Quadratic twist of epsilon factor of symmetric cube transfers of modular forms.

Sudipa Mondal

Based on joint work with Dr. Debargha Banerjee \& Dr. Tathagata Mandal

Department of Mathematics, HRI Prayagraj

September 11, 2023
(1) Introduction

(2) Quadratic twists

(3) Symmetric cube transfer

4 Main results

Introduction

- Let F be a number field.
- Consider the ring of adèles
$\mathbb{A}_{F}=\left\{\left(x_{v}\right)_{v} \in \prod_{v \leq \infty} F_{v} \mid x_{v} \in \mathcal{O}_{v}\right.$ for almost all finite $\left.v\right\}$. Here \mathcal{O}_{v} is the ring of integers of F_{v}. Let \mathfrak{p}_{v} be the maximal ideal, $q_{v}=\left|\mathcal{O}_{v} / \mathfrak{p}_{v}\right|$.
- Let χ be a character of $\mathbb{A}_{F}^{\times} / F^{\times}$. Then $\chi=\otimes_{v} \chi_{