13   & 
D. A. Tennant2,13
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strength of the dynamical structure factor at the Brillouin-zone K point shows 
a scaling collapse down to 0.3 K, indicating the existence of a second-order 
quantum phase transition. Comparing this with previous theoretical work 
suggests that the proximate phase at a larger next-nearest-neighbour 
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bosons or spinons, whose condensation leads to long-range magnetic 
ordering58,59. Methods provides the details.

The dynamical spin structure factor S(q, ω) at T = 0 using SB60 for 
J2/J1 = 0.05 is shown in Fig. 5d. On a qualitative level, this result captures 
the features seen in the experimental data: the strong dispersive cone 
emanating from K, the continuum scattering at higher energies, the 
diffuse high-energy feature at M and the pronounced low-energy 
‘roton-like’ mode at M. We note that the downturn of the roton-like 
mode is much less pronounced in the SB result because of the lack  
of 1/N corrections to the internal vertices and the single-spinon 
propagator60. However, the most remarkable aspect of this com-
parison is that the SB approach captures the intensity modulation of  
the continuum scattering at higher energies, which is determined 
by the two-spinon continuum of the SB theory. This correspond-
ence points to the continuum scattering in KYbSe2 originating from 
its proximity to a deconfined spin-liquid state with fractionalized 
spinon excitations.

The measured continuum scattering extends up to higher ener-
gies than SB predicts: ∼1.6 meV, approximately three times the fitted 
value, that is, J1 = 0.56(3) meV (Supplementary Fig. 5). We attribute 
this discrepancy to the lack of four-spinon contributions arising from  
Feynman diagrams, which have not been included in the SB calcu-
lation60. Note that the KYbSe2 continuum extent does match the 

predicted continuum extent near the J2/J1 ≈ 0.06 transition point as 
calculated by Gutzwiller-projected variational Monte Carlo61.

Tensor networks: full-spectrum model
The third technique we use to model the diffuse inelastic neutron 
scattering is based on tensor networks (Methods). A related approach 
was recently used to interpret and describe the scattering of CsYbSe2  
(ref. 28), and provides a full quantum picture of the neutron spectrum. 
The downside to this technique is finite-size effects, which cause broad-
ened modes and gaps in the low-energy spectrum. Nevertheless, quali-
tative comparisons can be made.

The simulated data along high-symmetry directions of the 
Brillouin zone for J2/J1 = 0.05 are shown in Fig. 5e. The overall features 
of the experimental data are reproduced in the simulations: the asym-
metric dispersive modes emanating from K, the diffuse continuum 
extending to high energies and even the broad 1 meV feature at M. 
This shows that the triangular-lattice Heisenberg J1–J2 model is indeed 
an appropriate model for KYbSe2. Further microscopic simulations 
show that most of the high-energy scattering remains unchanged 
as J2 is increased and the system enters the QSL phase, showing that 
the high-energy scattering can be interpreted as bound spinons of a 
proximate spin liquid.

Critical scaling
So far, the entanglement witnesses and theoretical comparisons indi-
cate that KYbSe2 is close to the J1–J2 QSL quantum critical point. If this is 
true, we should see quantum critical scaling in the finite-temperature 
neutron spectrum62–65. Plotting scattered intensity times (kBT)α versus 
#ω/kBT (Fig. 6), we see a critical exponent α = 1.73(12) over more than 
a decade in ω/T. Theoretically, the semiclassical spin-wave scattering 
from an ordered Heisenberg triangular lattice predicts an exponent 
of α = 1. The observed scattering is unquestionably inconsistent with 
this (Fig. 6a). Thus, this scaling shows that the inelastic spectrum of 
KYbSe2 is dominated by non-magnon quasiparticles, confirming the 
above interpretation of fractionalized spinons.

Elastic Bragg scattering and heat capacity show a transition to 
long-range magnetic order below TN = 290 mK (Supplementary Fig. 1), 
showing that KYbSe2 is on the 120° side of the phase boundary. Never-
theless, the critical scaling is strong evidence that KYbSe2 is within the 
quantum critical regime at finite T.

This scaling holds over a single decade in #ω/kBT, which may not 
be enough to definitively establish the power-law behaviour. Neverthe-
less, if it holds over a larger range, it has important implications regard-
ing the nature of the QSL state. Indeed, the gapped ℤ

2

 QSL state 
proposed in another work66 is the only liquid that can be continuously 
connected with 120° Néel ordered state, as it does not break any sym-
metries and has the lowest-energy modes at the K points67 (the 
low-energy excitations of the other possibility, a π-flux state, are 
gapped at the K points and gapless at the M points, inconsistent with 
the observations). The resulting quantum critical point is expected to 
have a dynamically generated O(4) symmetry68,69.

Conclusion
These results show that KYbSe2 is within the quantum critical fan of 
a QSL state. The CEF fits show an isotropic J = 1/2 doublet with strong 
quantum effects, and ORF simulations show a J2/J1 ratio within the 
120° ordered phase but very close to the QSL quantum critical point 
of J2/J1 ≈ 0.06. Entanglement witnesses reveal an entangled ground 
state with distributed entanglement, just as was shown in the 1D case 
to indicate proximity to quantum criticality53. Finally, there are strong 
signs of quantum criticality in the neutron spectrum: (1) the majority 
spectral weight in the continuum, (2) the sharp lower continuum bound 
reminiscent of the 1D spinon spectrum, (3) strong correspondence to 
SB and tensor network simulations near the transition to a spin liquid 
and (4) critical scaling incompatible with semiclassical excitations; 
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Fig. 5 | Comparison between experimental KYbSe2 scattering and theoretical 
simulations. a,b, ORF fits to energy-integrated paramagnetic KYbSe2 scattering 
at 1 K (a) and 2 K (b). SCGA, self-consistent Gaussian approximation. In each 
panel, the data are on the left and the fit is on the right. c–e, Neutron scattering 
along high-symmetry directions. The experimental data for KYbSe2 (c) and the 
zero-temperature simulated spectrum from SB calculations (d) are shown, with 
J1 = 0.56(3) meV and J2/J1 = 0.05. e, Tensor network simulations of a triangular 
lattice with the same J1 and J2 on a cylinder with a circumference of 6 sites and 
a length of 36 sites. On a qualitative level, the theory captures the continuum 
excitations observed in experiment.
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FIG. 1. Triangular lattice quantum spin liquid (QSL). Panel a shows
the NaYbSe2 crystal structure. Panel b shows the conceptual phase
diagram of CsYbSe2, KYbSe2, and NaYbSe2 as a function of fitted
J2/J1 values [30]. The theoretical boundary to the quantum spin liq-
uid phase for the isotropic model is detected by neural quantum state
(NQS) simulations at J2/J1 ↭ 0.063 ± 0.001 (see Supplemental Ma-
terials) locating NaYbSe2 well within the QSL phase. Panel c shows
schematics for potential gapped phases on the triangular lattice: the
gapped Z2 QSL as resonating valence bond (left), a chiral QSL (cen-
ter), and a particular ordering pattern [14] for a 12-site valence bond
solid (right). Note: overlapping ovals represent resonating singlet
bonds.

disorder (as in the ill-fated Yb3+ QSL candidates YbMgGaO4
[31] and Yb2Ti2O7 [32]). To further clarify NaYbSe2, we
measured the inelastic neutron spectra, AC calorimetry, and
AC susceptibility with high quality samples. We observe co-
herent excitations, lack of magnetic order, and evidence in
bulk susceptibility of a 2.1 µeV gap at low temperature. This
is strong evidence for a QSL ground state in NaYbSe2 and a
gapped QSL on the triangular lattice.

The neutron spectra at 100 mK, shown in Fig. 5, show a
highly dispersive continuum of excitations with a well-defined
lower bound, similar to KYbSe2 [28] (see supplemental ma-
terials for experimental details). This is qualitatively different
from the spectra measured by Dai et al [27] on the 3% Yb/Na
site-mixed sample which in contrast showed smeared our con-
tinua in k-space and diffuse spectra extending to low energies
in many regions of reciprocal space. (Later in the text, we will
explain why we believe our samples are free from mixing dis-
order.) Here, the only region of reciprocal space which has ap-
preciable intensity down to low energies is (1/3, 1/3, 0), corre-
sponding to the 120→ magnetic order seen in sister compounds
KYbSe2 [28] and CsYbSe2 [29]. Down to 50 µeV (the limit
before the incoherent scattering on the elastic line obscures
the scattering energy for the incident energy of Ei = 1 meV),
no gap in the spectrum is resolved.

For comparison we also show matrix product state (MPS)
calculated spectra in 5f-i with J2/J1 = 0.071 (this value de-

rived from finite field non-linear spin wave fits [30]), at vary-
ing levels of exchange anisotropy ∆ (see Supplemental Ma-
terials). The boundary to the quantum spin liquid phase for
the isotropic model is at J2/J1 = 0.063 calculated using neu-
ral quantum states (see Supplemental Materials) locating the
material in the theoretically predicted QSL phase for weak
anisotropies. Because of finite size lattice effects the calcu-
lated spectra are gapped, and it is difficult to make quantitative
comparisons between theory and neutron experiments. Never-
theless, the calculated spectra are consistent with the observed
spectra, corroborating the idea that a J2/J1 model with easy-
plane anisotropy is an appropriate model for NaYbSe2.

Despite intensity concentrated at (1/3, 1/3, 0) and similar
spectra to CsYbSe2 and KYbSe2, we observe no static mag-
netic order in NaYbSe2 in neutron scattering measurements
down to 100 mK. No magnetic ordering features are visible
in heat capacity down to 100 mK either, as shown in Fig. 3.
(Note also that our sample has similar low-temperature spe-
cific heat to those reported in Refs. [25, 33]. If the C/T max-
imum at 800 mK is an indication of sample quality, our sam-
ple is free from the site mixing reported in Ref. [27].) To test
whether applied hydrostatic pressure can induce order—as in
KYbSe2 wherein pressure enhanced TN [30]—we also mea-
sured AC calorimetry under pressure (see Supplemental Mate-
rials) shown in Fig. 3b. Up to 2.0 GPa, no sharp feature as ex-
pected for an ordering transition is seen in the data (pressure-
dependent thermalization issues cause the low-T specific heat
to increase at low T , but this is a known artifact and would not
mask a sharp ordering transition).

Also in Fig. 3c we compare NaYbSe2 heat capacity to
KYbSe2, with the temperature axis rescaled by the fitted J1
[30]. This shows not only a lack of ordering transition, but
also a smaller kBT/J1 ↑ 0.2 maximum heat capacity and
greater low-temperature heat capacity in NaYbSe2 relative
to KYbSe2. Comparing this to thermal pure quantum state
(TPQ) simulations of the 27-site 2D triangular lattice in Fig.
3d, these trends are beautifully explained with a larger J2/J1
in NaYbSe2: the low-temperature heat capacity is largest
when J2/J1 ↑ 0.07 and the kBT/J1 = 0.2 bump is suppressed
with larger J2. Because the TPQ simulations are of a finite
size cluster which induces an artificial energy gap, the low-
est temperature trends are not quantitatively accurate. How-
ever, on a qualitative level, this is remarkable confirmation
that NaYbSe2 is indeed closer to or inside the triangular QSL
phase.

To investigate the magnetic state to lower temperatures, we
measured AC susceptibility down to 20 mK with AC and DC
field applied along the a and c directions on NaYbSe2 (see
Supplemental Materials). In this case we observe a clear
magnetization plateau in the B ↓ a direction at 5 T, but not
for B ↓ c (note these data were collected simultaneously on
two separate crystals mounted on two separate susceptome-
ters mounted on the same dilution refrigerator). This agrees
with previous measurements [25], and indicates an easy-plane
exchange anisotropy in NaYbSe2: in the perfectly isotropic
triangular model, 1/3 magnetization plateaux appear both in-
plane and out-of-plane, but the out-of-plane plateau is sup-
pressed by planar anisotropy [34–36], although the in-plane

2

FIG. 1. Triangular lattice quantum spin liquid (QSL). Panel a shows
the NaYbSe2 crystal structure. Panel b shows the conceptual phase
diagram of CsYbSe2, KYbSe2, and NaYbSe2 as a function of fitted
J2/J1 values [30]. The theoretical boundary to the quantum spin liq-
uid phase for the isotropic model is detected by neural quantum state
(NQS) simulations at J2/J1 ↭ 0.063 ± 0.001 (see Supplemental Ma-
terials) locating NaYbSe2 well within the QSL phase. Panel c shows
schematics for potential gapped phases on the triangular lattice: the
gapped Z2 QSL as resonating valence bond (left), a chiral QSL (cen-
ter), and a particular ordering pattern [14] for a 12-site valence bond
solid (right). Note: overlapping ovals represent resonating singlet
bonds.

disorder (as in the ill-fated Yb3+ QSL candidates YbMgGaO4
[31] and Yb2Ti2O7 [32]). To further clarify NaYbSe2, we
measured the inelastic neutron spectra, AC calorimetry, and
AC susceptibility with high quality samples. We observe co-
herent excitations, lack of magnetic order, and evidence in
bulk susceptibility of a 2.1 µeV gap at low temperature. This
is strong evidence for a QSL ground state in NaYbSe2 and a
gapped QSL on the triangular lattice.

The neutron spectra at 100 mK, shown in Fig. 5, show a
highly dispersive continuum of excitations with a well-defined
lower bound, similar to KYbSe2 [28] (see supplemental ma-
terials for experimental details). This is qualitatively different
from the spectra measured by Dai et al [27] on the 3% Yb/Na
site-mixed sample which in contrast showed smeared our con-
tinua in k-space and diffuse spectra extending to low energies
in many regions of reciprocal space. (Later in the text, we will
explain why we believe our samples are free from mixing dis-
order.) Here, the only region of reciprocal space which has ap-
preciable intensity down to low energies is (1/3, 1/3, 0), corre-
sponding to the 120→ magnetic order seen in sister compounds
KYbSe2 [28] and CsYbSe2 [29]. Down to 50 µeV (the limit
before the incoherent scattering on the elastic line obscures
the scattering energy for the incident energy of Ei = 1 meV),
no gap in the spectrum is resolved.

For comparison we also show matrix product state (MPS)
calculated spectra in 5f-i with J2/J1 = 0.071 (this value de-

rived from finite field non-linear spin wave fits [30]), at vary-
ing levels of exchange anisotropy ∆ (see Supplemental Ma-
terials). The boundary to the quantum spin liquid phase for
the isotropic model is at J2/J1 = 0.063 calculated using neu-
ral quantum states (see Supplemental Materials) locating the
material in the theoretically predicted QSL phase for weak
anisotropies. Because of finite size lattice effects the calcu-
lated spectra are gapped, and it is difficult to make quantitative
comparisons between theory and neutron experiments. Never-
theless, the calculated spectra are consistent with the observed
spectra, corroborating the idea that a J2/J1 model with easy-
plane anisotropy is an appropriate model for NaYbSe2.

Despite intensity concentrated at (1/3, 1/3, 0) and similar
spectra to CsYbSe2 and KYbSe2, we observe no static mag-
netic order in NaYbSe2 in neutron scattering measurements
down to 100 mK. No magnetic ordering features are visible
in heat capacity down to 100 mK either, as shown in Fig. 3.
(Note also that our sample has similar low-temperature spe-
cific heat to those reported in Refs. [25, 33]. If the C/T max-
imum at 800 mK is an indication of sample quality, our sam-
ple is free from the site mixing reported in Ref. [27].) To test
whether applied hydrostatic pressure can induce order—as in
KYbSe2 wherein pressure enhanced TN [30]—we also mea-
sured AC calorimetry under pressure (see Supplemental Mate-
rials) shown in Fig. 3b. Up to 2.0 GPa, no sharp feature as ex-
pected for an ordering transition is seen in the data (pressure-
dependent thermalization issues cause the low-T specific heat
to increase at low T , but this is a known artifact and would not
mask a sharp ordering transition).

Also in Fig. 3c we compare NaYbSe2 heat capacity to
KYbSe2, with the temperature axis rescaled by the fitted J1
[30]. This shows not only a lack of ordering transition, but
also a smaller kBT/J1 ↑ 0.2 maximum heat capacity and
greater low-temperature heat capacity in NaYbSe2 relative
to KYbSe2. Comparing this to thermal pure quantum state
(TPQ) simulations of the 27-site 2D triangular lattice in Fig.
3d, these trends are beautifully explained with a larger J2/J1
in NaYbSe2: the low-temperature heat capacity is largest
when J2/J1 ↑ 0.07 and the kBT/J1 = 0.2 bump is suppressed
with larger J2. Because the TPQ simulations are of a finite
size cluster which induces an artificial energy gap, the low-
est temperature trends are not quantitatively accurate. How-
ever, on a qualitative level, this is remarkable confirmation
that NaYbSe2 is indeed closer to or inside the triangular QSL
phase.

To investigate the magnetic state to lower temperatures, we
measured AC susceptibility down to 20 mK with AC and DC
field applied along the a and c directions on NaYbSe2 (see
Supplemental Materials). In this case we observe a clear
magnetization plateau in the B ↓ a direction at 5 T, but not
for B ↓ c (note these data were collected simultaneously on
two separate crystals mounted on two separate susceptome-
ters mounted on the same dilution refrigerator). This agrees
with previous measurements [25], and indicates an easy-plane
exchange anisotropy in NaYbSe2: in the perfectly isotropic
triangular model, 1/3 magnetization plateaux appear both in-
plane and out-of-plane, but the out-of-plane plateau is sup-
pressed by planar anisotropy [34–36], although the in-plane

Spectrum and low-energy gap in triangular quantum spin liquid NaYbSe2

A. O. Scheie,1, → Minseong Lee,2, † Kevin Wang,3 P. Laurell,4 E. S. Choi,5 D. Pajerowski,6 Qingming
Zhang,7 Jie Ma,8 H. D. Zhou,4 Sangyun Lee,2 S. M. Thomas,1 M. O. Ajeesh,1 P. F. S. Rosa,1 Ao Chen,9

Vivien S. Zapf,2 M. Heyl,9 C. D. Batista,4, 6 E. Dagotto,4, 10 J. E. Moore,3, ‡ and D. Alan Tennant4, 11, §

1Los Alamos National Laboratory, Los Alamos, NM 87545, USA
2National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

3Department of Physics, University of California, Berkeley, CA 94720, USA
4Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, USA

5National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
6Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

7School of Physical Science and Technology, Lanzhou University,
Institute of Physics, Chinese Academy of Sciences, Lanzhou 730000, China

8Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
9Theoretical Physics III, Center for Electronic Correlations and Magnetism,
Institute of Physics, University of Augsburg, D-86135 Augsburg, Germany

10Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
11Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA

(Dated: June 26, 2024)

We report neutron scattering, pressure-dependent AC calorimetry, and AC magnetic susceptibility measure-
ments of triangular lattice NaYbSe2. We observe a continuum of scattering, which is reproduced by matrix
product simulations, and no phase transition is detected in any bulk measurements. Comparison to heat capacity
simulations suggest the material is within the Heisenberg spin liquid phase. AC Susceptibility shows a signifi-
cant 23 mK downturn, indicating a gap in the magnetic spectrum. The combination of a gap with no detectable
magnetic order, comparison to theoretical models, and comparison to other AYbSe2 compounds all strongly
indicate NaYbSe2 is within the quantum spin liquid phase. The gap also allows us to rule out a gapless Dirac
spin liquid, with a gapped Z2 liquid the most natural explanation.

A quantum spin liquid (QSL) is a state of matter first pre-
dicted by P. W. Anderson in 1973, wherein spins arranged in
a lattice exhibit a massively entangled and fluctuating ground
state [1]. One defining characteristic of QSLs is their frac-
tional excitations, which interact with each other through
emergent gauge fields [2, 3]. The potential for topologi-
cal protection from decoherence makes QSLs appealing plat-
forms for quantum technologies. However, despite decades
of searching and extensive theoretical work, no unambiguous
examples of a quantum spin liquid material have been found.

Anderson’s original prediction for a QSL state was the two-
dimensional triangular lattice antiferromagnet. With nearest-
neighbor exchange only, this system orders magnetically, but
a small antiferromagnetic second-nearest-neighbor exchange
J2 theoretically stabilizes a QSL phase [4–10]. Though the ex-
istence of this phase is well-accepted theoretically (although
not experimentally until now), it is not clear what kind of QSL
such a state would be. Proposals include a gapless U1 Dirac
QSL [6, 10–12], a valence bond crystal [13, 14], a gapped
Z2 QSL [4, 5, 15, 16], or a chiral spin liquid [17]. Because
numerical simulations are limited by finite size, theoretical re-
sults are ambiguous [13, 18]. The best (and perhaps only) way
to resolve this question would be to find a real material which
harbors the triangular lattice QSL ground state.
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Inelastic neutron scattering studies of triangular antifer-
romagnets with nearest-neighbor exchange have revealed
anomalous continuum scattering that cannot be explained by
semiclassical theories [19–21]. The measured single-magnon
dispersion was accurately reproduced using a Schwinger Bo-
son approach, where magnons are obtained as two-spinon
bound states [22, 23]. This suggests that these ordered mag-
nets are in close proximity to a gapped Z2 QSL as the decon-
fined Schwinger Boson phase. But an unambiguous measure-
ment of a material in the deconfined QSL phase has not been
reported.

A very promising class of materials is the Yb delafossites
AYbSe2 where A is an alkali metal [24–29]. These form ideal
triangular lattices of magnetic Yb3+, and appear to approxi-
mate the Heisenberg J2/J1 model [30], see Fig. 1. Of these,
CsYbSe2 and KYbSe2 have been observed to order magnet-
ically at zero field [28, 29]. However, following a trend in
the periodic table that a smaller A-site element enhances J2
and destabilizes order [30], no long-range magnetic order has
been observed in NaYbSe2 [24, 27], which makes it a prime
candidate for a QSL ground state. Importantly, the tunabil-
ity of these compounds means that the QSL phase can be ap-
proached systematically from magnetic order (Fig. 1). This
allows for greater confidence and rigor than studying a single
compound in isolation would.

Previous NaYbSe2 studies reported a diffuse neutron spec-
trum that was interpreted in terms of spinon Fermi surface ex-
citations from a QSL [27], but because of 3% Na site disorder
on those samples, it is not clear whether the magnetic order
and coherent excitations were destroyed by small amounts of
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We observe a continuum of (neutron) scattering, which is

reproduced by matrix product simulations, and no phase

transition is detected in any bulk measurements. Comparison

to heat capacity simulations suggest the material is within the

Heisenberg spin liquid phase. AC Susceptibility shows a

signifi- cant 23 mK downturn, indicating a gap in the

magnetic spectrum. The combination of a gap with no

detectable magnetic order, comparison to theoretical models,

and comparison to other AYbSe2 compounds all strongly

indicate NaYbSe2 is within the quantum spin liquid phase.

The gap also allows us to rule out a gapless Dirac spin liquid,

with a gapped Z2 liquid the most natural explanation.
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The emergence of a quantum spin liquid (QSL), a state of matter that can result when electron spins are
highly correlated but do not become ordered, has been the subject of a considerable body of research in
condensed matter physics [1,2]. Spin liquid states have been proposed as hosts for high-temperature
superconductivity [3] and can host topological properties with potential applications in quantum
information science [4]. The excitations of most quantum spin liquids are not conventional spin waves
but rather quasiparticles known as spinons, whose existence is well established experimentally only in one-
dimensional systems; the unambiguous experimental realization of QSL behavior in higher dimensions
remains challenging. Here, we investigate the novel compound YbZn2GaO5, which hosts an ideal
triangular lattice of effective spin-1=2 moments with no detectable inherent chemical disorder. Thermo-
dynamic and inelastic neutron scattering measurements performed on high-quality single crystal samples of
YbZn2GaO5 exclude the possibility of long-range magnetic ordering down to 0.06 K, demonstrate a
quadratic power law for the specific heat and reveal a continuum of magnetic excitations in parts of the
Brillouin zone. Both low-temperature thermodynamics and inelastic neutron scattering spectra suggest that
YbZn2GaO5 is a Uð1Þ Dirac QSL with spinon excitations concentrated at certain points in the Brillouin
zone. We advanced these results by performing additional specific heat measurements under finite fields,
further confirming the theoretical expectations for a Dirac QSL on the triangular lattice of YbZn2GaO5.
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Introduction—Anderson’s proposal in1973 ignited a surge
of both experimental and theoretical efforts to identify the
origins and properties of quantumspin liquid (QSL) states [5].
QSLs are exotic states of matter that remain disordered due to
strong quantum fluctuations even at ultralow temperatures
[1,2,6]. Despite significant experimental efforts, the unam-
biguous realization of a QSL state in the real world remains a
challenge. In recent years, two-dimensional triangular lattice
systems with rare-earth ions carrying effective spin-1=2
moments have presented promising opportunities in realizing
QSL states, given the presence of spin-orbit coupling, crystal
electric fields, and strong quantum fluctuations. Among these
systems, the Yb-based YbMgGaO4 has been intensively
studied due to the absence of magnetic ordering and the
observed continuumlike inelastic neutron scattering (INS)
spectra, making it a promising candidate for QSL [7–13].
However, the presence of chemical disorder in YbMgGaO4,

caused by the inherently mixed occupancies of magnesium
andgalliumatomson the samecrystallographic site, hasmade
the interpretation of the results challenging [12–14].
Specifically, a theoretical study suggests that the chemical
disorder may imitate the continuous INS spectra [12]. Further
studies on a sister compound, YbZnGaO4, have proposed the
presence of a spin-glass ground state attributed to the
coexistence of chemical disorder and quantum fluctuation
[15]. Therefore, eliminating or suppressing chemical disorder
and accessing the intrinsic physics of an ideal triangular lattice
of effective spin-1=2 moments is highly desired. As such, a
potential candidate for hosting a QSL state is another class of
Yb-based triangular lattice rocksalt-type compounds that do
not have significant intrinsic chemical disorder: AYbX2

(A ¼ Li, Na, K, Rb, Cs, and X ¼ O, S, Se) [16–26].
Nevertheless, the task of obtaining high-quality single-crystal
samples for this particular family has posed significant
challenges. As a result, most of the reported results have
been derived from powder samples or small single crystals,
rendering the interpretation of data quite challenging.*Contact author: sara.haravifard@duke.edu
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and γ parameters. The results obtained for B confirm the T2

behavior of the specific heat at zero field, while the values
extracted for γ demonstrate a linear increase in specific heat
as a function of magnetic field. The field-dependent ratio of
γ and B coefficients is also consistent with theoretical
expectations (see Supplemental Material [27]), further
confirming that the ground state of YbZn2GaO5 is best
described by Uð1Þ Dirac QSL.
To gain deeper insights into the dynamics of

YbZn2GaO5, we conducted an INS experiment using a
high-purity powder sample at 5 K, as depicted in Figs. 2(c)
and 2(d). The single-ion crystal electric field (CEF) fitting
results revealed three distinct crystal field excitations at 38,
61, and 94 meV, which agree with those observed in other
previously reported Yb-based triangular lattice systems
[14,17,21,43–45]. Based on our analysis of the CEF levels,
we have determined that the first excited state of
YbZn2GaO5 is separated from the ground state by a gap
of over 441 K (38 meV). This suggests a Kramer’s doublet
ground state for the Yb3þ ions with an effective spin-1=2.
Our CEF fitting scheme, which is consistent with the
specific heat data, supports this conclusion. In particular,
the calculated magnetic entropy of YbZn2GaO5 saturates at
Rln2, indicating an effective spin-1=2 ground state, as

shown in Fig. 2(a) (see Tables S2 and S3 for further details
on the CEF fitting scheme).
It is important to note the observed broadening of the

94 meV CEF excitation band. Previous studies have linked
broadening at 97 meV and the emergence of an additional
band at 138 meV in YbMgGaO4 to disorder [14]. However,
broadening in CEF levels can also stem from various
mechanisms in rare-earth-based compounds. For instance,
Gaudet et al. [46] describe a shoulderlike feature in one of
the CEF levels of Ho2Ti2O7, which results from the
hybridization of a nearby phonon mode with the CEF
mode, forming a vibronic mode. Consequently, the
shoulder observed at approximately 87.5 meV in our data
does not necessarily suggest disorder. In YbZn2GaO5,
phonon excitations up to approximately 90 meV were also
observed in the INS data collected on the isostructural
nonmagnetic compound LuZn2GaO5, which could poten-
tially lead to the formation of vibronic bonds. Thus, we
propose that the observed broadening may be attributed to
CEF-phonon coupling, underscoring the need for further
detailed investigation of this system using complementary
techniques such as Raman spectroscopy [23,47].
Furthermore, we conducted INS experiments on a high-

quality single crystal of YbZn2GaO5 (see Appendix G).

(a) (c)

(d)

(e)

(b)

FIG. 3. Inelastic neutron scattering data under zero applied magnetic field. (a) Energy dependence of the magnetic excitation spectrum
along high-symmetry points measured at 0.1 K. The background is subtracted using the high-temperature (45 K) spectrum (see
Appendix G for details). The contour path travels along the high-symmetry points K1-M1-K-Γ1=Γ2-K-M2-K2, which is illustrated by
the black solid curve in c. (b) Calculated spectrum using matrix product states for the J1 − J2 XXZ model on the triangular lattice, with
J2=J1 ¼ 0.12 and Δ ¼ 1.35 (see Appendix H for details). We use J1 ∼ 0.5 meV to adjust the scale of the y axis for better comparison of
the experimental data. (c). A schematic of the high symmetry path used in a,b. The dashed lines show the boundary of the Brillouin
zones. (d) Background-subtracted low energy slice of the magnetic excitation spectrum collected at 0.1 K. The energy integration range
is [0.1, 0.3] meV. (e) The calculated spectrum of the J1 − J2 XXZ model with the same parameters as in b. We integrate the spectrum in
the energy range [0.1, 0.3] meV for comparison with d.
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collected isothermalmagnetization data along both directions
up to 14 T of the applied magnetic field provides anisotropic
Landé g factors of gk ≃ 3.44 and g⊥ ≃ 3.04 (see Fig. S1f).
As proposed in previous studies on YbðMg;ZnÞGaO4,

one plausible explanation for the absence of long-range
magnetic ordering could be that the ground state is a spin
glass [15]. In the spin-glass state, the spins are locked into a
static, short-range ordered state below the freezing temper-
ature (Tf) due to competing exchange interactions [39].
Detection of the spin-glass state typically involves ac-
susceptibility measurements. We conducted ac-susceptibility
measurements on YbZn2GaO5 single-crystal samples (see
Appendix C). In Fig. 1(d), the real part of the ac suscep-
tibility (χ0) at 80 Hz reveals a maximum at Tf ≈ 0.082 K, at
a slightly lower value compared to that observed in
YbðMg;ZnÞGaO4 [15]. The observed peak exhibits a small
frequency-dependent behavior, shifting slightly toward
higher temperatures for low frequency regime. We attribute
this behavior to the freezing of the orphan spins present in
the small impurity phase rather than the spin-glass nature of
the ground state for YbZn2GaO5. To further elaborate on
this, we show in the inset of Fig. 1(d) the interpolation of
lowest measured frequency (80 Hz) at the zero temperature

limit, suggesting that the susceptibility passes through origin
and is linear as a function of temperature in this regime. This
is in agreement with our expectation for a Dirac quantum
spin liquid state [28,35] and implies that YbZn2GaO5 is
unlikely to exhibit a spin-glass ground state. Furthermore,
the spin-glass scenario is ruled out by the Cole-Cole analysis
shown in Fig. 1(e), where χ00 versus χ0 is plotted as frequency
sweeps at fixed temperatures. The Cole-Cole plot illustrates
the distribution of relaxation times, characterized by the
fitting parameter α. A perfect semicircle corresponds to
α ¼ 0 and implies a single relaxation time, while a highly
flattened semicircle corresponds to α → 1, indicating a
broad distribution of relaxation times [40]. In a typical spin
glass, one would anticipate a broad spectrum of relaxation
times [39,41]. However, in YbZn2GaO5, the obtained α falls
within the range of 0.005 to 0.08, consistent with a single
relaxation time at temperatures both below and above the
peak position at Tf. Remarkably, even at the base temper-
ature of 0.02 K, which is significantly below Tf, the smallest
α value of 0.005 was obtained. These observations exclude
the possibility of the spin-glass scenario and suggest that
the ground state of YbZn2GaO5 remains dynamic down
to 0.02 K.

(a) (b)

(c) (e)

(d)

FIG. 1. Crystal structure and magnetic susceptibility. (a) Crystal structure of YbZn2GaO5; Yb-O planes are well separated by
nonmagnetic Zn-O, Ga-O, and Zn-O layers along crystallographic c direction. (b) The Yb3þ (blue sphere) forms a triangular lattice. The
nearest neighbor couplings J1 and next-nearest neighbor couplings J2 are shown by green solid lines. (c) The inverse magnetic
susceptibility, 1=χ (Hkc and H⊥c) data collected on single-crystal sample of YbZn2GaO5 from 2 to 300 K. The red solid lines are the
Curie-Weiss (CW) fit at the low-temperature range from 5–15 K and at high-temperature range from 200–300 K. The inset shows no
splitting between zero-field-cooling (ZFC) and field cooling (FC) magnetic susceptibility data of YbZn2GaO5 crystal down to 0.3 K.
The measurements were conducted under an applied magnetic field of 0.01 T parallel and perpendicular to crystallographic c direction.
(d) Temperature dependence of the real part of the ac susceptibility. The inset displays a linear fit of the data at 80 Hz, ranging from 0.055
to 0.08 K. Our linear fit extrapolates to the origin within the uncertainty range. (e) Cole-Cole plot (Argand diagram) at different
temperatures. The data were collected at a series of frequencies in the range of 10 to 3000 Hz. Data at each fixed temperature were
individually fitted to the Cole-Cole equation shown in the plot. Our fit yields Cole-Cole coefficient α of 0.005(2), 0.080(1), 0.041(3),
0.033(1), 0.032(2), and 0.030(2), for 20 mK, 72 mK, 100 mK, 0.35 K, 0.55 K, and 0.98 K, respectively.
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FIG. 2: The pyrochlore lattice (left), and one up-pointing
tetrahedron (right). One sublattice of tetrahedra is shaded,
and the other transparent. The thickened bonds show the
location of a pyrochlore hexagon. Each such hexagon is a
member of one of four orientations of kagomé lattice planes.
The numbering of sites in the up-pointing tetrahedron on the
right is the convention used in the text. For i = 0, 1, 2, the
fcc Bravais lattice vector ai points in the direction given by
looking from site 3 to site i.

the effective description of the U(1) spin liquid and the
soluble point in terms of Gaussian quantum electrody-
namics. Corrections to effective action and to the scaling
equalities between microscopic and effective degrees of
freedom are discussed in Sec. III C. Sec. IV contains a
discussion of the universal properties of the U(1) spin liq-
uid, including its novel U(1) topological order. In Sec. V
we present our analysis of the soluble point ground state
wavefunction, which gives strong support for the valid-
ity of our effective picture. We conclude in Sec. VI with
a discussion of open issues, focusing on the challenging
problems of understanding this physics in a broader range
of models and looking for U(1)-fractionalized phases in
real materials.

II. MODELS AND MAPPINGS

A. Pyrochlore Model

We begin with the nearest-neighbor S = 1/2 Heisen-
berg antiferromagnet on the pyrochlore lattice. This
structure is a three-dimensional network of corner-
sharing tetrahedra (Fig. 2). It can be obtained by trans-
lating one “up-pointing” tetrahedron (shown on the right
of Fig. 2) through the fcc Bravais lattice vectors R =
n0a0+n1a1+n2a2. We choose a0 = x, a1 = x/2+

√
3y/2,

and a2 = x/2 + y/2
√

3 +
√

2/3z. Basis vectors for the
reciprocal lattice are defined by bi =

√
2πεijkaj × ak,

so that ai · bj = 2πδij . The four sites in each unit cell
are distinguished by an index i = 0, . . . , 3, as indicated
in Fig. 2. Lattice sites are denoted either by single italic

C
B

A

FIG. 3: Depiction of the processes contributing to the third-
order degenerate perturbation theory for the easy-axis py-
rochlore Heisenberg antiferromagnet. Processes (A) and (B)
give only trivial constant shifts of the energy. Process (C)
leads to an XY ring exchange term acting on hexagonal pla-
quettes.

letters like i, or by pairs (R, i) when we wish to specify
the position of a site within the unit cell.

Up to a constant the Hamiltonian can be written as a
sum over tetrahedra:

H =
J

2

∑

t

(St)
2, (1)

where St =
∑

i∈t Si is the total spin on the tetrahedron
t. Following the analysis of a generalized kagomé Heisen-
berg antiferromagnet in Ref. [9], we introduce easy-axis
exchange anisotropy:

H = HI + H′, (2)

HI =
Jz

2

∑

t

(Sz
t )2, (3)

H′ =
J⊥
2

∑

〈ij〉

(S+
i S−j + h.c.), (4)

where Jz # J⊥. This reduces the global SU(2) invari-
ance to U(1) × Z2. We first consider the point J⊥ = 0,
where H reduces to a classical Ising model, with ground
states specified by Sz

t = 0 on all tetrahedra. It was ar-
gued by Anderson23 that, almost identically to Pauling’s
model for water ice24, this Ising model has an extensive
ground state degeneracy (i.e. finite T = 0 entropy per
site).

A small J⊥ > 0 introduces quantum fluctuations and
lifts the extensive degeneracy; this splitting is encapsu-
lated in an effective Hamiltonian using standard tech-
niques of perturbation theory. The first-order contribu-
tion is easily seen to vanish. We will need to go to third
order, where we have the general expression:
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]
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Here P projects onto the orthogonal complement of the
ground state manifold. To describe the processes con-
tributing in Eq. (5), it is useful to work in the standard
hardcore boson language for the spins, where Sz = ±1/2
corresponds to the presence/absence of a boson. Each
term in H′ hops bosons along nearest-neighbor bonds;
acting on a state in the low-energy manifold, each hop
creates two tetrahedra with Sz

t != 0. At second order
in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
ing effective Hamiltonian is

Heff = (J2
⊥/Jz)(J⊥/Jz − 1)Nt (6)

+ Jring

∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.),

where Nt is the total number of tetrahedra, Jring =
3J3
⊥/2J2

z , and the sum is over hexagonal plaquettes. The
labelling of the spin operators inside the sum is given by
moving around each hexagon in an arbitrary direction.
Note that [Heff , Sz

t ] = 0, as must be true for any ef-
fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.

We focus on the extreme easy axis limit described by
Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
Sz

t = 0. This mapping accounts for finite Jz by gener-
ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.

It is possible, and will be convenient, to change the sign
of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
spin space. One transformation with the desired effect,
consisting of π-rotations on a pattern of sites, is:

Sz
i → Sz

i (7)

S±
Ri → exp(iQi · R)S±

Ri, (8)

where Q0 = Q1 = (b1 + b2)/2 and Q2 = Q3 = 0.

FIG. 4: A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons.
These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
and empty bonds correspond to alternating up and down
spins.

After this transformation the Hamiltonian takes the
form

Hp = −Jring

∑

!

(S+
1 S−2 S+

3 S−4 S+
5 S−6 + h.c.), (9)

where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.

As first realized by Rokhsar and Kivelson, dimer mod-
els generically have a point in their parameter space

4
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Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
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at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
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t = 0. This mapping accounts for finite Jz by gener-
ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
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given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
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where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
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change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
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ing every site. To see this, observe that the centers of
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nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
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cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
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Here P projects onto the orthogonal complement of the
ground state manifold. To describe the processes con-
tributing in Eq. (5), it is useful to work in the standard
hardcore boson language for the spins, where Sz = ±1/2
corresponds to the presence/absence of a boson. Each
term in H′ hops bosons along nearest-neighbor bonds;
acting on a state in the low-energy manifold, each hop
creates two tetrahedra with Sz

t != 0. At second order
in H′, bosons can hop and then return along the same
bond (Fig. 3A). This can always occur on 4 bonds in ev-
ery tetrahedron, thus giving only a constant contribution
to the energy. At third order another constant contribu-
tion arises from single bosons (or holes) hopping around
triangular faces (Fig. 3B). There is also a nontrivial ring
exchange process acting on the hexagonal plaquettes (see
Fig. 2), where hexagons containing three evenly spaced
bosons can be rotated as shown in Figure 3C. The result-
ing effective Hamiltonian is

Heff = (J2
⊥/Jz)(J⊥/Jz − 1)Nt (6)

+ Jring
∑
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3 S−4 S+
5 S−6 + h.c.),

where Nt is the total number of tetrahedra, Jring =
3J3
⊥/2J

2
z , and the sum is over hexagonal plaquettes. The

labelling of the spin operators inside the sum is given by
moving around each hexagon in an arbitrary direction.
Note that [Heff , Sz

t ] = 0, as must be true for any ef-
fective Hamiltonian acting in the low-energy manifold,
whatever the form of H′.
We focus on the extreme easy axis limit described by

Heff , but note in passing that a finite but large Jz would
introduce small fluctuations out of the ground state man-
ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
tions of some microscopic operators. This can be under-
stood formally by a more sophisticated execution of the
perturbation theory in J⊥ that accounts for splitting of
the low-energy manifold and mixing of higher states on
an equal footing25. The main result is that the problem
at finite Jz can be mapped, by a unitary transforma-
tion, order-by-order in J⊥ onto a transformed Hamilto-
nian acting only within the low-energy manifold where
Sz
t = 0. This mapping accounts for finite Jz by gener-

ating nontrivial perturbative relations between physical
and transformed operators; however, we ignore these cor-
rections for simplicity and use only the results of the stan-
dard degenerate perturbation theory described above.
It is possible, and will be convenient, to change the sign

of the ring term by a similarity transformation. On any
given site we can make the transformation Sz → Sz and
S± → −S± by making a π-rotation about the z-axis in
spin space. One transformation with the desired effect,
consisting of π-rotations on a pattern of sites, is:

Sz
i → Sz

i (7)

S±
Ri → exp(iQi ·R)S±

Ri, (8)

where Q0 = Q1 = (b1 + b2)/2 and Q2 = Q3 = 0.

FIG. 4: A small piece of the diamond lattice. The links form
hexagonal loops corresponding to the pyrochlore hexagons.
These are the shortest possible closed paths on the diamond
lattice. The hexagon with three thickened bonds depicts the
dimer positions on a flippable hexagon. The alternating full
and empty bonds correspond to alternating up and down
spins.

After this transformation the Hamiltonian takes the
form

Hp = −Jring
∑
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(S+
1 S−2 S+

3 S−4 S+
5 S
−
6 + h.c.), (9)

where the constant terms have been dropped. Mod-
els similar to this one on the kagomé9, square26,27,
triangular28 other lattices11, where XY ring exchange of
spins or bosons is a dominant term, have recently been
shown to exhibit a variety of unusual phases and crit-
ical behavior. The physics of the pyrochlore ring ex-
change model should be accessible to quantum Monte
Carlo studies; while the original Hamiltonian in Eq. (2)
has a sign problem, Hp does not.
Hp can be reinterpreted as a quantum dimer model

on the diamond lattice (Fig. 4), with two dimers touch-
ing every site. To see this, observe that the centers of
the pyrochlore tetrahedra form a diamond lattice. Each
nearest-neighbor diamond link passes through exactly
one pyrochlore site, so we can reinterpret the pyrochlore
spins as diamond link variables. The smallest closed
loops in this lattice contain six links and correspond to
the pyrochlore hexagons. We say a dimer is present on a
given bond if Sz

i = 1/2, or absent if Sz
i = −1/2. Sz

t = 0
becomes the constraint that every diamond site touches
two dimers, and the ring exchange move is the most lo-
cal dynamics preserving this constraint. Each term in Hp

acts on a “flippable” hexagon, one containing alternating
full and empty bonds as in Fig. 4, by rotating the dimers
around it. Non-flippable hexagons are annihilated.
As first realized by Rokhsar and Kivelson, dimer mod-

els generically have a point in their parameter space
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the projector Eq. (24). The spatial components enter
as the eigenvalues of the states |{αri(τ)}〉 used to form
the resolution of the identity at each timeslice. Follow-
ing very similar manipulations to those in Appendix A
of Ref. (26), one obtains the dual action:

Scd =
1

π2
ln
( 2

εK

)

∑

τ,〈rr′〉

(

∆ταrr′ + αrτ − αr′τ

)2

+
εU

2π2

∑

τ,!∗

(

(curlα)!∗ + πe0rr′
)2

, (27)

where ∆τf ≡ f(τ + ε)− f(τ).
The action Eq. (27) is essentially a higher-dimensional

generalization of the height model partition function ar-
rived at by similar manipulations in the context of the
square lattice QDM29. Significantly, it differs in having
a local rather than a global invariance, under spacetime-
dependent dual gauge transformations of the form αµ →
αµ + ∆µλ. In fact, Scd has the same structure as non-
compact lattice QED, except for the discrete nature of
the fields. This encodes the important physics of the
magnetic monopoles. In Sec. III below, it will be use-
ful to imagine softening the constraint of discreteness on
the fields to interpolate between the dual partition func-
tion and an effective description of the Coulomb phase.
With the soft constraint (implemented by the “correc-
tions” in Eq. (55)), the theory is identical to a more
familiar dual representation of U(1) gauge theory con-
sisting of a non-compact gauge field minimally coupled
to scalar monopoles.

E. Pyrochlore Gauge Theory and Duality

We now return to the pyrochlore ring model Hp. In
this case the diamond lattice with sites at the centers of
the tetrahedra (discussed in Sec. II A) plays the role the
cubic lattice did for the cubic model. Denoting diamond
sites by boldface characters, we soften the hardcore con-
straint on the bosons and go to quantum rotor variables
living on the diamond links:

Hp =
U

2

∑

〈rr′〉

(nrr′ − 1/2)2 (28)

− K
∑

!

cos(φ1 − φ2 + φ3 − φ4 + φ5 − φ6).

Here the second sum is over the hexagonal loops of the di-
amond lattice (Fig. 4), and the numbering inside the co-
sine proceeds around the perimeter of the given hexagon.
The diamond lattice is bipartite, so we define an orien-
tation by declaring that links naturally point out of the
“up-pointing” sites and into the “down-pointing” ones
(corresponding to up- and down-pointing tetrahedra, re-
spectively). We define an oriented electric field and vec-
tor potential exactly as in Eqs. (14,15). The Hamiltonian

then takes the form of the diamond lattice frustrated
gauge theory:

Hp =
U

2

∑

〈rr′〉

e2rr′ −K
∑

!

cos
(

∑

rr′∈!

! arr′
)

. (29)

It is evident that the lattice curl now naturally lives on
the hexagons of the diamond lattice.
Again the electric charge has a simple interpretation

in the spin language:

(div e)r = ±Sz
t . (30)

Tetrahedra with Sz
t = ±1 are now the Sz = 1/2 spinons

carrying unit gauge charge. Single spinons can be created
by a string operator similar to Eq. (19). For small U/K
the model should again enter a deconfining phase where
the spinons are free to propagate.
We define a dual lattice of plaquette variables by

putting a site at the center of every pyrochlore hexagon.
This is also a pyrochlore lattice, and it will be useful to
think of its sites as the links of a dual diamond lattice
with sites labelled by serif characters r. Each hexagon of
the dual lattice encircles a link of the direct lattice, and
vice versa. As before, magnetic charge lives on the dual
lattice sites. The dual variables, again with the commu-
tator [b,α] = i on the same link, are defined on the dual
links by:

π(err′ − e0rr′) = (curlα)!∗ (31)

πbrr′ = (curl a)!, (32)

with the sense of the lattice curls determined as in the
cubic case. Here (div b)r = 2nr, with nr = 0,±1. The
Hamiltonian takes the form

Hpd =
U

2π2

∑

!∗

((curlα)!∗ + πe0rr′)
2 −K

∑

〈rr′〉

cos(πbrr′).

(33)
One can derive an action in eigenstates of the dual vector
potential as in the previous section, with the result:

Zpd =
∑

{αrr′(τ)}

∑

{αrτ (τ)}

exp(−Spd), (34)

and

Spd =
1

π2
ln
( 2

εK

)

∑

τ,〈rr′〉

(

∆ταrr′ + αrτ − αr′τ

)2

+
εU

2π2

∑

τ,!∗

(

(curlα)!∗ + πe0rr′
)2

. (35)

The constraint of magnetic charge quantization (div b)r ∈
2Z enters as before, giving rise to the temporal dual vec-
tor potential fields in Zpd.
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ifold. While these will not affect universal properties,
they can matter for the short-distance correlation func-
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ful to imagine softening the constraint of discreteness on
the fields to interpolate between the dual partition func-
tion and an effective description of the Coulomb phase.
With the soft constraint (implemented by the “correc-
tions” in Eq. (55)), the theory is identical to a more
familiar dual representation of U(1) gauge theory con-
sisting of a non-compact gauge field minimally coupled
to scalar monopoles.

E. Pyrochlore Gauge Theory and Duality

We now return to the pyrochlore ring model Hp. In
this case the diamond lattice with sites at the centers of
the tetrahedra (discussed in Sec. II A) plays the role the
cubic lattice did for the cubic model. Denoting diamond
sites by boldface characters, we soften the hardcore con-
straint on the bosons and go to quantum rotor variables
living on the diamond links:

Hp =
U

2

∑

〈rr′〉

(nrr′ − 1/2)2 (28)

− K
∑

!

cos(φ1 − φ2 + φ3 − φ4 + φ5 − φ6).

Here the second sum is over the hexagonal loops of the di-
amond lattice (Fig. 4), and the numbering inside the co-
sine proceeds around the perimeter of the given hexagon.
The diamond lattice is bipartite, so we define an orien-
tation by declaring that links naturally point out of the
“up-pointing” sites and into the “down-pointing” ones
(corresponding to up- and down-pointing tetrahedra, re-
spectively). We define an oriented electric field and vec-
tor potential exactly as in Eqs. (14,15). The Hamiltonian

then takes the form of the diamond lattice frustrated
gauge theory:

Hp =
U

2

∑

〈rr′〉

e2rr′ −K
∑

!

cos
(

∑

rr′∈!

! arr′
)

. (29)

It is evident that the lattice curl now naturally lives on
the hexagons of the diamond lattice.
Again the electric charge has a simple interpretation

in the spin language:

(div e)r = ±Sz
t . (30)

Tetrahedra with Sz
t = ±1 are now the Sz = 1/2 spinons

carrying unit gauge charge. Single spinons can be created
by a string operator similar to Eq. (19). For small U/K
the model should again enter a deconfining phase where
the spinons are free to propagate.
We define a dual lattice of plaquette variables by

putting a site at the center of every pyrochlore hexagon.
This is also a pyrochlore lattice, and it will be useful to
think of its sites as the links of a dual diamond lattice
with sites labelled by serif characters r. Each hexagon of
the dual lattice encircles a link of the direct lattice, and
vice versa. As before, magnetic charge lives on the dual
lattice sites. The dual variables, again with the commu-
tator [b,α] = i on the same link, are defined on the dual
links by:

π(err′ − e0rr′) = (curlα)!∗ (31)

πbrr′ = (curl a)!, (32)

with the sense of the lattice curls determined as in the
cubic case. Here (div b)r = 2nr, with nr = 0,±1. The
Hamiltonian takes the form

Hpd =
U

2π2

∑

!∗

((curlα)!∗ + πe0rr′)
2 −K

∑

〈rr′〉

cos(πbrr′).

(33)
One can derive an action in eigenstates of the dual vector
potential as in the previous section, with the result:

Zpd =
∑

{αrr′(τ)}

∑

{αrτ (τ)}

exp(−Spd), (34)

and

Spd =
1

π2
ln
( 2

εK

)

∑

τ,〈rr′〉

(

∆ταrr′ + αrτ − αr′τ

)2

+
εU

2π2

∑

τ,!∗

(

(curlα)!∗ + πe0rr′
)2

. (35)

The constraint of magnetic charge quantization (div b)r ∈
2Z enters as before, giving rise to the temporal dual vec-
tor potential fields in Zpd.
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MAGNETISM

Proximate deconfined quantum critical point
in SrCu2(BO3)2
Yi Cui1†, Lu Liu2,3†, Huihang Lin1†, Kai-Hsin Wu4, Wenshan Hong2, Xuefei Liu1, Cong Li1, Ze Hu1,
Ning Xi1, Shiliang Li2,5,6, Rong Yu1,7*, Anders W. Sandvik4,2*, Weiqiang Yu1,7*

The deconfined quantum critical point (DQCP) represents a paradigm shift in quantum matter
studies, presenting a “beyond Landau” scenario for order-order transitions. Its experimental
realization, however, has remained elusive. Using high-pressure 11B nuclear magnetic resonance
measurements on the quantum magnet SrCu2(BO3)2, we here demonstrate a magnetic field–
induced plaquette singlet to antiferromagnetic transition above 1.8 gigapascals at a notably low
temperature, Tc ≃ 0.07 kelvin. First-order signatures of the transition weaken with increasing
pressure, and we observe quantum critical scaling at the highest pressure, 2.4 gigapascals.
Supported by model calculations, we suggest that these observations can be explained by
a proximate DQCP inducing critical quantum fluctuations and emergent O(3) symmetry
of the order parameters. Our findings offer a concrete experimental platform for investigation
of the DQCP.

T
he theoretically proposed deconfined
quantum critical point (DQCP) (1) con-
nects two different ordered ground states
of quantummatter by a continuous quan-
tum phase transition (QPT). This type of

criticality, which has been explored primarily
in the context of two-dimensional (2D) quan-
tummagnets (2), lies beyond the conventional
paradigm of discontinuous (first-order) tran-
sitions between ordered phases with unrelated
symmetries. The DQCP is associated with un-
conventional phenomena, including fractional
spinon excitations and deconfined gauge fluc-
tuations (3–5). Further investigations have
extended the concept, introducing emergent
symmetries (6–11) and exotic first-order tran-
sitions (12, 13). In a very recent scenario, the
DQCP is proposed to be a multicritical point
(14, 15) connected to a gapless quantum spin
liquid (QSL) (16–20).
Although DQCP phenomena are broadly

relevant in quantum materials (21), there
has been no supportive experimental identi-
fication in any system. Quantum magnets in
which the interactions can be varied over a wide
enough range to realize two phases bordering
a DQCP are rare. An exception is the layered

material SrCu2(BO3)2 (22–24), in which anti-
ferromagnetic (AFM) Heisenberg interactions
between the S = 1/2 Cu2+ spins (Fig. 1A) pro-
vide a faithful realization of the 2D Shastry-
Sutherland model (SSM) (25). In the SSM, three
different T = 0 phases are well established to
form as a function of the ratio g = J/J′ of the
inter- to intradimer couplings (26, 27): an exact
dimer-singlet phase (DS, with singlets on the J′
bonds), a twofold degenerate plaquette-singlet
(PS) phase (Fig. 1B), and aNéel AFMphase (Fig.
1C). At ambient pressure, SrCu2(BO3)2 is well de-
scribed by the g ≃ 0.63 SSM with a DS ground
state (24). An applied pressure increases g, driv-
ing the system into a PS phase at P ≃ 1.8 GPa
(28, 29), which persists with transition tem-
perature TP ≃ 2 K up to P ≃ 2.6 GPa (30, 31).
An AFM phase withNéel temperature TN from
2.5 to 4 K has been detected between 3.2 and
4 GPa (30).
Here, we report a 11B nuclear magnetic reso-

nance (NMR) study of SrCu2(BO3)2 in a mag-
netic fieldH up to 15 T and at pressures up to
2.4 GPa, aiming to characterize the field-
driven PS-AFM transition. At 2.1 GPa, PS
and AFM transitions are resolved using their
NMR signatures and merge at a common
point (HC,TC), with HC ≃ 6 T and TC ≃ 0.07 K
(Fig. 1D). Such a low TC in relation to TP and
TN farther away fromHC indicates proximity
to a TC = 0 QPT. First-order discontinuities at
(HC,TC) weaken with increasing pressure, and
we observed quantum-critical scaling of the
spin-lattice relaxation at 2.4 GPa for T > TC.
Our results support the existence of a multi-

critical DQCP controlling the quantum fluctu-
ations at 2.4 GPa, with TC on the associated
first-order line suppressed by an emergent O(3)
symmetry of the combined scalar PS and O(2)
AFM order parameters (7, 8). By synthesizing
past and present experiments on SrCu2(BO3)2
and model calculations, we arrived at the global

phase diagram depicted in Fig. 2. Before fur-
ther discussing the DQCP scenario, we present
our NMR detection of the various phases and
transitions.

NMR identification of phases

We performed 11B NMR measurements on
SrCu2(BO3)2 single crystals at pressures of up
to 2.4 GPa in fields between 0.2 and 15 T and
temperatures down to 0.07 K. Experimental
details are provided in the supplementaryma-
terials (33). We first discuss NMR line shifts
to detect the relevant quantumphases and tran-
sitions, followed by results of the spin-lattice
relaxation rate 1/T1.
A typical 11B NMR spectrum, shown in Fig.

3A, has a central peak with four satellite peaks
on either side, from inequivalent sites B1 to B4
(Fig. 1A) caused by a small tilt angle between
the field and the crystalline c axis (33). The
satellites are sensitive to changes of the lattice
structure because of the local coupling be-
tween the nuclear quadrupole moment and
the electric field gradient (33). As shown at a
low field and P = 2.1 GPa in Fig. 3B, the full-
width at half maximum (FWHM) height of the
satellites increases on cooling <10 K until a
maximum at T ≃ 3 K, reflecting increasing lat-
tice fluctuations when the spins form fluc-
tuating plaquette singlets above the ordered
PS phase (31). This PS liquid crosses over to
the trivial paramagnetic (PM) state at higher
temperature.
Below 1.8 K, the FWHM inFig. 3B rises sharp-

ly and saturates around 1 K. As explained in
section S2 of the supplementary materials (33),
the rapid broadening follows from an orthog-
onal lattice distortion when a full-plaquette
(FP) PS state (Fig. 1B) forms. The FWHM as a
proxy for the PS order parameter is further
corroborated by the consistency of TP ≃ 1.8 K
at the low field applied in Fig. 3B with the lo-
cation of a sharp specific-heat peak (30, 31),
marked in Fig. 1D.
Figure 3C shows the evolution of the central

peak with T at P = 0.9 GPa and H = 4 T. The
negative Knight shift at the higher tempera-
tures reflects the hyperfine coupling Ahf ≃
–0.259 T/mB [see section S3 of the supple-
mentary materials (33)] forH∥c (34, 35). The
shift increases rapidly below T* ≃ 7 K when
dimer singlets form in the DS state. At 2.1 GPa
(Fig. 3E), PS order forms < 2 K, but the Knight
shift changes rapidly at T ≃ 4 K when the PS
liquid forms.
The first-order transition between the DS

phase and the PS or PS liquid phase termi-
nates at an Ising-type critical point, which at
H = 0 is located at P ≃ 1.9 GPa, T ≃ 3.3 K (31).
At low T, the DS-PS transition takes place
between 1.7 and 1.8 GPa (30). The first-order
DS line must therefore bend slightly, as indi-
cated in Fig. 2A, and can be crossed versus T at
fixed P and H. Indeed, at 1.85 GPa (Fig. 3D),
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The deconfined quantum critical point (DQCP) represents a paradigm shift in quantum matter
studies, presenting a “beyond Landau” scenario for order-order transitions. Its experimental
realization, however, has remained elusive. Using high-pressure 11B nuclear magnetic resonance
measurements on the quantum magnet SrCu2(BO3)2, we here demonstrate a magnetic field–
induced plaquette singlet to antiferromagnetic transition above 1.8 gigapascals at a notably low
temperature, Tc ≃ 0.07 kelvin. First-order signatures of the transition weaken with increasing
pressure, and we observe quantum critical scaling at the highest pressure, 2.4 gigapascals.
Supported by model calculations, we suggest that these observations can be explained by
a proximate DQCP inducing critical quantum fluctuations and emergent O(3) symmetry
of the order parameters. Our findings offer a concrete experimental platform for investigation
of the DQCP.

T
he theoretically proposed deconfined
quantum critical point (DQCP) (1) con-
nects two different ordered ground states
of quantummatter by a continuous quan-
tum phase transition (QPT). This type of

criticality, which has been explored primarily
in the context of two-dimensional (2D) quan-
tummagnets (2), lies beyond the conventional
paradigm of discontinuous (first-order) tran-
sitions between ordered phases with unrelated
symmetries. The DQCP is associated with un-
conventional phenomena, including fractional
spinon excitations and deconfined gauge fluc-
tuations (3–5). Further investigations have
extended the concept, introducing emergent
symmetries (6–11) and exotic first-order tran-
sitions (12, 13). In a very recent scenario, the
DQCP is proposed to be a multicritical point
(14, 15) connected to a gapless quantum spin
liquid (QSL) (16–20).
Although DQCP phenomena are broadly

relevant in quantum materials (21), there
has been no supportive experimental identi-
fication in any system. Quantum magnets in
which the interactions can be varied over a wide
enough range to realize two phases bordering
a DQCP are rare. An exception is the layered

material SrCu2(BO3)2 (22–24), in which anti-
ferromagnetic (AFM) Heisenberg interactions
between the S = 1/2 Cu2+ spins (Fig. 1A) pro-
vide a faithful realization of the 2D Shastry-
Sutherland model (SSM) (25). In the SSM, three
different T = 0 phases are well established to
form as a function of the ratio g = J/J′ of the
inter- to intradimer couplings (26, 27): an exact
dimer-singlet phase (DS, with singlets on the J′
bonds), a twofold degenerate plaquette-singlet
(PS) phase (Fig. 1B), and aNéel AFMphase (Fig.
1C). At ambient pressure, SrCu2(BO3)2 is well de-
scribed by the g ≃ 0.63 SSM with a DS ground
state (24). An applied pressure increases g, driv-
ing the system into a PS phase at P ≃ 1.8 GPa
(28, 29), which persists with transition tem-
perature TP ≃ 2 K up to P ≃ 2.6 GPa (30, 31).
An AFM phase withNéel temperature TN from
2.5 to 4 K has been detected between 3.2 and
4 GPa (30).
Here, we report a 11B nuclear magnetic reso-

nance (NMR) study of SrCu2(BO3)2 in a mag-
netic fieldH up to 15 T and at pressures up to
2.4 GPa, aiming to characterize the field-
driven PS-AFM transition. At 2.1 GPa, PS
and AFM transitions are resolved using their
NMR signatures and merge at a common
point (HC,TC), with HC ≃ 6 T and TC ≃ 0.07 K
(Fig. 1D). Such a low TC in relation to TP and
TN farther away fromHC indicates proximity
to a TC = 0 QPT. First-order discontinuities at
(HC,TC) weaken with increasing pressure, and
we observed quantum-critical scaling of the
spin-lattice relaxation at 2.4 GPa for T > TC.
Our results support the existence of a multi-

critical DQCP controlling the quantum fluctu-
ations at 2.4 GPa, with TC on the associated
first-order line suppressed by an emergent O(3)
symmetry of the combined scalar PS and O(2)
AFM order parameters (7, 8). By synthesizing
past and present experiments on SrCu2(BO3)2
and model calculations, we arrived at the global

phase diagram depicted in Fig. 2. Before fur-
ther discussing the DQCP scenario, we present
our NMR detection of the various phases and
transitions.

NMR identification of phases

We performed 11B NMR measurements on
SrCu2(BO3)2 single crystals at pressures of up
to 2.4 GPa in fields between 0.2 and 15 T and
temperatures down to 0.07 K. Experimental
details are provided in the supplementaryma-
terials (33). We first discuss NMR line shifts
to detect the relevant quantumphases and tran-
sitions, followed by results of the spin-lattice
relaxation rate 1/T1.
A typical 11B NMR spectrum, shown in Fig.

3A, has a central peak with four satellite peaks
on either side, from inequivalent sites B1 to B4
(Fig. 1A) caused by a small tilt angle between
the field and the crystalline c axis (33). The
satellites are sensitive to changes of the lattice
structure because of the local coupling be-
tween the nuclear quadrupole moment and
the electric field gradient (33). As shown at a
low field and P = 2.1 GPa in Fig. 3B, the full-
width at half maximum (FWHM) height of the
satellites increases on cooling <10 K until a
maximum at T ≃ 3 K, reflecting increasing lat-
tice fluctuations when the spins form fluc-
tuating plaquette singlets above the ordered
PS phase (31). This PS liquid crosses over to
the trivial paramagnetic (PM) state at higher
temperature.
Below 1.8 K, the FWHM inFig. 3B rises sharp-

ly and saturates around 1 K. As explained in
section S2 of the supplementary materials (33),
the rapid broadening follows from an orthog-
onal lattice distortion when a full-plaquette
(FP) PS state (Fig. 1B) forms. The FWHM as a
proxy for the PS order parameter is further
corroborated by the consistency of TP ≃ 1.8 K
at the low field applied in Fig. 3B with the lo-
cation of a sharp specific-heat peak (30, 31),
marked in Fig. 1D.
Figure 3C shows the evolution of the central

peak with T at P = 0.9 GPa and H = 4 T. The
negative Knight shift at the higher tempera-
tures reflects the hyperfine coupling Ahf ≃
–0.259 T/mB [see section S3 of the supple-
mentary materials (33)] forH∥c (34, 35). The
shift increases rapidly below T* ≃ 7 K when
dimer singlets form in the DS state. At 2.1 GPa
(Fig. 3E), PS order forms < 2 K, but the Knight
shift changes rapidly at T ≃ 4 K when the PS
liquid forms.
The first-order transition between the DS

phase and the PS or PS liquid phase termi-
nates at an Ising-type critical point, which at
H = 0 is located at P ≃ 1.9 GPa, T ≃ 3.3 K (31).
At low T, the DS-PS transition takes place
between 1.7 and 1.8 GPa (30). The first-order
DS line must therefore bend slightly, as indi-
cated in Fig. 2A, and can be crossed versus T at
fixed P and H. Indeed, at 1.85 GPa (Fig. 3D),
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SrCu2ðBO3Þ2. Working at 5.5 GPa and 4.5 K, we observe
dispersive spin-wave excitations in 58 mg of sample.
Linear spin-wave theory is appropriate to deduce the
parameters of the minimal magnetic Hamiltonian. The
in-plane interactions change dramatically from J0=J ¼
0.63 at ambient pressure to 1.8(2) at 5.5 GPa, which we
ascribe to a strong reduction of J arising from its near-
critical bond angle. We also discover that it is necessary to
include an interlayer coupling, which we fit as
Jc ¼ 0.053ð3Þ meV, to explain the observed 2 meV split-
ting of otherwise degenerate branches in the low-energy
part of the spectrum. We discuss the consequences of this
3D nature for the physics of SrCu2ðBO3Þ2.

Our INS experiments used a 58 mg disk-shaped single-
crystalline sample of SrCu2ðBO3Þ2, whose growth and
characterization we summarize in Sec. S1A of the
Supplemental Material (SM) [30]. The sample was oriented
with Q ¼ ðqh; qk; 0Þ in the horizontal scattering plane. Its
small size is a challenge for INS, but recent developments
in high-pressure techniques at the Institute Laue-Langevin
(ILL) [40–42] made this experiment possible. Using a
Paris-Edinburgh press, the pressure was increased gradu-
ally to 5.5 GPa while the lattice parameters of SrCu2ðBO3Þ2
[26] were measured for pressure determination. The sample
chamber was precooled with liquid N2 and cooling to 4.5 K
was provided by a closed-cycle refrigerator. We performed
two consecutive experiments at the IN8 and ThALES
triple-axis spectrometers with the same loading. We used
fixed momentum transfers kf ¼ 2.66 Å−1 at IN8 and kf ¼
1.50 Å−1 at ThALES, providing respective instrumental
resolutions (FWHM) of 1.05(1) and 0.167(4) meV. Scans
with constant energy transfer, E, or constant momentum
transfer, Q, were performed with typical counting times of
5 min per point. In the SM [30] we provide detailed
descriptions of the pressure loading procedure (Sec. S1B),
instrument configurations (Sec. S1C), pressure determina-
tion (Sec. S1D), and data treatment (Sec. S1E). Supporting
diffraction data were collected at IN3, also at the ILL, and
this experiment is described in Sec. S1F.
A selection of constant-E and constant-Q scans is shown

in Fig. 2, with data from both IN8 and ThALES. The width
of the elastic line on IN8 allowed for access to energy
transfers above approximately 2 meV, whereas at ThALES
0.5 meV was accessible. Because the in-plane lattice
parameters of the monoclinic phase satisfy a=b ≃ 0.999
(with monoclinic angle β ≃ 94°) [27], we retain the
tetragonal approximation and use a$ ¼ b$ ¼ 2π=a. The
color contours in Figs. 3(a) and 3(b) collect all neutron
intensities measured respectively along ð0; qk; 0Þ and
ðqh; 1; 0Þ at constant E, and make clear that dispersive
modes are present with minima at (0, 1, 0) and (1, 1, 0). At
1.5 meVand below, we no longer observe neutron intensity
at (0, 1, 0) [Figs. 2(b) and 2(c)]. Above 5 meV it becomes
difficult to discern sharp modes due to vanishing neutron
intensity [Figs. 2(a) and 2(d)]. In Figs. 2(a) and 2(b) we
fitted the data collected along ðqh; 1; 0Þ with Gaussian line
shapes centered respectively at %δh and %δ0h from (0, 1, 0)
and (1, 1, 0), allowing the peak widths and intensities to
vary individually (Sec. 1E of the SM [30]). Similar fits to
the data collected along ð0; qk; 0Þ yielded mode positions
along both directions in Q. The dispersion minimum at
(0, 1, 0) is resolved in a constant-Q scan from ThALES
[Fig. 2(c)]. A Gaussian fit yields an energy of 1.90(8) meV
and the magnetic origin of the excitation is demonstrated by
its absence at 140 K. In Fig. 2(d), we show constant-Q
scans from IN8 where subtraction of the incoherent
contribution allowed the fitting of one or two Gaussian

0 1 2 3 4 5 6
Pressure (GPa)

(d)

Te
m

pe
ra

tu
re

 (K
)

J

b

c
Jc

Jc

J

J'(b)

(c)

J

(a)

Sr

B

a

b

CuO

J'

J

(e)

Dimer Plaquette

J'/J0.6750.63 0.77

SSM-AFM

0

2

4

6

8

110

120

130

140

FIG. 1. SrCu2ðBO3Þ2 and the Shastry-Sutherland model
(SSM). (a),(b) Crystal structure of SrCu2ðBO3Þ2 shown in
projection along (0, 0, 1) (a) and (1, 0, 0) (b). The dimer interaction,
J (solid blue line), interdimer interaction, J0 (dashed green line),
and interlayer interaction, Jc (solid orange line), are indicated.
(c) Illustration of the tetrahedron formed by two orthogonal
dimers stacked along the (0, 0, 1) direction. (d) Phase diagram
of SrCu2ðBO3Þ2 as a function of temperature and pressure, as
deduced from specific-heat measurements (circles [24] and dots
[23]) and neutron diffraction (diamonds) [21,27]. The star marks
the location in temperature and pressure of our INS experiments.
The inset shows a schematic representation of the SSM. (e) Phase
diagram of the SSM as a function of J0=J, as determined by
multiple numerical methods [4–9].
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Proximate deconfined quantum critical point
in SrCu2(BO3)2
Yi Cui1†, Lu Liu2,3†, Huihang Lin1†, Kai-Hsin Wu4, Wenshan Hong2, Xuefei Liu1, Cong Li1, Ze Hu1,
Ning Xi1, Shiliang Li2,5,6, Rong Yu1,7*, Anders W. Sandvik4,2*, Weiqiang Yu1,7*

The deconfined quantum critical point (DQCP) represents a paradigm shift in quantum matter
studies, presenting a “beyond Landau” scenario for order-order transitions. Its experimental
realization, however, has remained elusive. Using high-pressure 11B nuclear magnetic resonance
measurements on the quantum magnet SrCu2(BO3)2, we here demonstrate a magnetic field–
induced plaquette singlet to antiferromagnetic transition above 1.8 gigapascals at a notably low
temperature, Tc ≃ 0.07 kelvin. First-order signatures of the transition weaken with increasing
pressure, and we observe quantum critical scaling at the highest pressure, 2.4 gigapascals.
Supported by model calculations, we suggest that these observations can be explained by
a proximate DQCP inducing critical quantum fluctuations and emergent O(3) symmetry
of the order parameters. Our findings offer a concrete experimental platform for investigation
of the DQCP.

T
he theoretically proposed deconfined
quantum critical point (DQCP) (1) con-
nects two different ordered ground states
of quantummatter by a continuous quan-
tum phase transition (QPT). This type of

criticality, which has been explored primarily
in the context of two-dimensional (2D) quan-
tummagnets (2), lies beyond the conventional
paradigm of discontinuous (first-order) tran-
sitions between ordered phases with unrelated
symmetries. The DQCP is associated with un-
conventional phenomena, including fractional
spinon excitations and deconfined gauge fluc-
tuations (3–5). Further investigations have
extended the concept, introducing emergent
symmetries (6–11) and exotic first-order tran-
sitions (12, 13). In a very recent scenario, the
DQCP is proposed to be a multicritical point
(14, 15) connected to a gapless quantum spin
liquid (QSL) (16–20).
Although DQCP phenomena are broadly

relevant in quantum materials (21), there
has been no supportive experimental identi-
fication in any system. Quantum magnets in
which the interactions can be varied over a wide
enough range to realize two phases bordering
a DQCP are rare. An exception is the layered

material SrCu2(BO3)2 (22–24), in which anti-
ferromagnetic (AFM) Heisenberg interactions
between the S = 1/2 Cu2+ spins (Fig. 1A) pro-
vide a faithful realization of the 2D Shastry-
Sutherland model (SSM) (25). In the SSM, three
different T = 0 phases are well established to
form as a function of the ratio g = J/J′ of the
inter- to intradimer couplings (26, 27): an exact
dimer-singlet phase (DS, with singlets on the J′
bonds), a twofold degenerate plaquette-singlet
(PS) phase (Fig. 1B), and aNéel AFMphase (Fig.
1C). At ambient pressure, SrCu2(BO3)2 is well de-
scribed by the g ≃ 0.63 SSM with a DS ground
state (24). An applied pressure increases g, driv-
ing the system into a PS phase at P ≃ 1.8 GPa
(28, 29), which persists with transition tem-
perature TP ≃ 2 K up to P ≃ 2.6 GPa (30, 31).
An AFM phase withNéel temperature TN from
2.5 to 4 K has been detected between 3.2 and
4 GPa (30).
Here, we report a 11B nuclear magnetic reso-

nance (NMR) study of SrCu2(BO3)2 in a mag-
netic fieldH up to 15 T and at pressures up to
2.4 GPa, aiming to characterize the field-
driven PS-AFM transition. At 2.1 GPa, PS
and AFM transitions are resolved using their
NMR signatures and merge at a common
point (HC,TC), with HC ≃ 6 T and TC ≃ 0.07 K
(Fig. 1D). Such a low TC in relation to TP and
TN farther away fromHC indicates proximity
to a TC = 0 QPT. First-order discontinuities at
(HC,TC) weaken with increasing pressure, and
we observed quantum-critical scaling of the
spin-lattice relaxation at 2.4 GPa for T > TC.
Our results support the existence of a multi-

critical DQCP controlling the quantum fluctu-
ations at 2.4 GPa, with TC on the associated
first-order line suppressed by an emergent O(3)
symmetry of the combined scalar PS and O(2)
AFM order parameters (7, 8). By synthesizing
past and present experiments on SrCu2(BO3)2
and model calculations, we arrived at the global

phase diagram depicted in Fig. 2. Before fur-
ther discussing the DQCP scenario, we present
our NMR detection of the various phases and
transitions.

NMR identification of phases

We performed 11B NMR measurements on
SrCu2(BO3)2 single crystals at pressures of up
to 2.4 GPa in fields between 0.2 and 15 T and
temperatures down to 0.07 K. Experimental
details are provided in the supplementaryma-
terials (33). We first discuss NMR line shifts
to detect the relevant quantumphases and tran-
sitions, followed by results of the spin-lattice
relaxation rate 1/T1.
A typical 11B NMR spectrum, shown in Fig.

3A, has a central peak with four satellite peaks
on either side, from inequivalent sites B1 to B4
(Fig. 1A) caused by a small tilt angle between
the field and the crystalline c axis (33). The
satellites are sensitive to changes of the lattice
structure because of the local coupling be-
tween the nuclear quadrupole moment and
the electric field gradient (33). As shown at a
low field and P = 2.1 GPa in Fig. 3B, the full-
width at half maximum (FWHM) height of the
satellites increases on cooling <10 K until a
maximum at T ≃ 3 K, reflecting increasing lat-
tice fluctuations when the spins form fluc-
tuating plaquette singlets above the ordered
PS phase (31). This PS liquid crosses over to
the trivial paramagnetic (PM) state at higher
temperature.
Below 1.8 K, the FWHM inFig. 3B rises sharp-

ly and saturates around 1 K. As explained in
section S2 of the supplementary materials (33),
the rapid broadening follows from an orthog-
onal lattice distortion when a full-plaquette
(FP) PS state (Fig. 1B) forms. The FWHM as a
proxy for the PS order parameter is further
corroborated by the consistency of TP ≃ 1.8 K
at the low field applied in Fig. 3B with the lo-
cation of a sharp specific-heat peak (30, 31),
marked in Fig. 1D.
Figure 3C shows the evolution of the central

peak with T at P = 0.9 GPa and H = 4 T. The
negative Knight shift at the higher tempera-
tures reflects the hyperfine coupling Ahf ≃
–0.259 T/mB [see section S3 of the supple-
mentary materials (33)] forH∥c (34, 35). The
shift increases rapidly below T* ≃ 7 K when
dimer singlets form in the DS state. At 2.1 GPa
(Fig. 3E), PS order forms < 2 K, but the Knight
shift changes rapidly at T ≃ 4 K when the PS
liquid forms.
The first-order transition between the DS

phase and the PS or PS liquid phase termi-
nates at an Ising-type critical point, which at
H = 0 is located at P ≃ 1.9 GPa, T ≃ 3.3 K (31).
At low T, the DS-PS transition takes place
between 1.7 and 1.8 GPa (30). The first-order
DS line must therefore bend slightly, as indi-
cated in Fig. 2A, and can be crossed versus T at
fixed P and H. Indeed, at 1.85 GPa (Fig. 3D),
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Quantum magnetic materials can provide explicit realizations of paradigm models in quantum many-
body physics. In this context, SrCu2ðBO3Þ2 is a faithful realization of the Shastry-Sutherland model for
ideally frustrated spin dimers, even displaying several of its quantum magnetic phases as a function of
pressure. We perform inelastic neutron scattering measurements on SrCu2ðBO3Þ2 at 5.5 GPa and 4.5 K,
observing spin waves that characterize the high-pressure antiferromagnetic phase. The experimental
spectra are well described by linear spin-wave calculations on a Shastry-Sutherland model with an
interlayer interaction, which is determined accurately as Jc ¼ 0.053ð3Þ meV. The presence of Jc indicates
the need to account for the three-dimensional nature of SrCu2ðBO3Þ2 in theoretical models, also at lower
pressures. We find that the ratio between in-plane interactions, J0=J ¼ 1.8ð2Þ, undergoes a dramatic change
compared to lower pressures that we deduce is driven by a sharp drop in the dimer coupling, J. Our results
underline the wide horizons opened by high-pressure inelastic neutron scattering experiments on quantum
magnetic materials.

DOI: 10.1103/PhysRevLett.133.246702

Frustrated magnetic interactions give rise to fascinating
entangled quantum states, including valence-bond solids,
quantum spin liquids, and spin ices [1]. Beyond the
Heisenberg model on frustrated geometries such as the
triangular and kagome lattices, exotic ground states, exci-
tations, and quantum phase transitions are found in many
systems where interactions compete in real space or in spin
space. Despite multiple developments in both theoretical
and numerical methods, the nature of many such states,
their spectra, and the model phase diagrams remain only
partially understood. Experimental studies of materials
providing physical realizations are therefore an essential
factor for our understanding of quantum magnetic systems.
SrCu2ðBO3Þ2 is an ideally frustrated system composed

of Cu2þ dimers (S ¼ 1=2 spin pairs) arranged orthogonally
both in and between quasi-two-dimensional (2D) layers, as
represented in Figs. 1(a)–1(c) [2]. The in-plane network
realizes the Shastry-Sutherland model (SSM) [inset

Fig. 1(d)], proposed [3] for its exact dimer-singlet ground
state at small J0=J and governed by this ratio of competing
interactions [4–9]. SrCu2ðBO3Þ2 exhibits the dimer-singlet
ground state at ambient pressure [2,10–14] and is well
described by a SSM with J0=J ¼ 0.63 and additional weak
(3%) Dzyaloshinskii-Moriya (DM) interactions [15–19].
Remarkably, the phase diagram of SrCu2ðBO3Þ2 under an
applied hydrostatic pressure [20–22], shown in Fig. 1(d),
mirrors that of the SSM with increasing J0=J [Fig. 1(e)],
and is studied extensively for its exotic quantum phase
transitions [23–25]. Above 4 GPa, where the tetragonal
symmetry changes to monoclinic [26–28], antiferromag-
netic (AFM) order is found by neutron and x-ray diffraction
[21,27,29] and phase-transition features are reported
around 8 K [23] and above 120 K [23,27,28]. However,
these high pressures pose a severe challenge to experiment
and rather little is known about either the precise pressure
regimes for the SSM-AFM and monoclinic-AFM phases or
the possible magnetic interactions in either phase.
Here, we perform an inelastic neutron scattering (INS)

experiment to characterize the monoclinic-AFM phase of*Contact author: ellen.fogh@epfl.ch
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Frustrated magnetic interactions give rise to fascinating
entangled quantum states, including valence-bond solids,
quantum spin liquids, and spin ices [1]. Beyond the
Heisenberg model on frustrated geometries such as the
triangular and kagome lattices, exotic ground states, exci-
tations, and quantum phase transitions are found in many
systems where interactions compete in real space or in spin
space. Despite multiple developments in both theoretical
and numerical methods, the nature of many such states,
their spectra, and the model phase diagrams remain only
partially understood. Experimental studies of materials
providing physical realizations are therefore an essential
factor for our understanding of quantum magnetic systems.
SrCu2ðBO3Þ2 is an ideally frustrated system composed

of Cu2þ dimers (S ¼ 1=2 spin pairs) arranged orthogonally
both in and between quasi-two-dimensional (2D) layers, as
represented in Figs. 1(a)–1(c) [2]. The in-plane network
realizes the Shastry-Sutherland model (SSM) [inset

Fig. 1(d)], proposed [3] for its exact dimer-singlet ground
state at small J0=J and governed by this ratio of competing
interactions [4–9]. SrCu2ðBO3Þ2 exhibits the dimer-singlet
ground state at ambient pressure [2,10–14] and is well
described by a SSM with J0=J ¼ 0.63 and additional weak
(3%) Dzyaloshinskii-Moriya (DM) interactions [15–19].
Remarkably, the phase diagram of SrCu2ðBO3Þ2 under an
applied hydrostatic pressure [20–22], shown in Fig. 1(d),
mirrors that of the SSM with increasing J0=J [Fig. 1(e)],
and is studied extensively for its exotic quantum phase
transitions [23–25]. Above 4 GPa, where the tetragonal
symmetry changes to monoclinic [26–28], antiferromag-
netic (AFM) order is found by neutron and x-ray diffraction
[21,27,29] and phase-transition features are reported
around 8 K [23] and above 120 K [23,27,28]. However,
these high pressures pose a severe challenge to experiment
and rather little is known about either the precise pressure
regimes for the SSM-AFM and monoclinic-AFM phases or
the possible magnetic interactions in either phase.
Here, we perform an inelastic neutron scattering (INS)

experiment to characterize the monoclinic-AFM phase of*Contact author: ellen.fogh@epfl.ch
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SrCu2ðBO3Þ2. Working at 5.5 GPa and 4.5 K, we observe
dispersive spin-wave excitations in 58 mg of sample.
Linear spin-wave theory is appropriate to deduce the
parameters of the minimal magnetic Hamiltonian. The
in-plane interactions change dramatically from J0=J ¼
0.63 at ambient pressure to 1.8(2) at 5.5 GPa, which we
ascribe to a strong reduction of J arising from its near-
critical bond angle. We also discover that it is necessary to
include an interlayer coupling, which we fit as
Jc ¼ 0.053ð3Þ meV, to explain the observed 2 meV split-
ting of otherwise degenerate branches in the low-energy
part of the spectrum. We discuss the consequences of this
3D nature for the physics of SrCu2ðBO3Þ2.

Our INS experiments used a 58 mg disk-shaped single-
crystalline sample of SrCu2ðBO3Þ2, whose growth and
characterization we summarize in Sec. S1A of the
Supplemental Material (SM) [30]. The sample was oriented
with Q ¼ ðqh; qk; 0Þ in the horizontal scattering plane. Its
small size is a challenge for INS, but recent developments
in high-pressure techniques at the Institute Laue-Langevin
(ILL) [40–42] made this experiment possible. Using a
Paris-Edinburgh press, the pressure was increased gradu-
ally to 5.5 GPa while the lattice parameters of SrCu2ðBO3Þ2
[26] were measured for pressure determination. The sample
chamber was precooled with liquid N2 and cooling to 4.5 K
was provided by a closed-cycle refrigerator. We performed
two consecutive experiments at the IN8 and ThALES
triple-axis spectrometers with the same loading. We used
fixed momentum transfers kf ¼ 2.66 Å−1 at IN8 and kf ¼
1.50 Å−1 at ThALES, providing respective instrumental
resolutions (FWHM) of 1.05(1) and 0.167(4) meV. Scans
with constant energy transfer, E, or constant momentum
transfer, Q, were performed with typical counting times of
5 min per point. In the SM [30] we provide detailed
descriptions of the pressure loading procedure (Sec. S1B),
instrument configurations (Sec. S1C), pressure determina-
tion (Sec. S1D), and data treatment (Sec. S1E). Supporting
diffraction data were collected at IN3, also at the ILL, and
this experiment is described in Sec. S1F.
A selection of constant-E and constant-Q scans is shown

in Fig. 2, with data from both IN8 and ThALES. The width
of the elastic line on IN8 allowed for access to energy
transfers above approximately 2 meV, whereas at ThALES
0.5 meV was accessible. Because the in-plane lattice
parameters of the monoclinic phase satisfy a=b ≃ 0.999
(with monoclinic angle β ≃ 94°) [27], we retain the
tetragonal approximation and use a$ ¼ b$ ¼ 2π=a. The
color contours in Figs. 3(a) and 3(b) collect all neutron
intensities measured respectively along ð0; qk; 0Þ and
ðqh; 1; 0Þ at constant E, and make clear that dispersive
modes are present with minima at (0, 1, 0) and (1, 1, 0). At
1.5 meVand below, we no longer observe neutron intensity
at (0, 1, 0) [Figs. 2(b) and 2(c)]. Above 5 meV it becomes
difficult to discern sharp modes due to vanishing neutron
intensity [Figs. 2(a) and 2(d)]. In Figs. 2(a) and 2(b) we
fitted the data collected along ðqh; 1; 0Þ with Gaussian line
shapes centered respectively at %δh and %δ0h from (0, 1, 0)
and (1, 1, 0), allowing the peak widths and intensities to
vary individually (Sec. 1E of the SM [30]). Similar fits to
the data collected along ð0; qk; 0Þ yielded mode positions
along both directions in Q. The dispersion minimum at
(0, 1, 0) is resolved in a constant-Q scan from ThALES
[Fig. 2(c)]. A Gaussian fit yields an energy of 1.90(8) meV
and the magnetic origin of the excitation is demonstrated by
its absence at 140 K. In Fig. 2(d), we show constant-Q
scans from IN8 where subtraction of the incoherent
contribution allowed the fitting of one or two Gaussian
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FIG. 1. SrCu2ðBO3Þ2 and the Shastry-Sutherland model
(SSM). (a),(b) Crystal structure of SrCu2ðBO3Þ2 shown in
projection along (0, 0, 1) (a) and (1, 0, 0) (b). The dimer interaction,
J (solid blue line), interdimer interaction, J0 (dashed green line),
and interlayer interaction, Jc (solid orange line), are indicated.
(c) Illustration of the tetrahedron formed by two orthogonal
dimers stacked along the (0, 0, 1) direction. (d) Phase diagram
of SrCu2ðBO3Þ2 as a function of temperature and pressure, as
deduced from specific-heat measurements (circles [24] and dots
[23]) and neutron diffraction (diamonds) [21,27]. The star marks
the location in temperature and pressure of our INS experiments.
The inset shows a schematic representation of the SSM. (e) Phase
diagram of the SSM as a function of J0=J, as determined by
multiple numerical methods [4–9].

PHYSICAL REVIEW LETTERS 133, 246702 (2024)

246702-2



pc

Strange
Metal

YBa2Cu3O6+x

Ordinary 
Metal

Pseudogap 
Metal



pc

Strange
Metal

YBa2Cu3O6+x

Ordinary 
Metal

Pseudogap 
Metal



Photoemission expts in cuprates in pseudogap metal

are larger than the presumed doping levels, 0.11, 0.085, and
<0:05, respectively, it is clear that the pocket size scales
qualitatively with the doping level as predicted theoreti-
cally [6,10]. Interestingly, two fluid models of the pseudo-
gap state do predict the observed discrepancy between the
pocket size and carrier concentration or doping level [22].
The finding of a finite nodal FS rather than a ‘‘nodal’’ point
at low T for the Tc ¼ 0 K sample is at variance with
recently reported findings under the same conditions
[23]. The measured Fermi pockets are, however, in
good agreement with those predicted by the YRZ
ansatz. In Fig. 2(b) we show the spectral function calcu-

lated at EF as a function of doping, where Að ~k; 0Þ ¼
$ð1=!Þ ImGYRZð ~k; 0Þ and where GYRZð ~k; 0Þ is Green’s
function taken from Ref. [6]. The experimental observa-
tions are remarkably well reproduced by this model with
the doping level as the only adjustable parameter.

Turning to the question of whether the pocket areas are
temperature dependent, we show in Fig. 3(a) the observed
Fermi arc for the Tc ¼ 45 K sample measured at three
different temperatures: 60, 90, and 140 K, all in the normal
state but well below T%. The measured FS crossings in
the figure are determined by the same method used in
Figs. 1 and 2 rather than from the spectral weight at the
Fermi level. In Fig. 3(b) we show the measured arc length
as a function of temperature. It is clear that any changewith
temperature is minimal and certainly not consistent with an
increase by more than a factor of 2 between the data taken
at 140 and 60 K as would be expected by a T=T% scaling of
the arc length [21]. The discrepancy arises because pre-
vious experiments have not fully determined whether or
not a band actually crosses the Fermi level.

The picture of the low energy excitations of the normal
state emerging from the present study is of a nodal FS
characterized by a Fermi ‘‘pocket’’ that, at temperatures
above Tc, shows a minimal temperature dependence and an
area proportional only to the doping level. We now turn our
attention to the antinodal pseudogap itself.

Several theories of the pseudogap phase propose the
formation of preformed singlet pairs above Tc in the anti-
nodal region of the Brillouin zone [24]. The YRZ spin
liquid based on the RVB picture is one such model as it
recognizes the formation of resonating pairs of spin sin-
glets along the copper-oxygen bonds of the square lattice
as the lowest energy configuration. Figures 4(a)–4(d) show
a series of spectral plots along the straight sector of the
LDA FS in the antinodal region at a temperature of 140 K
for the Tc ¼ 65 K sample at the locations indicated in
Fig. 4(e). Figure 4(f) shows intensity cuts through these
plots along the horizontal lines indicated in Figs. 4(a)–4(d).
It is evident that a symmetric gap exists at all points along
this line. The particle-hole symmetry in binding energy
observed here is in marked contrast to the particle-hole
symmetry breaking predicted in the presence of density
wave order and is a necessary condition for the formation
of Cooper pairs. Thus the present observations add support
to the hypothesis that the normal state is characterized by
pair states forming along the copper-oxygen bonds and is
consistent with earlier studies.
The combination of Figs. 2 and 4 points to a more

complete picture of the low energy excitations in the nor-
mal state of the underdoped cuprates. For Tc < T < T%, a
Fermi pocket exists in the nodal region with an area pro-
portional to the doping level. One does not need to invoke
discontinuous Fermi arcs to describe the FS of underdoped
Bi2212, and Luttinger’s sum rule, properly understood, is
seen to still approximately stand. However, as is evident in
the inset of Fig. 2(a), the area of the hole pockets would
appear to be larger than assumed doping level at the higher
doping levels. This may reflect the presence of electron
pockets at the higher doping level or it may reflect the
presence of a bilayer splitting, even though the latter is
not observed in the present study. We note that the splitting
will be smaller in the underdoped region and in the nodal
region. Although not verified in the present study, one
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FIG. 2 (color online). (a) The pseudopockets determined for
three different doping levels. The black data correspond to the
Tc ¼ 65 K sample, the blue data correspond to the Tc ¼ 45 K
sample, and the red data correspond to the nonsuperconducting
Tc ¼ 0 K sample. The area of the pockets xARPES scales with the
nominal of doping level xn, as shown in the inset. (b) The Fermi
pockets derived from YRZ ansatz with different doping level.
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FIG. 3 (color online). (a) The Fermi surface crossings deter-
mined for the Tc ¼ 45 K sample at three different temperatures.
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140 K, the circles measurements at 90 K, and the diamonds
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are larger than the presumed doping levels, 0.11, 0.085, and
<0:05, respectively, it is clear that the pocket size scales
qualitatively with the doping level as predicted theoreti-
cally [6,10]. Interestingly, two fluid models of the pseudo-
gap state do predict the observed discrepancy between the
pocket size and carrier concentration or doping level [22].
The finding of a finite nodal FS rather than a ‘‘nodal’’ point
at low T for the Tc ¼ 0 K sample is at variance with
recently reported findings under the same conditions
[23]. The measured Fermi pockets are, however, in
good agreement with those predicted by the YRZ
ansatz. In Fig. 2(b) we show the spectral function calcu-

lated at EF as a function of doping, where Að ~k; 0Þ ¼
$ð1=!Þ ImGYRZð ~k; 0Þ and where GYRZð ~k; 0Þ is Green’s
function taken from Ref. [6]. The experimental observa-
tions are remarkably well reproduced by this model with
the doping level as the only adjustable parameter.

Turning to the question of whether the pocket areas are
temperature dependent, we show in Fig. 3(a) the observed
Fermi arc for the Tc ¼ 45 K sample measured at three
different temperatures: 60, 90, and 140 K, all in the normal
state but well below T%. The measured FS crossings in
the figure are determined by the same method used in
Figs. 1 and 2 rather than from the spectral weight at the
Fermi level. In Fig. 3(b) we show the measured arc length
as a function of temperature. It is clear that any changewith
temperature is minimal and certainly not consistent with an
increase by more than a factor of 2 between the data taken
at 140 and 60 K as would be expected by a T=T% scaling of
the arc length [21]. The discrepancy arises because pre-
vious experiments have not fully determined whether or
not a band actually crosses the Fermi level.

The picture of the low energy excitations of the normal
state emerging from the present study is of a nodal FS
characterized by a Fermi ‘‘pocket’’ that, at temperatures
above Tc, shows a minimal temperature dependence and an
area proportional only to the doping level. We now turn our
attention to the antinodal pseudogap itself.

Several theories of the pseudogap phase propose the
formation of preformed singlet pairs above Tc in the anti-
nodal region of the Brillouin zone [24]. The YRZ spin
liquid based on the RVB picture is one such model as it
recognizes the formation of resonating pairs of spin sin-
glets along the copper-oxygen bonds of the square lattice
as the lowest energy configuration. Figures 4(a)–4(d) show
a series of spectral plots along the straight sector of the
LDA FS in the antinodal region at a temperature of 140 K
for the Tc ¼ 65 K sample at the locations indicated in
Fig. 4(e). Figure 4(f) shows intensity cuts through these
plots along the horizontal lines indicated in Figs. 4(a)–4(d).
It is evident that a symmetric gap exists at all points along
this line. The particle-hole symmetry in binding energy
observed here is in marked contrast to the particle-hole
symmetry breaking predicted in the presence of density
wave order and is a necessary condition for the formation
of Cooper pairs. Thus the present observations add support
to the hypothesis that the normal state is characterized by
pair states forming along the copper-oxygen bonds and is
consistent with earlier studies.
The combination of Figs. 2 and 4 points to a more

complete picture of the low energy excitations in the nor-
mal state of the underdoped cuprates. For Tc < T < T%, a
Fermi pocket exists in the nodal region with an area pro-
portional to the doping level. One does not need to invoke
discontinuous Fermi arcs to describe the FS of underdoped
Bi2212, and Luttinger’s sum rule, properly understood, is
seen to still approximately stand. However, as is evident in
the inset of Fig. 2(a), the area of the hole pockets would
appear to be larger than assumed doping level at the higher
doping levels. This may reflect the presence of electron
pockets at the higher doping level or it may reflect the
presence of a bilayer splitting, even though the latter is
not observed in the present study. We note that the splitting
will be smaller in the underdoped region and in the nodal
region. Although not verified in the present study, one
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sample, and the red data correspond to the nonsuperconducting
Tc ¼ 0 K sample. The area of the pockets xARPES scales with the
nominal of doping level xn, as shown in the inset. (b) The Fermi
pockets derived from YRZ ansatz with different doping level.
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FIG. 3 (color online). (a) The Fermi surface crossings deter-
mined for the Tc ¼ 45 K sample at three different temperatures.
The triangles indicate measurements at a sample temperature of
140 K, the circles measurements at 90 K, and the diamonds
measurements at 60 K. (b) The measured arc lengths in (a)
plotted as a function of temperature. We note that rather than
cycling the temperatures on the same sample, the data in (a) are
measured on different samples cut from the same crystal.
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Figure 3 |Dispersion, linewidth and intensity of the magnetic excitations. a, Experimental magnon dispersion along the 100 direction in antiferromagnetic
Nd1.2Ba1.8Cu3O6 at T= 15 K, fitted using the spin-wave dispersion of a bilayer from ref. 16 (thick red line). The dashed lines are the acoustic (black) and
optical (red) spin-wave dispersions calculated using the fitting parameters. The grey area represents our energy–momentum resolution. Inset: relative
intensities of the acoustic and optical magnons for our scattering geometry. b, Experimental magnon dispersion along the 100 direction in
antiferromagnetic Nd1.2Ba1.8Cu3O6, underdoped Nd1.2Ba1.8Cu3O7, YBa2Cu3O6.6, YBa2Cu4O8 and YBa2Cu3O7 at T= 15 K. Low-frequency INS data
recorded along the 100 direction from QAF for YBa2Cu3O6.6 have been added34. Lines are guides to the eye. c, HWHM of magnetic excitations in
Nd1.2Ba1.8Cu3O7, YBa2Cu3O6.6, YBa2Cu4O8 and YBa2Cu3O7. d, Integrated inelastic intensities. The error bars reflect the accuracy of the fitting procedure
detailed in Supplementary Information.

uncertainties associated with previous attempts to extract J∥ by
extrapolating lower-energy INS data on doped cuprates30–33. On
approaching the ! point (Q∥ = 0), we observe that the dispersion
is steeper in the doped compounds than in NdBCO6. Despite the
fact that ! and QAF are no longer equivalent in the absence of
magnetic long-range order, the RIXS data obtained on YBCO6.6
nicely extrapolate to the low-energy ‘hour-glass’ dispersion around
QAF previously extracted from INS data on samples prepared in
an identical manner (Fig. 3b; ref. 34). The RIXS data on YBCO6.6
are also consistent with recent high-energy INS data on YBCO6.5
(ref. 33,35). The combined RIXS–INS data set on YBCO6.6 indicates
the presence of an inflexion point in the dispersion of the magnetic
excitations. We note that the situation seems somewhat different
for YBa2Cu4O8, where the energy of the magnetic excitations close
to the zone boundary is significantly reduced compared with the
other systems (∼210meV instead of∼300meV), and the dispersion
is flatter than in NdBCO6. This may reflect different values of J∥ and
J⊥ in this system, and deserves further investigation.

The intrinsic HWHM of ∼200meV of the inelastic signal ex-
tracted from our data (Fig. 3c) is much larger than the instrumental
resolution and comparable to the magnon energies, indicating

strong damping by Stoner excitations. The damping rate does not
change substantially with Q∥ or with doping. Finally, whereas it is
not yet possible to obtain absolute magnetic intensities from RIXS
data, we can extract the relative intensity of the RIXS profiles by in-
tegrating the inelastic signal in the MIR region (see Supplementary
Information). Remarkably, the integrated intensity obtained in this
way is conserved on doping from the antiferromagnetic insulator
to the slightly overdoped superconductor.

We have thus demonstrated the existence of paramagnons, that
is, damped but well-defined dispersive magnetic excitations, deep
in the Stoner continuum of cuprates with doping levels beyond
optimal doping. Their spectral weights are similar to those of
spin waves in the undoped, antiferromagnetically ordered parent
material. These excitations have thus far not been observed by
INS due to the much less favourable counting rates and signal-to-
background ratios in INS experiments on doped cuprates3,6–12,30–34.

To obtain insight into the origin of this surprising observation,
we have carried out exact-diagonalization calculations of the t–J
Hamiltonian with the exchange coupling constant J = 0.3t (t is the
nearest-neighbour hopping) on finite-sized clusters, following the
method proposed in refs 36–38. We used clusters with 18 and 20
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Intense paramagnon excitations in a large family
of high-temperature superconductors
M. Le Tacon1*, G. Ghiringhelli2, J. Chaloupka1, M. Moretti Sala2, V. Hinkov1,3, M. W. Haverkort1,
M. Minola2, M. Bakr1, K. J. Zhou4, S. Blanco-Canosa1, C. Monney4, Y. T. Song1, G. L. Sun1, C. T. Lin1,
G. M. De Luca5, M. Salluzzo5, G. Khaliullin1, T. Schmitt4, L. Braicovich2 and B. Keimer1*

In the search for the mechanism of high-temperature superconductivity, intense research has been focused on the evolution
of the spin excitation spectrum on doping from the antiferromagnetic insulating to the superconducting state of the
cuprates. Because of technical limitations, the experimental investigation of doped cuprates has been largely focused on
low-energy excitations in a small range of momentum space. Here we use resonant inelastic X-ray scattering to show that
a large family of superconductors, encompassing underdoped YBa2Cu4O8 and overdoped YBa2Cu3O7, exhibits damped spin
excitations (paramagnons) with dispersions and spectral weights closely similar to those of magnons in undoped cuprates. The
comprehensive experimental description of this surprisingly simple spectrum enables quantitative tests of magnetic Cooper
pairing models. A numerical solution of the Eliashberg equations for the magnetic spectrum of YBa2Cu3O7 reproduces its
superconducting transition temperature within a factor of two, a level of agreement comparable to that of Eliashberg theories
of conventional superconductors.

The 25th anniversary of the discovery of high-temperature
superconductivity is approaching without a clear and
compelling theory of the mechanism underlying this phe-

nomenon. After the discovery of an unconventional (d-wave)
symmetry of the Cooper-pair wavefunction in the copper oxides,
the thrust of research has been focused on the role of repulsive
Coulomb interactions between conduction electrons, which nat-
urally explain this pairing symmetry1. However, as even simple
models based on repulsive interactions have thus far defied a
full solution, the question of whether such interactions alone
can generate high-temperature superconductivity is still open. A
complementary, more empirical approach has asked whether anti-
ferromagnetic spin fluctuations, which are a generic consequence
of Coulomb interactions, can mediate Cooper pairing in analogy
to the phonon-mediated pairing mechanism in conventional
superconductors2. This scenario requires the existence of well-
defined antiferromagnetic spin fluctuations in the superconducting
range of the cuprate phase diagram (for mobile hole concentrations
5%≤ p≤ 25% per copper atom), well outside the narrow stability
range of antiferromagnetic long-range order (0≤p≤2%).

An extensive series of experiments using inelastic spin-flip
scattering of neutrons has indeed revealed low-energy spin
fluctuations in doped cuprates3. Signatures of coupling between
spin and charge excitations have also been identified4, and evidence
has been reported that this coupling is strong enough to mediate
superconductivity in underdoped cuprates5. However, for cuprate
compounds hosting the most robust superconducting states,
namely those that are optimally doped to exhibit a superconducting
transition temperature Tc ≥90K, inelastic neutron scattering (INS)
experiments have thus far mostly revealed spin excitations over a
narrow range of excitation energies E ∼ 30–70meV, wave vectors
Q covering only ∼10% of the Brillouin-zone area around the

1Max Planck Institute for Solid State Research, 70569 Stuttgart, Germany, 2CNR-SPIN, Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy,
3QuantumMatter Institute, University of British Columbia, Vancouver, V6T1Z1, Canada, 4Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen PSI,
Switzerland, 5CNR-SPIN, Complesso Monte Santangelo via Cinthia, I-80126 Napoli, Italy. *e-mail: m.letacon@fkf.mpg.de; b.keimer@fkf.mpg.de.

antiferromagnetic ordering wave vector QAF and temperatures
T < Tc (refs 6–12). The energy- and momentum-integrated
intensity of these excitations constitutes only a few per cent of
the spectral weight of spin waves in antiferromagnetically ordered
cuprates4,13, and is thus clearly insufficient to support high-Tc
superconductivity. Although the recent discovery of a weakly
dispersive magnetic excitation in the model system HgBa2CuO4+δ

with E ∼ 50meV may account for some of the missing spectral
weight14, the apparent weakness of antiferromagnetic fluctuations
in optimally doped compounds has been used as a central argument
againstmagneticallymediated pairing scenarios for the cuprates15.

This picture is, however, strongly influenced by technical
limitations of the INSmethod that arise from the small cross-section
of magnetic neutron scattering in combination with the weak
primary flux of currently available high-energy neutron beams.
Because of intensity constraints, even the detection of undamped
spin waves in antiferromagnetically ordered cuprates over their full
bandwidth of ∼ 300meV has required single-crystal samples with
volumes of order 10 cm3, which are very difficult to obtain16–19.
Doping further reduces the intensity of the INS profiles and
exacerbates these difficulties.

Here we take advantage of recent progress in the development
of high-resolution resonant inelastic X-ray scattering (RIXS;
see ref. 20 for a review) to explore the doping dependence
of magnetic excitations in the widely studied YBa2Cu3O6+x
family, in a wide energy–momentum window that has been
largely hidden from view by INS. As a major result, we
demonstrate the existence of spin-wave-like dispersive magnetic
excitations (paramagnons) deep inside the electron–hole spin-flip
continuum (up to ∼300meV), for all the investigated doping
levels, with spectral weights comparable to those of magnons in the
undoped parent compounds. Exact-diagonalization calculations
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Figure 3 |Dispersion, linewidth and intensity of the magnetic excitations. a, Experimental magnon dispersion along the 100 direction in antiferromagnetic
Nd1.2Ba1.8Cu3O6 at T= 15 K, fitted using the spin-wave dispersion of a bilayer from ref. 16 (thick red line). The dashed lines are the acoustic (black) and
optical (red) spin-wave dispersions calculated using the fitting parameters. The grey area represents our energy–momentum resolution. Inset: relative
intensities of the acoustic and optical magnons for our scattering geometry. b, Experimental magnon dispersion along the 100 direction in
antiferromagnetic Nd1.2Ba1.8Cu3O6, underdoped Nd1.2Ba1.8Cu3O7, YBa2Cu3O6.6, YBa2Cu4O8 and YBa2Cu3O7 at T= 15 K. Low-frequency INS data
recorded along the 100 direction from QAF for YBa2Cu3O6.6 have been added34. Lines are guides to the eye. c, HWHM of magnetic excitations in
Nd1.2Ba1.8Cu3O7, YBa2Cu3O6.6, YBa2Cu4O8 and YBa2Cu3O7. d, Integrated inelastic intensities. The error bars reflect the accuracy of the fitting procedure
detailed in Supplementary Information.

uncertainties associated with previous attempts to extract J∥ by
extrapolating lower-energy INS data on doped cuprates30–33. On
approaching the ! point (Q∥ = 0), we observe that the dispersion
is steeper in the doped compounds than in NdBCO6. Despite the
fact that ! and QAF are no longer equivalent in the absence of
magnetic long-range order, the RIXS data obtained on YBCO6.6
nicely extrapolate to the low-energy ‘hour-glass’ dispersion around
QAF previously extracted from INS data on samples prepared in
an identical manner (Fig. 3b; ref. 34). The RIXS data on YBCO6.6
are also consistent with recent high-energy INS data on YBCO6.5
(ref. 33,35). The combined RIXS–INS data set on YBCO6.6 indicates
the presence of an inflexion point in the dispersion of the magnetic
excitations. We note that the situation seems somewhat different
for YBa2Cu4O8, where the energy of the magnetic excitations close
to the zone boundary is significantly reduced compared with the
other systems (∼210meV instead of∼300meV), and the dispersion
is flatter than in NdBCO6. This may reflect different values of J∥ and
J⊥ in this system, and deserves further investigation.

The intrinsic HWHM of ∼200meV of the inelastic signal ex-
tracted from our data (Fig. 3c) is much larger than the instrumental
resolution and comparable to the magnon energies, indicating

strong damping by Stoner excitations. The damping rate does not
change substantially with Q∥ or with doping. Finally, whereas it is
not yet possible to obtain absolute magnetic intensities from RIXS
data, we can extract the relative intensity of the RIXS profiles by in-
tegrating the inelastic signal in the MIR region (see Supplementary
Information). Remarkably, the integrated intensity obtained in this
way is conserved on doping from the antiferromagnetic insulator
to the slightly overdoped superconductor.

We have thus demonstrated the existence of paramagnons, that
is, damped but well-defined dispersive magnetic excitations, deep
in the Stoner continuum of cuprates with doping levels beyond
optimal doping. Their spectral weights are similar to those of
spin waves in the undoped, antiferromagnetically ordered parent
material. These excitations have thus far not been observed by
INS due to the much less favourable counting rates and signal-to-
background ratios in INS experiments on doped cuprates3,6–12,30–34.

To obtain insight into the origin of this surprising observation,
we have carried out exact-diagonalization calculations of the t–J
Hamiltonian with the exchange coupling constant J = 0.3t (t is the
nearest-neighbour hopping) on finite-sized clusters, following the
method proposed in refs 36–38. We used clusters with 18 and 20
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angle 2θ fixed at 146◦ and 149.5◦ for I21 and ID32, re-
spectively. The scattering geometry is shown in Fig. 1(a).
We assume there is negligible dispersion in the features of
interest from variation of l , and therefore we focus only
on the momentum transferred in the (h, k) plane. Spectra
were principally measured along the two high-symmetry lines
(h, 0) and (h, h) as indicated with red arrows in Fig. 1(b)
with energy resolution "E " 35 meV. The x = 0 and 0.12
measurements were performed at I21 and the x = 0.16 mea-
surements were performed at ID32 and repeated at I21. In both
doped compounds, further measurements were performed at
ID32 with "E " 50 meV on a grid of Q points evenly dis-
tributed throughout a quadrant of the Brillouin zone indicated
by the red shaded region in Fig. 1(b). The energy resolution
was established using elastic scattering from a silver paint or
carbon tape reference. For I21, a background was measured
from either a dark image taken after the collection or by fitting
a constant background outside the excitation range!−0.1 and
"5 eV.

D. Analysis

1. Data processing

In order to carry out a quantitative analysis of the data,
we follow recent practice [6,7,13,26,33,35] and assume that
the magnetic intensity observed in RIXS is proportional to
the spin-spin dynamical structure factor S(Q,ω) which is
used to interpret neutron scattering experiments [36]. S(Q,ω)
is, in turn, proportional to χ ′′(Q,ω) multiplied by the Bose
factor n(ω) + 1 = [1 − exp(−h̄ω/kBT )]−1. Clearly the scat-
tering processes in RIXS and INS are very different, with
the observed RIXS intensity being dependent on the rela-
tive orientation of the photon electric field to the Cu 3d
orbitals as well as the absorption of the x-ray photons within
the sample. These factors are known to vary slowly with
Q [37,38], nevertheless, to correct for these effects we initially
normalize our raw counts Iraw to the energy-integrated dd
excitation intensity obtained from the same spectrum. The
intensity of the dd excitations is known to be dependent on
the polarization ε and wave vector k and can be described
by a function g(ε, ε′, k, k′). We denote the measured intensity
IRIXS as Iraw/g where g =

∫
g(ε, ε′, k, k′) dω is the integral

described above evaluated over the range 1–3 eV.
The spectra were aligned to the elastic reference and

the exact zero-energy position was established by fitting an
elastic peak with a Gaussian function. The aligned spectra
were modeled within a range −80 to 800 meV. As well as
the spin excitations, we fit an elastic peak and low-energy
excitations, which are interpreted as phonons, using Gaus-
sian functions. Electron-hole excitations and broadened dd
excitations contribute to the low-energy RIXS scattering for
doped compositions [11]. This contribution was modeled with
a linear function which was fixed for all spectra of the same
composition. The gradient of the linear function was found
by fitting the spectra at low Q. In the insulating parent
compound this contribution was not required. However, a
broad continuum of multimagnon excitations is resolvable at
∼400−600 meV. This was modeled with a Gaussian function.

The spectra were not deconvolved to take account of the
instrument energy resolution "35 meV. The most noticeable

FIG. 2. IRIXS intensity maps as a function of Q in LSCO x =
0 (T ≈ 20 K), 0.12, and 0.16 (T ≈ 30 K). Showing measurements
along the (h, 0) and (h, h) lines. The measurements were performed
in grazing-out geometry and with LH polarization at I21 at Diamond
Light Source. The configuration favors magnetic scattering. All three
compositions show charge scattering in the form of phonons below
100 meV and a charge density wave peak is observed near h = 0.23
in x = 0.12. The dashed white line marks the antiferromagnetic
Brillouin zone boundary (see Fig. 1).

effect of this was in the determination of γ and ' values (see
Sec. II D 2). We estimate that our fitted values are increased
by 5% in the worse case.

2. Damped harmonic oscillator model

A damped harmonic oscillator (DHO) model may be used
to describe a given spin-wave mode with wave vector Q. This
approach has recently been taken in a number of RIXS stud-
ies [11,13,33,39]. The analogous mechanical DHO equation
is [40]

ẍ + ω2
0x + γ ẋ = f /m, (1)

where ω0 is the frequency of the undamped mode and γ
is the damping parameter. In our case, both of these are Q
dependent, thus ω0 = ω0(Q) and γ = γ (Q).

The imaginary part of the DHO response function for a
given wave vector can be written as

χ ′′(Q,ω) = χ ′(Q) ω2
0(Q) γ (Q) ω

[
ω2 − ω2

0(Q)
]2 + ω2γ 2(Q)

, (2)

where χ (Q) ≡ χ ′(Q) ≡ χ ′(Q,ω = 0) is the real part of the
zero frequency susceptibility. The solution of Eq. (1) can be
represented by two poles with complex frequencies:

ω = ±
[
ω2

0 −
(
γ 2/4

)]1/2 = ±ω1 − iγ
2

. (3)
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We report high-resolution resonant inelastic x-ray scattering (RIXS) measurements of the collective spin
fluctuations in three compositions of the superconducting cuprate system La2−xSrxCuO4. We have mapped
out the excitations throughout much of the two-dimensional (h, k) Brillouin zone. The spin fluctuations in
La2−xSrxCuO4 are found to be fairly well described by a damped harmonic oscillator model, thus our data allows
us to determine the full wave vector dependence of the damping parameter. This parameter increases with doping
and is largest along the (h, h) line, where it is peaked near (0.2, 0.2). We have used a new procedure to determine
the absolute wave vector dependent susceptibility for the doped compositions La2−xSrxCuO4 (x = 0.12, 0.16)
by normalizing our data to La2CuO4 measurements made with inelastic neutron scattering (INS). We find that
the evolution with doping of the intensity of high-energy excitations measured by RIXS and INS is consistent.
For the doped compositions, the wave vector dependent susceptibility is much larger at ( 1

4 , 1
4 ) than at ( 1

2 , 0). It
increases rapidly along the (h, h) line towards the antiferromagnetic wave vector of the parent compound ( 1

2 , 1
2 ).

Thus, the strongest magnetic excitations, and those predicted to favor superconductive pairing, occur towards the
( 1

2 , 1
2 ) position as observed by INS.

DOI: 10.1103/PhysRevB.100.214510

I. INTRODUCTION

The origin of high temperature superconductivity (HTS) in
doped layered cuprate materials remains a subject of intense
interest in both experimental and theoretical research, despite
over 30 years of activity. It is widely believed that the mag-
netic degrees of freedom and in particular spin fluctuations
are primarily responsible for superconductive pairing in the
cuprates [1–4]. In this case, it is important to characterize
the collective spin excitations as a function of wave vector,
energy, doping, and temperature to see how they correlate
with the occurrence of superconductivity and compare with
theoretical models.

Resonant inelastic x-ray scattering (RIXS) [5–14] and in-
elastic neutron scattering (INS) [15–21] are complementary
probes which directly yield information about the wave vector
and energy of the dynamical structure factor S(Q,ω) or
dynamic susceptibility (response function) χ ′′(Q,ω) at high
frequencies. The La2−xSrxCuO4 (LSCO) system allows the
evolution of S(Q,ω) to be measured across the phase diagram,
from the antiferromagnetic (AF) parent compound La2CuO4
(LCO) through superconducting compositions.

In La2CuO4, the spin waves have their lowest ener-
gies at the #, Q = (0, 0) and M, Q = ( 1

2 , 1
2 ) positions and

*kejin.zhou@diamond.ac.uk
†s.hayden@bristol.ac.uk

χ ′′(Q,ω) is small near # and largest near M. INS measure-
ments [15,19,20] throughout the Brillouin zone have shown
that the magnetic excitations can be fairly well described
as spin waves derived from a Heisenberg model with next-
nearest neighbor interactions including a ring exchange. As
expected, they are strongest near the AF wave vector Q =
( 1

2 , 1
2 ) and show anomalously strong damping at the X or

( 1
2 , 0) position [10,20,22].

For superconducting compositions in LSCO, INS shows
that the strongest response [16,21,23–25] occurs near Q =
( 1

2 , 1
2 ) at low and intermediate energies (0–150 meV), with

comparable intensity to the parent antiferromagnet. For op-
timally doped (x = 0.16) LSCO, an incommensurate struc-
ture is observed [23] for h̄ω ! 25 meV. Above 50 meV the
magnetic excitations disperse [21,23,25] away from ( 1

2 , 1
2 ). At

high energies, h̄ω ≈ 250 meV, excitations are observed [16]
on the Brillouin zone boundary at Q = ( 1

2 , 0) in LSCO (x =
0.14) demonstrating the persistence of high energy spin ex-
citations for superconducting compositions. For overdoped
compositions [21,24] x = 0.22–0.25, the lower energy (h̄ω ∼
50 meV) features observed at optimal doping are suppressed.

Cu L3 RIXS [6,7,10–14,26] measurements of the spin
fluctuation in LSCO are complementary to INS. They are
restricted to a circular region in (h, k) centered on # [see
Figs. 1(a) and 1(b)] but are able to isolate high energy
excitations (h̄ω " 300 meV) more easily. Early RIXS mea-
surements in LSCO [7] verified the existence of dispersing
spin fluctuations. Spin excitations are observed [7,11–14,26]
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Probing Topological Spin Liquids on a Programmable Quantum Simulator
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Quantum spin liquids, exotic phases of matter with topological order, have been a major focus
of explorations in physical science for the past several decades. Such phases feature long-range
quantum entanglement that can potentially be exploited to realize robust quantum computation.
We use a 219-atom programmable quantum simulator to probe quantum spin liquid states. In our
approach, arrays of atoms are placed on the links of a kagome lattice and evolution under Rydberg
blockade creates frustrated quantum states with no local order. The onset of a quantum spin liquid
phase of the paradigmatic toric code type is detected by evaluating topological string operators
that provide direct signatures of topological order and quantum correlations. Its properties are
further revealed by using an atom array with nontrivial topology, representing a first step towards
topological encoding. Our observations enable the controlled experimental exploration of topological
quantum matter and protected quantum information processing.

Motivated by visionary theoretical work carried out
over the past five decades, a broad search is currently
underway to identify signatures of quantum spin liquids
(QSL) in novel materials [1, 2]. Moreover, inspired by
the intriguing predictions of quantum information the-
ory [3], techniques to engineer such systems for topologi-
cal protection of quantum information are being actively
explored [4]. Systems with frustration [5] caused by the
lattice geometry or long-range interactions constitute a
promising avenue in the search for QSLs. In particular,
such systems can be used to implement a class of so-
called dimer models [6–10], which are among the most
promising candidates to host quantum spin liquid states.
However, realizing and probing such states is challeng-
ing since they are often surrounded by other competing
phases. Moreover, in contrast to topological systems in-
volving time-reversal symmetry breaking, such as in the
fractional quantum Hall e↵ect [11], these states cannot
be easily probed via, e.g., quantized conductance or edge
states. Instead, to diagnose spin liquid phases, it is es-
sential to access nonlocal observables, such as topolog-
ical string operators [1, 2]. While some indications of
QSL phases in correlated materials have been previously
reported [12, 13], thus far, these exotic states of matter
have evaded direct experimental detection.

Programmable quantum simulators are well suited for
the controlled exploration of these strongly correlated
quantum phases [14–20]. In particular, recent work
showed that various phases of quantum dimer models
can be e�ciently implemented using Rydberg atom ar-
rays [21] and that a dimer spin liquid state of the toric
code type could be potentially created in a specific frus-
trated lattice [22]. We note that toric code states have

been dynamically created in small systems using quan-
tum circuits [23, 24]. However, some of the key prop-
erties, such as topological robustness, are challenging to
realize in such systems. Spin liquids have also been ex-
plored using quantum annealers, but the lack of coher-
ence in these systems has precluded the observation of
quantum features [25].

Dimer Models in Rydberg Atom Arrays. The key
idea of our approach is based on a correspondence [22]
between Rydberg atoms placed on the links of a kagome
lattice (or equivalently the sites of a ruby lattice), as
shown in Fig. 1A, and dimer models on the kagome lattice
[8, 10]. The Rydberg excitations can be viewed as “dimer
bonds” connecting the two adjacent vertices of the lat-
tice (Fig. 1B). Due to the Rydberg blockade [26], strong
and properly tuned interactions constrain the density of
excitations such that each vertex is touched by a maxi-
mum of one dimer. At 1/4 filling, each vertex is touched
by exactly one dimer, resulting in a perfect dimer cov-
ering of the lattice. Smaller filling fractions result in a
finite density of vertices with no proximal dimers, which
are referred to as monomers. A quantum spin liquid
can emerge within this dimer-monomer model close to
1/4 filling [22], and can be viewed as a coherent superpo-
sition of exponentially many degenerate dimer coverings
with a small admixture of monomers [10] (Fig. 1C). This
corresponds to the resonating valence bond (RVB) state
[6, 27], predicted long ago but so far still unobserved in
any experimental system.

To create and study such states experimentally, we uti-
lize two-dimensional arrays of 219 87Rb atoms individu-
ally trapped in optical tweezers [29, 30] and positioned
on the links of a kagome lattice, as shown in Fig. 1A. The
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Rydberg atoms
on the

link-kagome lattice:
experiment

4

FIG. 3. Probing coherence between dimer states via o↵-diagonal string operator. (A) Definition of X string operator
on a single triangle of the kagome lattice. (B) On any closed loop, the X operator maps any dimer covering into another valid
dimer covering, such that hXi measures the coherence between pairs of dimer configurations. (C) The X operator is measured
by evolving the initial state under Hamiltonian (eq. (1)) with � = 0 and reduced blockade radius to encompass only atoms
within each individual triangle, implementing a basis rotation that maps X into Z. (D) In the experiment, after the state
preparation, we set the laser detuning to �q = 0 and we increase ⌦ to 2⇡ ⇥ 20 MHz to reach Rb/a = 1.53. (E) By measuring
the Z parity on the dual string (red) of a target X loop (blue) after a variable quench time, we identify the time ⌧ for which
the mapping in (C) is implemented. (F) We measure hXi for di↵erent final detunings of the cubic sweep and for di↵erent loop
sizes (inset), and find that the prepared state has long-range coherence that extends over a large fraction of the array [28].

in particular, the finite hZi is a trivial result of the low
density of Rydberg excitations. In contrast, loop parities
no longer factorize in the dimer phase (3 . �/⌦ . 5).
Instead, the expectation values for both open string oper-
ators vanish in the dimer phase, indicating the nontrivial
nature of the correlations measured by the closed loops
(see also [28]). More specifically, topological ordering in
the dimer-monomer model can break down either due to
a high density of monomers, corresponding to the trivial
disordered phase at small�/⌦, or due to the lack of long-
range resonances, corresponding to a valence bond solid
(VBS) [22]. Open Z and X strings distinguish the target
QSL phase from these proximal phases: when normalized
according to the definition from Bricmont, Frölich, Fre-
denhagen and Marcu [31, 32] (BFFM) (Fig. 4B,C), these
open strings can be considered as order parameters for
the QSL. In particular, open Z strings have a finite ex-
pectation value when the dimers form an ordered spatial
arrangement, as in the VBS phase. At the same time,
open X strings create pairs of monomers at their end-
points (Fig. 4A), so a finite hXi can be achieved in the
trivial phase where there is a high density of monomers.
Therefore, the QSL can be identified as the unique phase
where both order parameters vanish for long strings [22].

Figures 4F,G show the measured values of these or-
der parameters. We find that hZiBFFM is compatible
with zero on the entire range of �/⌦ where we ob-
served a finite Z parity on closed loops, indicating the
absence of a VBS phase (Fig. 4F), consistent with our
analysis of density-density correlations (Fig. S5 and [28]).
At the same time, hXiBFFM converges towards zero on
the longest strings for �/⌦ & 3.3 (Fig. 4G), indicat-

ing a transition out of the disordered phase. By com-
bining these two measurements with the regions of non-
vanishing parity for the closed Z and X loops (Figs. 2,3),
we conclude that for 3.3 . �/⌦ . 4.5 our results con-
stitute a direct detection of the onset of a quantum spin
liquid phase (shaded area in Fig. 4F,G).
The measurements of the closed loop operators in

Fig. 2,3 show that |hZi|, |hXi| < 1 and that the amplitude
of the signal decreases with the loop size, which results
from a finite density of quasiparticle excitations. Specifi-
cally, defects in the dimer covering such as monomers and
double-dimers can be interpreted as electric (e) anyons in
the language of lattice gauge theory [22]. Since the pres-
ence of a defect inside a closed loop changes the sign of Z,
the parity on the loop is reduced according to the number
of enclosed e-anyons as |hZi| = |h(�1)#enclosed e-anyonsi|.
The average number of defects inside a loop is expected to
scale with the number of enclosed vertices, i.e. with the
area of the loop, and indeed we observe an approximate
area-law scaling of |hZi| for small loop sizes (Fig. 4H).
However, for larger loops we notice a deviation towards a
perimeter-law scaling, which can emerge if pairs of anyons
are correlated over a characteristic length scale smaller
than the loop size (see [28] for a discussion of the ex-
pected scaling). Pairs of correlated anyons which are
both inside the loop do not change its parity since their
contributions cancel out; they only a↵ect hZi when they
sit across the loop, leading to a scaling with the length
of the perimeter. These pairs can be viewed as resulting
from the application of X string operators to a dimer
covering (Fig. 4A), originating, e.g., from virtual exci-
tations in the dimer-monomer model [28] or from errors
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XX, YY, ZZ operators.

• Measure Chern number of
ω fermions

→ Implies Kitaev’s non-Abelian
Ising anyon state.
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Current flow with electrons in ordinary metals
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Flow of electrons described by Boltzmann equation )
typical scattering time ⌧ ⇠ 1/(UT )2 (U is the strength of interactions),

resistivity ⇢(T ) = ⇢(0) +AT 2

The time ⌧ is much longer than a limiting ‘Planckian time’
~

kBT
.

The long scattering time implies that individual electrons are well-defined.

The motion of electrons is ‘ballistic’ or ‘integrable’
up to the long time ⌧ , after which it is chaotic.
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photoemission spectroscopy (ARPES)30. These observations are qua-
litatively consistent with the T-linear dependence of the resistivity and
Planckianbehavior. In contrast, by analyzing themodulus andphaseof
the optical conductivity itself, a power-law behavior σðωÞ = C=ð#iωÞν

*

with an exponent ν* < 1 was reported at higher frequencies
ℏω ≳ 1.5kBT23,24,28,29,31,32. The exponent was found to be in the range
ν* ≈0.65 with some dependence on sample and doping level23,26,28,29.
Hence, from these previous analyses, it would appear that different
power laws are needed to describe optical spectroscopy data: one at
low frequency consistent with ℏω/kBT scaling and Planckian behavior
(ν = 1) and another one with ν* < 1 at higher frequency, most apparent
on the optical conductivity itself in contrast to 1/τ. A number of the-
oretical approaches have considered a power-law dependence of the
conductivity33–42 without resolving this puzzle. A notable exception is
the work of Norman and Chubukov43. The basic assumption of this
work is that the electrons are coupled to a Marginal Fermi Liquid
susceptibility3,4,44,45. The logarithmic behavior of the susceptibility and
corresponding high-energy cut-off observed to be ~ 0.4 eV with
ARPES46, is responsible for the apparent sub-linear power law behavior
of the optical conductivity. Our work broadens and amplifies this
observation. A quantitative description of all aspects at low and high
energy in one fell swoop has, to the best of our knowledge, not been
presented to this day.

Here we present systematic measurements of the optical spectra,
as well as dc resistivity, of a La2−xSrxCuO4 (LSCO) sample with x = p =
0.24 close to the pseudogap critical point, over a broad range of
temperature and frequency. We demonstrate that the data display
Planckian quantum critical scaling over an unprecedented range of
ℏω/kBT. Furthermore, a direct analysis of the data reveals a logarithmic
temperature dependence of the optical effective mass. This

establishes a direct connection to another hallmark of Planckian
behavior, namely the logarithmic enhancement of the specific heat
coefficient C=T ∼ lnT previously observed for LSCO at p = 0.2447 as
well as for other cuprate superconductors such as Eu-LSCO and Nd-
LSCO48.

We introduce a theoretical framework which relies on aminimal
Planckian scaling Ansatz for the inelastic scattering rate. We show
that this provides an excellent description of the experimental data.
Our theoretical analysis offers, notably, a solution to the puzzle
mentioned above. Indeedwe show that, despite the purely Planckian
Ansatz which underlies our model, the optical conductivity com-
puted in this framework is well described by an apparent power law
with ν* < 1 over an intermediate frequency regime, as also observed
in our experimental data. The effective exponent ν* is found to be
non-universal and to depend on the inelastic coupling constant,
which we determine from several independent considerations. The
proposed theoretical analysis provides a unifying framework in
which the behavior of the T-linear resistivity, lnT behavior of C/T,
and scaling properties of the optical spectra can all be understood in
a consistent manner.

Results
Optical spectra and resistivity
Wemeasured the optical properties and extracted the complex optical
conductivity σ(ω, T) of an LSCO single crystal with a-b orientation
(CuO2 planes). The holedoping is p = x =0.24, whichplaces our sample
above and close to the pseudogap critical point of the LSCO
family7,14,49. The pseudogap state for T < T*, p < p* is well characterized
by transport measurements12 and ARPES11. The relatively low Tc = 19 K
of this sample is interesting for extracting the normal-state properties
in optics down to low temperatures without using any external mag-
netic field. In particular, this sample is the same LSCO p = 0.24 sample
as in Ref. 50, where the evolution of optical spectral weights as a
function of doping was reported.

The quantity probed by the optical experiments of the present
study is the planar complex dielectric function ϵ(ω). The dielectric
function has contributions from the free charge carriers, as well as
interband (bound charge) contributions. In the limit ω→0, the latter
contribution converges to a constant real value, traditionally indicated
with the symbol ϵ∞:

ϵðωÞ = ϵ1 + i
σðωÞ
ϵ0ω

ð1Þ

σðωÞ = i
e2K=ð_dcÞ
_ω+MðωÞ

: ð2Þ

Here the free-carrier response σ(ω) is given by the generalized Drude
formula, where all dynamical mass renormalization (m*/m) and
relaxation (ℏ/τ) processes are represented by a memory-function51,52

MðωÞ = _ω
m*ðωÞ
m

# 1
! "

+ i
_

τðωÞ
: ð3Þ

The free-carrier spectral weight per plane is given by the constant K
and the interplanar spacing is dc. The scattering rate ℏ/τ(ω) deduced
using Eqs. ((1), (2), (3)) and the values of K and ϵ∞ discussed below are
displayed in Fig. 1c. It depends linearly on frequency for
kBT≪ ℏω≲0.4 eV and approaches a constant value for ℏω < kBT. This
behavior is similar to that reported for Bi221223. The sign of the
curvature above 0.4 eV depends on ϵ∞ and changes from positive to
negativenear ϵ∞ = 4.5.Our determination ϵ∞ = 2.76presented in Scaling
analysis does not take into account data for ℏω > 0.4 eV and may
therefore yield unreliable values of ℏ/τ in that range (see Supplemen-
tary Information Sec. A and B).

Fig. 1 | Optical data of La2−xSrxCuO4 atp =0.24. aReal andb imaginary part of the
optical conductivity σ deduced from the dielectric function ϵ (Supplementary
Fig. 1), using Eq. (14) and the value ϵ∞ = 2.76. c Scattering rate and d effective mass
deduced from Eqs. (16) and (17) using K = 211 meV. The values of ϵ∞ and K are
discussed and justified in the text. Inset: Temperature dependence of m*/m at
ℏω = 5kBT (see dots in d). In each panel errorbars are indicated for three repre-
sentative frequencies and pertain to the upper curve, i.e., the lowest temperature
for σ(ω), m*(ω)/m and the highest temperature for ℏ/τ(ω). They represent the
uncertainty arising from reflectivity calibration using in-situ gold evaporation, and
have been estimated by repeating the Kramers--Kronig analysis after multiplying
the reflectivity curves by 1 ± 0.002.
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This linear dependence of the scattering rate calls for a com-
parison with resistivity. Hence we have also measured the tem-
perature dependence of the resistivity of our sample under two
magnetic fields H = 0 T and H = 16 T. As displayed in Fig. 2a, the
resistivity has a linear T-dependence ρ = ρ0 + AT over an extended
range of temperature, with A ≈ 0.63 μΩcm/K. This is a hallmark of
cuprates in this regime of doping10,13,14,20,53. It is qualitatively con-
sistent with the observed linear frequency dependence of the scat-
tering rate and, as discussed later in this paper, also in good
quantitative agreement with the ω→ 0 extrapolation of our optical
data within experimental uncertainties.

The optical mass enhancement m*(ω)/m is displayed in Fig. 1d.
With the chosen normalization, m*/m does not reach the asymptotic
value of one in the range ℏω <0.4 eV, which means that intra- and
interband and/or mid-infrared transitions overlap above 0.4 eV. The
inset of Fig. 1d shows a semi-log plot of the mass enhancement eval-
uated atℏω = 5kBT, where thenoise level is low forT⩾ 40K.Despite the
larger uncertainties at low T, this plot clearly reveals a logarithmic
temperature dependence ofm*/m. This is a robust feature of the data,
independent of the choice of ϵ∞ and K. We note that the specific heat
coefficient C/T of LSCO at the same doping level was previously
reported to display a logarithmic dependence on temperature, see
Fig. 2c47,48. We will further elaborate on this important finding of a
logarithmic dependence of the optical mass and discuss its relation to
specific heat in the next section.

Scaling analysis
In this section, we consider simultaneously the frequency and tem-
peraturedependenceof theoptical properties and investigatewhether
ℏω/kBT scaling holds for this sample close to the pseudogap critical

point. We propose a procedure to determine the three parameters ϵ∞,
K, and m introduced above.

Puttingω/T scaling to the test. Quantum systems close to a quantum
critical point display scale invariance. Temperature being the only
relevant energy scale in the quantumcritical regime, this leads inmany
cases toω/T scaling22 (inmost of the discussion below, we set ℏ = kB = 1
except when mentioned explicitly). In such a system we expect the
complex optical conductivity to obey a scaling behavior 1/
σ(ω, T)∝ TνF(ω/T), with ν⩽ 1 a critical exponent. More precisely, the
scaling properties of the optical scattering rate and effective mass
read:

1=τðω,TÞ=Tνf τ ðω=TÞ ð4Þ

m*ðω,TÞ #m*ð0,TÞ=Tν#1f mðω=TÞ ð5Þ

with fτ and fm two scaling functions. This behavior requires that both ℏω
and kBT are smaller than a high-energy electronic cutoff, but their ratio
can be arbitrary. Furthermore, we note that when ν = 1 (Planckian case)
the scaling is violated by logarithmic terms, which control in particular
the zero-frequency value of the optical mass m*(0,T). As shown in
Theorywithin a simple theoreticalmodel,ω/T scalingnonetheless holds
in this case to an excellent approximation provided that m*(0, T) is
subtracted, as in Eq. (5). We also note that in a Fermi liquid, the single-
particle scattering rate∝ω2 + (πT)2 does obeyω/T scaling (with formally
ν = 2), but the optical conductivity does not. Indeed, it involves ω/T2

terms violating scaling, and hence depends on two scaling variables
ω/T2 and ω/T, as is already clear from an (approximate) generalized
Drudeexpression 1/σ ≈ − iω + τ0[ω2 + (2πT)2]. For a detaileddiscussionof
this point, see Ref. 54. Such violations of scaling by ω/Tν terms apply
more generally to the case where the scattering rate varies as Tν with
ν > 1. Hence, ω/T scaling for both the optical scattering rate and optical
effective mass are a hallmark of non-Fermi liquid behavior with ν⩽ 1.
Previous work has indeed provided evidence for ω/T scaling in the
optical properties of cuprates23,24.

Here, we investigate whether our optical data obey ω/T scaling.
We find that the quality of the scaling depends sensitively on the
chosen value of ϵ∞. Different prescriptions in the literature to fix ϵ∞
yield—independently of themethod used—values ranging from ϵ∞ ≈ 4.3
for strongly underdoped Bi2212 to ϵ∞ ≈ 5.6 for strongly overdoped
Bi221232,55. The parameter ϵ∞ is commonly understood to represent the
dielectric constant of thematerial in the absenceof the charge carriers,
and is caused by the bound charge responsible for interband transi-
tions at energies typically above 1 eV. While this definition is unam-
biguous for the insulating parent compound, for the doped material
one is confronted with the difficulty that the optical conductivity at
these higher energies also contains contributions described by the
self-energy of the conduction electrons, caused for example by their
coupling to dd-excitations56. Consequently, not all of the oscillator
strength in the interband region represents bound charge. Our model
overcomes this hurdle by determining the low-energy spectrumbelow
0.4 eV, and subsuming all bound charge contributions in a single
constant ϵ∞. Its value is expected to be bound from above by the value
of the insulating phase, in other words we expect to find ϵ∞ < 4.5 (see
Supplementary Information Sec. A). Rather than setting an a priori
value for ϵ∞, we follow here a different route and we choose the value
that yields the best scaling collapse for a given value of the exponent ν.
This program is straightforwardly implemented for 1/τ and indicates
that the best scaling collapse is achieved with ν ≈ 1 and ϵ∞ ≈ 3, see
Fig. 2b as well as Supplementary Information Sec. B and Supplemen-
tary Fig. 2. Turning to m*, we found that subtracting the dc value
m*(ω =0, T) is crucial when attempting to collapse the data. Extra-
polating optical data to zero frequency is hampered by noise. Hence,

Fig. 2 | Scaling of scattering rate and mass enhancement. a Temperature-
dependent resistivity measured in zero field (black) and at 16 teslas (red). The inset
emphasizes the linearity of the 16 T data at low temperature. The dashed line shows
ρ0 +AT with ρ0 = 12.2 μΩcm and A =0.63 μΩcm/K. b Scattering rate divided by
temperature plotted versus ω/T; the collapse of the curves indicates a behavior 1/
τ ~ Tfτ(ω/T). c Effective quasiparticle mass (in units of the indicated band mass m)
deduced from the low-temperature electronic specific heat47

[m*
Cp = ð3=πÞð_

2dc=k
2
BÞðC=TÞ] and zero-frequency optical mass enhancement; the

dashed lines indicate lnT behavior. dOptical mass minus the zero-frequencymass
shown in c plotted versus ω/T; the collapse of the curves indicates a behavior
m*(ω) −m*(0) ~ fm(ω/T). The data between0.22 and0.4 eV are shown asdotted lines.
ϵ∞ = 2.76 was used here as in Fig. 1.

Article https://doi.org/10.1038/s41467-023-38762-5

Nature Communications | ��������(2023)�14:3033� 3
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The Sachdev-Ye-Kitaev model 
of many-particle entanglement
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Needed,
to solve open problems in the theory of

superconductivity and black holes:

A solvable model of quantum entanglement
of 3, 4, 5, . . .1 particles



Philosophy And Snakes & Ladders
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Although now popular in its modern, westernized form as a kids’ game, did you know

that Snakes & Ladders traces its roots to a traditional Indian board game based on

religious philosophies? In the original, it served as a lesson in morality. Playing this

game wasn’t just about winning or losing, but finding out how close you were, to

heaven or hell.

It is believed to have been invented by Jain monks to promote the concept of
liberation

The history of Snakes & Ladders goes back around 1000 years to 10th century CE where

it is believed to have been invented by Jain monks to promote the concept of

liberation from the bondage of passions. The game was symbolic of a man’s journey in

life and the design had a few similarities with the ancient Jain mandalas in which

various squares were illustrated with the notions of karma and moksha.

Jain mandala, 16th century CE | www.mfa.org

As the monks travelled with the game, it acquired many regional names like Gyan
Chaupar in northern India and Mokshapat around Maharashtra, along with Leela and

Parampada Sopanapata. Meanwhile, there also developed other ‘philosophical’

variations – a Hindu and a very rare, Sufi Muslim version.

The ladders represented virtues while the snakes represented vices

In the game, the ladders represented virtues such as faith, generosity, humility and

asceticism while the snakes represented vices such as anger, theft, lust and greed. The

last square represented either a God or heaven meaning you have attained liberation.

The ladders conveyed that good deeds lead you to heaven and evil to a cycle of re-

births. The number of ladders was less than the number of snakes, a reminder that the

path of good is much more difficult to tread, than a path of sins.
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In a nut-shell the game was meant to inspire players to introspect rather than

compete with each other.

Jain version, painting on cloth, 19th century

Interestingly, the reason the game pivoted around pure luck was because it was in

keeping with the Jain philosophical notion – emphasizing the ideas of fate and destiny.

This was in contrast to other ancient games such as Chaturanga which needed skill or

Pachisi, which focused on a mixture of both.

The Pahari style of the game could run up to 360 squares

Also, it is to be noted that unlike the 100 squares game that is ubiquitous with the

Snakes & Ladder board game today, there wasn’t any standardization then. The most

common types were 84-square Jain board, 101-square Sufi board and the 72 square

Hindu (predominantly Vaishnav) board, followed by their expanded variants, which in

Pahari style can run up to 360-squares.

Often made simply of painted cloth and sometimes on paper, few boards have

survived from any earlier than the mid-18th century. The iconography on it depicts

cosmological elements, with upper regions depicting divine beings and the heavens.

The rest of the board was covered with pictures of animals, flowers and people.

Gyan Chaupar - 19th century CE | Rajasthan Oriental Research Institute, Jodhpur

The appeal of this game not only transcended religious boundaries but also

geographical ones. When it was first brought to Victorian England in 1892 for instance,

it was a big hit. Here it was customised to suit Christian sensibilities. The squares of

fulfilment, grace and success were accessible by ladders of thrift and penitence and

snakes of indulgence, disobedience and indolence caused one to end up in illness,

disgrace and poverty. While the Indian version of the game had snakes outnumbering

ladders, the English counterpart was more forgiving, as it contained each in the same

amount. This concept of equality signifies the cultural ideal that for every sin one

commits, there exists another chance at redemption.

Chutes and Ladders which taught kids about good and bad deeds | www.indoindians.com

In 1943, it was rebranded as Chutes and Ladders in the United States by game pioneer

Milton Bradley. Over time, the game was simplified, stripped of moral lessons

altogether and in its recent avatar, it came to be known as Snakes and Ladders.

This game serves as a perfect example of how even a simple game can evolve over

time and space. In this case, also how a profound lesson in morality, became a game

children play.
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The Sachdev-Ye-Kitaev (SYK) model



Place electrons randomly on some sites

Sachdev, Ye (1993); Kitaev (2015)

1
2

3

4

5

6 7
8

9

10
11

12
13 14

15
16

17
18

19

The Sachdev-Ye-Kitaev (SYK) model
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A. Kitaev, unpublished; S. Sachdev, PRX 5, 041025 (2015)

S. Sachdev and J. Ye, PRL 70, 3339 (1993)

(See also: the “2-Body Random Ensemble” in nuclear physics; did not obtain the large N limit;
T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, and S.S.M. Wong, Rev. Mod. Phys. 53, 385 (1981))

U↵�;�� are independent random variables with U↵�;�� = 0 and |U↵�;��|2 = U2

N ! 1 yields critical strange metal.
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A simple model of a metal with quasiparticles
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For random
matrix model:

E0 + Ei =P
↵ n↵"↵

n↵ = 0, 1,
occupation

number



A. Kitaev, unpublished; S. Sachdev, PRX 5, 041025 (2015)

S. Sachdev and J. Ye, PRL 70, 3339 (1993)

(See also: the “2-Body Random Ensemble” in nuclear physics; did not obtain the large N limit;
T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, and S.S.M. Wong, Rev. Mod. Phys. 53, 385 (1981))

U↵�;�� are independent random variables with U↵�;�� = 0 and |U↵�;��|2 = U2

N ! 1 yields critical strange metal.
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The Sachdev-Ye-Kitaev (SYK) model



Complex SYK model
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D(E) ⇠ eS(E)

= eNs0+
p
2N�E

S(T ! 0) = N(s0 + �T )

A. Georges, O. Parcollet, and 
S. Sachdev, 

PRB 63, 134406 (2001)
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No quasiparticle decomposition:
wavefunctions change chaotically
from one state to the next.
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No quasiparticle decomposition:
wavefunctions change chaotically
from one state to the next.



The SYK model
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Consequences of emergent time-reparameterization and conformal symmetries
in low-energy theory in 0+1 spacetime dimensions:

1. Planckian dynamics!

⌧(!) =
~

kBT
F

✓
~!
kBT

◆

<latexit sha1_base64="saSi2ocNpNnHDdazrU/ITdpFYjg="></latexit>

Consequences of emergent time-reparameterization and conformal symmetries:

1. Planckian dynamics!

⌧(!) =
~

kBT
F

✓
~!
kBT

◆
<latexit sha1_base64="rxjO4dvvQg310aJVt2DHYGerjpI="></latexit>

ω(ε) =
⊋

kBT
F

(
⊋ε
kBT

)
independent of U .

No bosons, fermions, anyons . . .

S. Sachdev and J. Ye, PRL 70, 3339 (1993); A. Georges and O. Parcollet PRB 59, 5341 (1999)
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2. Zero temperature entropy
without exponential ground state degeneracy!

A. Georges, O. Parcollet, and S. Sachdev (GPS), Physical Review B 63, 134406 (2001)
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S(T ) = s0 , D(E → 0) = eNs0 sinh(

√
2NωE)

s0 = 0.46484769917080510749.... for Q = 1/2.



A solvable model of multi-particle  
quantum entanglement.

 
No quasiparticles: yields a metal in which 

current is carried  
not by individual electrons,  

but by an entangled “quantum soup” 

The Sachdev-Ye-Kitaev (SYK) model
Sachdev, Ye (1993); Kitaev (2015)



From  
the SYK model  

to  
black holes 



Objects so dense that light is 
gravitationally bound to them.

Black Holes

Horizon radius R =
2GM

c2

<latexit sha1_base64="DmHY5rKnFNBAMp1nOXUIIHLQ/tU="></latexit>

G Newton’s constant, c velocity of light, M mass of black hole
For M = earth’s mass, R ⇡ 9mm!
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Karl Schwarzschild (1916)
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R = 1.3⇥ 1011m

⇡ earth’s orbit

The supermassive black hole lurking at the 
heart of the Milky Way – Sagittarius A* 
contains about 4.3 million solar masses

Event Horizon Telescope 
May 12, 2022



What is inside a black hole ???

In Einstein’s theory, all the matter in a black hole collapses 
to a singularity at the center of the black hole. 

Horizon

Matter of infinite density! 
Requires quantum theory



_

Quantum Entanglement across a black hole horizon



_

Quantum Entanglement across a black hole horizon

Black hole 
horizon



_

Quantum Entanglement across a black hole horizon

Black hole 
horizon



Quantum Entanglement across a black hole horizon

Bekenstein, Hawking: Black holes have a temperature and an entropy!
 

To an outside observer, the state of the electron inside the black hole cannot be 
known, and so the outside electron is in a random state. 

Black hole 
horizon

J. D. Bekenstein, PRD 7, 2333 (1973); S. W. Hawking, Nature 248, 30 (1974)



Quantum Black Holes
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S =
kBAc3

4G~
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S = kB logD
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• Can we find a quantum theory for the collapsed matter at the

center of the black hole, whose density of quantum states D(E)

[the quantum analog of Boltzmann’s W ] matches Bekenstein-

Hawking entropy, in accordance with Boltzmann’s principles

of statistical mechanics, S(E) = kB logD(E) ?

• Answer from string theory for ‘supersymmetric’ charged black

holes: D(E) = eS�(E) i.e. all the states required by Hawking’s

entropy have exactly the same energy.



Connections between the SYK model and black holes

S. Sachdev, Phys. Rev. Lett. 105, 151602 (2010)  
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• Black hole ‘ring-down’ or ‘quasinormal mode damping’ or

‘chaos’ times are Planckian ⇠ ~/(kBT )

• Charged black holes have a non-zero Bekenstein-Hawking

entropy in the limit T ! 0:

SBH = A0c3/(4~G) where A0 = 2GQ2/c4 is the area

of the charged black hole horizon at T = 0.

Also applies to rotating neutral black holes.

• The example of the SYK model implies that SBH is not
realized by an exponentially large ground state degeneracy

(as is the case in all earlier string-theoretic computations).

C.V.  Vishveshwara, Nature 227, 936 (1970)  
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Also applies to rotating neutral black holes.

• The example of the SYK model implies that SBH is not
realized by an exponentially large ground state degeneracy

(as is the case in all earlier string-theoretic computations).

U. Moitra, S.K. Sake, S.P. Trivedi and V. Vishal, JHEP 11 (2019) 047. 
D. Kapec, A. Sheta, A. Strominger and C. Toldo, PRL 133 (2024) 021601 
M. Kolanowski, D. Marolf, I. Rakic, M. Rangamani and G.J. Turiaci, arXiv:2409.16248

C.V.  Vishveshwara, Nature 227, 936 (1970)  



Connections between the SYK model and black holes

S. Sachdev, Phys. Rev. Lett. 105, 151602 (2010)  

<latexit sha1_base64="unLgkff7Qvccp/g4rmsjZXkeKMI="></latexit>

• Black hole ‘ring-down’ or ‘quasinormal mode damping’ or

‘chaos’ times are Planckian ⇠ ~/(kBT )

• Charged black holes have a non-zero Bekenstein-Hawking

entropy in the limit T ! 0:

SBH = A0c3/(4~G) where A0 = 2GQ2/c4 is the area

of the charged black hole horizon at T = 0.

Also applies to rotating neutral black holes.

• The example of the SYK model implies that SBH is not
realized by an exponentially large ground state degeneracy

(as is the case in all earlier string-theoretic computations).

C.V.  Vishveshwara, Nature 227, 936 (1970)  



<latexit sha1_base64="zSxnkrebfw/+9bqJx7XDv5iOL9U=">AAAB6HicdVBNS8NAEN3Ur1q/qh69LBbBU0jaYnssiuCxBfsBbSib7aRdu9mE3Y1QQn+BFw+KePUnefPfuG0jqOiDgcd7M8zM82POlHacDyu3tr6xuZXfLuzs7u0fFA+POipKJIU2jXgkez5RwJmAtmaaQy+WQEKfQ9efXi387j1IxSJxq2cxeCEZCxYwSrSRWtfDYsmxa+VypV7Bju0sYYjrVutlB7uZUkIZmsPi+2AU0SQEoSknSvVdJ9ZeSqRmlMO8MEgUxIROyRj6hgoSgvLS5aFzfGaUEQ4iaUpovFS/T6QkVGoW+qYzJHqifnsL8S+vn+ig7qVMxIkGQVeLgoRjHeHF13jEJFDNZ4YQKpm5FdMJkYRqk03BhPD1Kf6fdMq2e2FXWtVS4zKLI49O0Ck6Ry6qoQa6QU3URhQBekBP6Nm6sx6tF+t11Zqzsplj9APW2yfXMIz6</latexit>

E

<latexit sha1_base64="8X4/p239i5d2RdX3zGJpFk5J6Ys="></latexit>

D(E) =
X

i

�(E � Ei)

= exp (S/kB) �(E) + . . .

Iliesiu, Murthy, Turiaci (2022) 

Bekenstein-Hawking

D(E) of charged black holes 
from the SYK model

: developments from the SYK model

D. Chowdhury, A. Georges, O. Parcollet, and S. S., Rev. Mod. Phys. 94, 035004 (2022)
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• For generic charged black holes in 3+1 di-
mensions with horizon area A0 at T = 0 and
fixed charge Q (A0 = 2GQ2/c4), the density
of quantum states at small energy E is
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Similar remarks apply to rotating neutral black holes.
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fsmooth(E)



~x ⇣

Quantum simulation of charged black holes 
by the SYK model
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The SYK model simulates
the low energy properties of
the interior of the black hole

for an outside observer
in ⇣-⌧ co-ordinates.



From the SYK model  
to the 

universal 2d-YSYK  
theory of strange metals

Aavishkar Patel
Flatiron

Haoyu Guo
Cornell

Ilya Esterlis 
Wisconsin

Aavishkar A. Patel, Haoyu Guo, Ilya Esterlis, S. Sachdev, Science 381, 790 (2023)



T

〈φ〉 = 0

Quantum
critical

〈φ〉 #= 0
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Quantum phase transition of Fermi surface change

tion (LDA), which are in good agreement with previous
calculations [11,12], and a tight-binding fit of the experi-
mentally determined FS. The spectra in Figs. 1(b) and 1(c)
were measured along momentum space directions near the
nodal and antinodal regions of the BZ, as indicated by the
arrows in Fig. 1(a). Dispersive features are clearly observ-
able, with a behavior which is ubiquitous among the cup-
rates [1]. Close to the nodal direction the QP peak exhibits
a pronounced dispersion that can be followed over
!250 meV below EF; near "!; 0#, on the other hand, the
band is much shallower with a van Hove singularity
!39 meV below EF. By integrating over a $5 meV win-
dow about EF the ARPES spectra normalized at high
binding energies, one obtains an estimate for the normal-
state FS [Fig. 1(d); the EF-intensity map across two BZs
was downfolded to the reduced zone scheme and symme-
trized with respect to the BZ diagonal, taking an average
for equivalent k points, and then fourfolded]. As discussed
later, at T % 10 K a d-wave SC gap is open along the FS;
thus this procedure returns the loci of minimum excitation
energy across the gap, which, however, still correspond to
the underlying normal-state FS crossings [1].

The FS of Tl2201-OD30 [Fig. 1(d)] consists of a large
hole-pocket centered at "!;!#, which, as suggested by the
low binding energy of the van Hove singularity [Fig. 1(c)],
appears to be approaching a topological transition from
hole to electronlike. The FS volume, counting holes, is
63$ 2% of the BZ corresponding to a carrier concentra-
tion of 1:26$ 0:04 hole=Cu atom, in very good agreement
with Hall-coefficient [13] and AMRO [6] experiments,
which found 1.30 and 1.24 itinerant holes, respectively,
in slightly more overdoped samples. These measurements
all indicate that the low-energy electronic structure of very

overdoped Tl2201 is dominated by a single CuO band. In
both ARPES and AMRO data there is no evidence for the
TlO band that in LDA calculations crosses EF and gives
rise to a small electron pocket centered at k % "0; 0# for
nonoxygenated (i.e., " % 0) Tl2201 [Fig. 1(a), dashed FS].
This, however, is no surprise even within the indepen-
dent particle picture. In fact, adjusting the chemical po-
tential in the calculations in a rigid-band-like fashion to
match the doping level of our Tl2201-OD30 sample (as
determined by the total FS volume), the TlO band is
emptied of its electrons and the LDA FS reduces to the
single CuO pocket [Fig. 1(a), solid FS]. Since full deple-
tion of the TlO band takes place for !EF ’ &0:159 eV,
corresponding to the removal of 0.024 electrons from
the TlO band (as well as 0.109 from the CuO band), already
the deviation of the Tl3' and Cu2' content of our samples
from the stoichiometric ratio 2:1, which contributes
!0:14 hole=formula unit, would be sufficient to empty
the TlO band even in the nonoxygenated " % 0 case. In
this sense, the Tl-Cu nonstoichiometry and the presence of
the TlO band cooperate in pushing the " % 0 system away
from half filling, which may help explain why nonoxygen-
ated Tl2201 is not a charge transfer insulator like undoped
(i.e., x % 0) LSCO [12]. As for the detailed shape of the
FS, which in LDA calculations is more square than in
ARPES and AMRO results, better agreement would re-
quire the inclusion in the calculations of correlation ef-
fects and/or O-doping beyond a rigid-band picture. Alter-
natively, the ARPES data can be modeled by the tight-
binding dispersion #k%$' t1

2 "coskx'cosky#' t2 coskx(
cosky ' t3

2 "cos2kx ' cos2ky# ' t4
2 "cos2kxcosky ' coskx(

cos2ky#' t5 cos2kxcos2ky, as in Ref. [14] (setting a % 1
for the lattice constant). With parameters $ % 0:2438,
t1 % &0:725, t2 % 0:302, t3 % 0:0159, t4 % &0:0805,
and t5 % 0:0034, all expressed in eV, this dispersion re-
produces both the FS shape [Fig. 1(d)] and the QP energy
at "0; 0# and especially near "!; 0# [Figs. 2(f) and 2(g)].

The analysis of the ARPES spectra in Fig. 2 indicates a
SC gap consistent with a dx2&y2 form. Because of the lack
of normal-state data, the opening of the gap for this
Tl2201-OD30 sample could not be followed via the shift
of the leading edge midpoint (LEM) across Tc, as is
commonly done (this was, however, possible in subsequent
temperature dependent experiments on a less overdoped
Tc % 74 K sample). In the present case, the existence of a
gap can be most easily visualized by the comparison of
nodal and antinodal symmetrized spectra [15], in particu-
lar, by the presence of a peak at EF along the nodal di-
rection [signature of a FS crossing; bold line in Fig. 2(a)]
and by the lack thereof along the antinodal [Fig. 2(b)]. For
a more quantitative analysis, we performed a fit of the
spectra along different k-space cuts intersecting the under-
lying normal-state FS [Fig. 2(d); as line shape we used a
Lorentzian QP peak plus a steplike background identified
by the ARPES intensity at k ) kF, all multiplied by a
Fermi function and convoluted with the instrumental en-
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FIG. 1 (color online). (a) LDA FS for two different doping
levels corresponding to a volume, counting holes, of 50% (cyan,
dashed line) and 63% (blue, solid line) of the BZ. (b),(c) ARPES
spectra taken at T % 10 K on Tl2201-OD30 along the directions
marked by arrows in (a). (d) ARPES FS of Tl2201-OD30 along
with a tight-binding fit of the data (black lines).
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Two-dimensional YSYK model
describes electrons coupled

to a boson ω driving the QPT,
with spatial randomness in sc,
the position of the underlying
T = 0 quantum critical point.



photoemission spectroscopy (ARPES)30. These observations are qua-
litatively consistent with the T-linear dependence of the resistivity and
Planckianbehavior. In contrast, by analyzing themodulus andphaseof
the optical conductivity itself, a power-law behavior σðωÞ = C=ð#iωÞν

*

with an exponent ν* < 1 was reported at higher frequencies
ℏω ≳ 1.5kBT23,24,28,29,31,32. The exponent was found to be in the range
ν* ≈0.65 with some dependence on sample and doping level23,26,28,29.
Hence, from these previous analyses, it would appear that different
power laws are needed to describe optical spectroscopy data: one at
low frequency consistent with ℏω/kBT scaling and Planckian behavior
(ν = 1) and another one with ν* < 1 at higher frequency, most apparent
on the optical conductivity itself in contrast to 1/τ. A number of the-
oretical approaches have considered a power-law dependence of the
conductivity33–42 without resolving this puzzle. A notable exception is
the work of Norman and Chubukov43. The basic assumption of this
work is that the electrons are coupled to a Marginal Fermi Liquid
susceptibility3,4,44,45. The logarithmic behavior of the susceptibility and
corresponding high-energy cut-off observed to be ~ 0.4 eV with
ARPES46, is responsible for the apparent sub-linear power law behavior
of the optical conductivity. Our work broadens and amplifies this
observation. A quantitative description of all aspects at low and high
energy in one fell swoop has, to the best of our knowledge, not been
presented to this day.

Here we present systematic measurements of the optical spectra,
as well as dc resistivity, of a La2−xSrxCuO4 (LSCO) sample with x = p =
0.24 close to the pseudogap critical point, over a broad range of
temperature and frequency. We demonstrate that the data display
Planckian quantum critical scaling over an unprecedented range of
ℏω/kBT. Furthermore, a direct analysis of the data reveals a logarithmic
temperature dependence of the optical effective mass. This

establishes a direct connection to another hallmark of Planckian
behavior, namely the logarithmic enhancement of the specific heat
coefficient C=T ∼ lnT previously observed for LSCO at p = 0.2447 as
well as for other cuprate superconductors such as Eu-LSCO and Nd-
LSCO48.

We introduce a theoretical framework which relies on aminimal
Planckian scaling Ansatz for the inelastic scattering rate. We show
that this provides an excellent description of the experimental data.
Our theoretical analysis offers, notably, a solution to the puzzle
mentioned above. Indeedwe show that, despite the purely Planckian
Ansatz which underlies our model, the optical conductivity com-
puted in this framework is well described by an apparent power law
with ν* < 1 over an intermediate frequency regime, as also observed
in our experimental data. The effective exponent ν* is found to be
non-universal and to depend on the inelastic coupling constant,
which we determine from several independent considerations. The
proposed theoretical analysis provides a unifying framework in
which the behavior of the T-linear resistivity, lnT behavior of C/T,
and scaling properties of the optical spectra can all be understood in
a consistent manner.

Results
Optical spectra and resistivity
Wemeasured the optical properties and extracted the complex optical
conductivity σ(ω, T) of an LSCO single crystal with a-b orientation
(CuO2 planes). The holedoping is p = x =0.24, whichplaces our sample
above and close to the pseudogap critical point of the LSCO
family7,14,49. The pseudogap state for T < T*, p < p* is well characterized
by transport measurements12 and ARPES11. The relatively low Tc = 19 K
of this sample is interesting for extracting the normal-state properties
in optics down to low temperatures without using any external mag-
netic field. In particular, this sample is the same LSCO p = 0.24 sample
as in Ref. 50, where the evolution of optical spectral weights as a
function of doping was reported.

The quantity probed by the optical experiments of the present
study is the planar complex dielectric function ϵ(ω). The dielectric
function has contributions from the free charge carriers, as well as
interband (bound charge) contributions. In the limit ω→0, the latter
contribution converges to a constant real value, traditionally indicated
with the symbol ϵ∞:

ϵðωÞ = ϵ1 + i
σðωÞ
ϵ0ω

ð1Þ

σðωÞ = i
e2K=ð_dcÞ
_ω+MðωÞ

: ð2Þ

Here the free-carrier response σ(ω) is given by the generalized Drude
formula, where all dynamical mass renormalization (m*/m) and
relaxation (ℏ/τ) processes are represented by a memory-function51,52

MðωÞ = _ω
m*ðωÞ
m

# 1
! "

+ i
_

τðωÞ
: ð3Þ

The free-carrier spectral weight per plane is given by the constant K
and the interplanar spacing is dc. The scattering rate ℏ/τ(ω) deduced
using Eqs. ((1), (2), (3)) and the values of K and ϵ∞ discussed below are
displayed in Fig. 1c. It depends linearly on frequency for
kBT≪ ℏω≲0.4 eV and approaches a constant value for ℏω < kBT. This
behavior is similar to that reported for Bi221223. The sign of the
curvature above 0.4 eV depends on ϵ∞ and changes from positive to
negativenear ϵ∞ = 4.5.Our determination ϵ∞ = 2.76presented in Scaling
analysis does not take into account data for ℏω > 0.4 eV and may
therefore yield unreliable values of ℏ/τ in that range (see Supplemen-
tary Information Sec. A and B).

Fig. 1 | Optical data of La2−xSrxCuO4 atp =0.24. aReal andb imaginary part of the
optical conductivity σ deduced from the dielectric function ϵ (Supplementary
Fig. 1), using Eq. (14) and the value ϵ∞ = 2.76. c Scattering rate and d effective mass
deduced from Eqs. (16) and (17) using K = 211 meV. The values of ϵ∞ and K are
discussed and justified in the text. Inset: Temperature dependence of m*/m at
ℏω = 5kBT (see dots in d). In each panel errorbars are indicated for three repre-
sentative frequencies and pertain to the upper curve, i.e., the lowest temperature
for σ(ω), m*(ω)/m and the highest temperature for ℏ/τ(ω). They represent the
uncertainty arising from reflectivity calibration using in-situ gold evaporation, and
have been estimated by repeating the Kramers--Kronig analysis after multiplying
the reflectivity curves by 1 ± 0.002.
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This linear dependence of the scattering rate calls for a com-
parison with resistivity. Hence we have also measured the tem-
perature dependence of the resistivity of our sample under two
magnetic fields H = 0 T and H = 16 T. As displayed in Fig. 2a, the
resistivity has a linear T-dependence ρ = ρ0 + AT over an extended
range of temperature, with A ≈ 0.63 μΩcm/K. This is a hallmark of
cuprates in this regime of doping10,13,14,20,53. It is qualitatively con-
sistent with the observed linear frequency dependence of the scat-
tering rate and, as discussed later in this paper, also in good
quantitative agreement with the ω→ 0 extrapolation of our optical
data within experimental uncertainties.

The optical mass enhancement m*(ω)/m is displayed in Fig. 1d.
With the chosen normalization, m*/m does not reach the asymptotic
value of one in the range ℏω <0.4 eV, which means that intra- and
interband and/or mid-infrared transitions overlap above 0.4 eV. The
inset of Fig. 1d shows a semi-log plot of the mass enhancement eval-
uated atℏω = 5kBT, where thenoise level is low forT⩾ 40K.Despite the
larger uncertainties at low T, this plot clearly reveals a logarithmic
temperature dependence ofm*/m. This is a robust feature of the data,
independent of the choice of ϵ∞ and K. We note that the specific heat
coefficient C/T of LSCO at the same doping level was previously
reported to display a logarithmic dependence on temperature, see
Fig. 2c47,48. We will further elaborate on this important finding of a
logarithmic dependence of the optical mass and discuss its relation to
specific heat in the next section.

Scaling analysis
In this section, we consider simultaneously the frequency and tem-
peraturedependenceof theoptical properties and investigatewhether
ℏω/kBT scaling holds for this sample close to the pseudogap critical

point. We propose a procedure to determine the three parameters ϵ∞,
K, and m introduced above.

Puttingω/T scaling to the test. Quantum systems close to a quantum
critical point display scale invariance. Temperature being the only
relevant energy scale in the quantumcritical regime, this leads inmany
cases toω/T scaling22 (inmost of the discussion below, we set ℏ = kB = 1
except when mentioned explicitly). In such a system we expect the
complex optical conductivity to obey a scaling behavior 1/
σ(ω, T)∝ TνF(ω/T), with ν⩽ 1 a critical exponent. More precisely, the
scaling properties of the optical scattering rate and effective mass
read:

1=τðω,TÞ=Tνf τ ðω=TÞ ð4Þ

m*ðω,TÞ #m*ð0,TÞ=Tν#1f mðω=TÞ ð5Þ

with fτ and fm two scaling functions. This behavior requires that both ℏω
and kBT are smaller than a high-energy electronic cutoff, but their ratio
can be arbitrary. Furthermore, we note that when ν = 1 (Planckian case)
the scaling is violated by logarithmic terms, which control in particular
the zero-frequency value of the optical mass m*(0,T). As shown in
Theorywithin a simple theoreticalmodel,ω/T scalingnonetheless holds
in this case to an excellent approximation provided that m*(0, T) is
subtracted, as in Eq. (5). We also note that in a Fermi liquid, the single-
particle scattering rate∝ω2 + (πT)2 does obeyω/T scaling (with formally
ν = 2), but the optical conductivity does not. Indeed, it involves ω/T2

terms violating scaling, and hence depends on two scaling variables
ω/T2 and ω/T, as is already clear from an (approximate) generalized
Drudeexpression 1/σ ≈ − iω + τ0[ω2 + (2πT)2]. For a detaileddiscussionof
this point, see Ref. 54. Such violations of scaling by ω/Tν terms apply
more generally to the case where the scattering rate varies as Tν with
ν > 1. Hence, ω/T scaling for both the optical scattering rate and optical
effective mass are a hallmark of non-Fermi liquid behavior with ν⩽ 1.
Previous work has indeed provided evidence for ω/T scaling in the
optical properties of cuprates23,24.

Here, we investigate whether our optical data obey ω/T scaling.
We find that the quality of the scaling depends sensitively on the
chosen value of ϵ∞. Different prescriptions in the literature to fix ϵ∞
yield—independently of themethod used—values ranging from ϵ∞ ≈ 4.3
for strongly underdoped Bi2212 to ϵ∞ ≈ 5.6 for strongly overdoped
Bi221232,55. The parameter ϵ∞ is commonly understood to represent the
dielectric constant of thematerial in the absenceof the charge carriers,
and is caused by the bound charge responsible for interband transi-
tions at energies typically above 1 eV. While this definition is unam-
biguous for the insulating parent compound, for the doped material
one is confronted with the difficulty that the optical conductivity at
these higher energies also contains contributions described by the
self-energy of the conduction electrons, caused for example by their
coupling to dd-excitations56. Consequently, not all of the oscillator
strength in the interband region represents bound charge. Our model
overcomes this hurdle by determining the low-energy spectrumbelow
0.4 eV, and subsuming all bound charge contributions in a single
constant ϵ∞. Its value is expected to be bound from above by the value
of the insulating phase, in other words we expect to find ϵ∞ < 4.5 (see
Supplementary Information Sec. A). Rather than setting an a priori
value for ϵ∞, we follow here a different route and we choose the value
that yields the best scaling collapse for a given value of the exponent ν.
This program is straightforwardly implemented for 1/τ and indicates
that the best scaling collapse is achieved with ν ≈ 1 and ϵ∞ ≈ 3, see
Fig. 2b as well as Supplementary Information Sec. B and Supplemen-
tary Fig. 2. Turning to m*, we found that subtracting the dc value
m*(ω =0, T) is crucial when attempting to collapse the data. Extra-
polating optical data to zero frequency is hampered by noise. Hence,

Fig. 2 | Scaling of scattering rate and mass enhancement. a Temperature-
dependent resistivity measured in zero field (black) and at 16 teslas (red). The inset
emphasizes the linearity of the 16 T data at low temperature. The dashed line shows
ρ0 +AT with ρ0 = 12.2 μΩcm and A =0.63 μΩcm/K. b Scattering rate divided by
temperature plotted versus ω/T; the collapse of the curves indicates a behavior 1/
τ ~ Tfτ(ω/T). c Effective quasiparticle mass (in units of the indicated band mass m)
deduced from the low-temperature electronic specific heat47

[m*
Cp = ð3=πÞð_

2dc=k
2
BÞðC=TÞ] and zero-frequency optical mass enhancement; the

dashed lines indicate lnT behavior. dOptical mass minus the zero-frequencymass
shown in c plotted versus ω/T; the collapse of the curves indicates a behavior
m*(ω) −m*(0) ~ fm(ω/T). The data between0.22 and0.4 eV are shown asdotted lines.
ϵ∞ = 2.76 was used here as in Fig. 1.
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instead of attempting an extrapolation, we consider m*(0, T) as
adjustable values thatwe again tune such as to optimize the collapse of
the optical data. This analysis of m*/m confirms that the best scaling
collapse occurs for ν ≈ 1 but indicates a larger ϵ∞ ≈ 7 (Supplementary
Information Sec. B and Supplementary Fig. 3). The determination of ϵ∞
from the mass data depends sensitively on the frequency range tested
for scaling and drops to value below ϵ∞ = 3 when focusing on lower
frequencies. As a third step, we perform a simultaneous optimization
of the data collapse for 1/τ and m*/m, which yields the values ν = 1,
ϵ∞ = 2.76 which we will adopt throughout the following. Note that a
determination of ϵ∞ by separation of the high-frequency modes in a
Drude–Lorentz representation of ϵ(ω) yields a larger value
ϵ∞ = 4.5 ± 0.5, as typically found in the cuprates23,32,57. Importantly, all
our conclusions hold if we use this latter value in the analysis, however,
the quality of the scaling displayed in Figs. 2 and 5 is slightly degraded.

Scaling of the optical scattering rate and connection to resistivity.
The scaling properties of the scattering rate obtained from our optical
data according to the procedure described above is illustrated in
Fig. 2b,whichdisplaysℏ/τdividedby kBT andplotted versusℏω/kBT for
temperatures above the superconducting transition. The collapse of
the curves at different temperatures reveals the behavior
ℏ/τ∝ Tfτ(ω/T). The function fτ(x) reaches a constant fτ(0) > 0 at small
values of the argument, and behaves for large arguments as
fτ(x≫ 1)∝ x. This is consistent with the typical quantum critical beha-
vior _=τ ∼ maxðT ,ωÞ. When inserted in the ω =0 limit of Eq. (15), the
value fτ(0) ≈ 5 indicated by Fig. 2b yields 1/σ(0) =AT with A = 0.55 μΩ
cm/K, in fairly good agreement with the measured resistivity (Fig. 2a).
Hence the resistivity and optical-spectroscopy data are fully con-
sistent, both of them supporting a Planckian dissipation scenario with
ν = 1 for LSCO at p = 0.24.

Spectral weight, effective mass and connection to specific heat.
The dc mass enhancement values m*(0, T)/m resulting from the pro-
cedure described above are displayed in Fig. 2c. Remarkably, as seen
on this figure, the scaling analysis delivers an almost perfectly

logarithmic temperature dependence of m*(0, T), consistent with a
Planckian behavior ν = 1. As mentioned above, this logarithmic beha-
vior can actually be identified in the unprocessed optical data, (see
inset of Fig. 1). In order to compare this behavior to the corresponding
logarithmic behavior reported for the specific heat, we note that the
scaling analysis provides m*(0, T) up to a multiplicative constant Km,
where m is the band mass. In contrast, the electronic specific heat
yields the quasiparticle mass in units of the bare electron massme. We
expect that the logarithmic T-variation of m*(0, T) and m*

qp / C=T are
both due to the critical inelastic scattering and that the lnT term in
eachquantity should thereforehave identical prefactors. Imposing this
identity provides a relationship between Km and me, namely (m/me)
K = 583meV.

Remarkably, we have found that this condition is obeyed within
less than a percent by a square-lattice tight-binding model with para-
meters appropriate for LSCO at p =0.24 (Supplementary Information
Sec. E). This model has nearest and next-nearest neighbor hopping
amplitudes t =0.3 eV and t0=t = # 0:1758, respectively, and an electro-
nic densityn =0.76/a2. The Fermi-level density of states is 1.646/(eVa2),
which corresponds to a band massm/me = 2.76 using the LSCO lattice
parameter a = 3.78 Å. The spectral weight is K = 211meV, such that the
prediction of this tight-bindingmodel is (m/me)K = 582meV, in perfect
agreement with the previously determined value. In view of this
agreement, we use the tight-binding model in order to fix the
remaining two system parameters: m = 2.76me and K = 211meV. Fig-
ure 2c compares the mass enhancement inferred from the low-
temperature specific heat and from the scaling analysis of the optical
data. The tight-binding value of the product Km ensures that both data
sets have the same slope on a semi-log plot. However, the resulting
optical mass enhancement is larger than the quasiparticle mass
enhancement by≈0.75,which is also the amount bywhich the infrared
mass enhancement exceeds unity in Fig. 1d. A mass enhancement lar-
ger than unity at 0.4 eV implies that part of the intraband spectral
weight lies above 0.4 eV, overlapping with the interband transitions.
Conversely, interband spectral weight is likely leaking below 0.4 eV,
which prevents us from accessing the absolute value of the genuine
intraband mass by optical means. Figure 2d shows the collapse of the
frequency-dependent change of the mass enhancement, confirming
the behavior m*(ω) −m*(0) ≈ Tν−1fm(ω/T) with ν = 1. The shape of the
scaling function fm(x) agrees remarkably well with the theoretical
prediction derived in Theory below.

Apparent power-law behavior: a puzzle. The above scaling analysis
has led us to the following conclusions. (i) The optical scattering rate
and optical mass enhancement of LSCO at p =0.24 exhibit ω/T scaling
over two decades for the chosen value ϵ∞ = 2.76. (ii) The best collapse
of the data is achieved for an exponent ν = 1 corresponding to
Planckian dissipation. This behavior is consistent with the measured
T-linear resistivity. (iii) The temperature dependence of m*(0, T) that
produces the best data collapse is logarithmic, consistently with the
temperature dependence of the electronic specific heat.

Hence, the data presented in Fig. 2 provide compelling evidence
that the low-energy carriers in LSCO at the doping p = 0.24 experience
linear-in-energy and linear-in-temperature inelastic scattering pro-
cesses, as expected in a scale-invariant quantum critical system char-
acterized by Planckian dissipation. It is therefore at first sight
surprising that the infrared conductivity exhibits as a function of fre-
quency a power lawwith an exponent that is clearly smaller than unity,
as highlighted in Fig. 3a, b. These figures show that the modulus and
phase of σ are both to a good accuracy consistent with the behavior
σ / ð#iωÞ#ν* =ω#ν*eiπ2ν* with an exponent ν* = 0.8. A similar behavior
with exponent ν* ≈0.6 was reported for optimally- and overdoped
Bi221223, while earlier optical investigations of YBCO and Bi2212 have
also reportedpower lawbehavior of Re σðωÞ26,28,29.Wenowaddress this
question by considering a theoreticalmodel presented in the following

Fig. 3 | Sub-linear power lawat intermediate frequencies. aModulus andbphase
of the complex conductivity shown in Fig. 1a and b; the modulus decays with an
exponent ν* ≈0.8 and thephase approaches a value slightly lower than (π/2)ν*. c and
d: same quantities calculated using a Planckian model with linear-in-energy scat-
tering rate, Eqs. (7) and (10). The model and parameters are discussed in the text.
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The two-dimensional Yukawa-Sachdev-Ye-Kitaev (2d-YSYK) model provides a universal theory
of quantum phase transitions in metals in the presence of quenched random spatial fluctuations in
the local position of the quantum critical point. It has a Fermi surface coupled to a scalar field
by spatially random Yukawa interactions. We present full numerical solutions of a self-consistent
disorder averaged analysis of the 2d-YSYK model in both the normal and superconducting states,
obtaining electronic spectral functions, frequency-dependent conductivity, and superfluid stiffness.
Our results reproduce key aspects of observations in the cuprates as analyzed by Michon et al. (Nat.
Comm. 14, 3033 (2023)). We also find a regime of increasing zero temperature superfluid stiffness
with decreasing superconducting critical temperature, as is observed in bulk cuprates.

Higher temperature superconductors of correlated elec-
tron materials all display a ‘strange metal’ phase above
the critical temperature for superconductivity [1, 2]. This
is a metallic phase of matter where the Landau quasi-
particle approach breaks down. It is characterized most
famously by a linear in temperature (T ) electrical re-
sistivity. We use the term strange metal only for those
metals whose resistivity is smaller than the quantum unit
(h/e2 in d = 2 spatial dimensions). Metals with a linear-
in-T resistivity which is larger than the quantum unit are
‘bad metals’.

An often quoted model for a strange or bad metal
(e.g. [3, 4]) is one in which there is a large density of
states of low energy bosonic excitations, usually phonons,
and then quasi-elastic scattering of the electrons off the
bosons leads to linear-in-T resistivity from the Bose oc-
cupation function when T is larger than the typical boson
energy. However, studies of the optical conductivity in
the strange metal of the cuprates [5] show that the dom-
inant scattering is inelastic, not quasi-elastic, and leads
to a non-Drude power-law-in-frequency tail in the optical
conductivity. The optical conductivity data has been in-
cisively analyzed recently by Michon et al. [6]: they have
shown that while the transport scattering rate (related
to the real part of the inverse optical conductivity) ex-
hibits Planckian scaling behavior [1], there are significant

logarithmic deviations from scaling in the frequency and
temperature dependent effective transport mass (related
to the imaginary part of the inverse optical conductivity).
Furthermore, the optical conductivity data connects con-
sistently with d.c. measurements of resistivity and ther-
modynamics.

Our paper presents a self-consistent, disorder-averaged
analysis of a two-dimensional Yukawa-Sachdev-Ye-
Kitaev (2d-YSYK) model, which has a spatially random
Yukawa coupling between fermions,  , with a Fermi sur-
face and a nearly-critical scalar field, �. We use meth-
ods similar to those which yield the exact solution of the
zero-dimensional Sachdev-Ye-Kitaev model. Such a 2d-
YSYK model has been argued [7–9] to provide a universal
description of quantum phase transitions in metals, as-
sociated with the condensation of �, in the presence of
impurity-induced ‘Harris’ disorder [10–12] with spatial
fluctuations in the local position of the quantum critical
point. We find results that display all the key charac-
teristics of the optical conductivity and d.c. resistivity
described by Michon et al., as shown in Fig. 3.

Moreover, YSYK models also display instabilities of
the strange metal to superconductivity [13–17], with the
pairing type dependent upon the particular quantum
phase transition being studied. We will examine an insta-
bility to spin-singlet pairing in a simplified model which
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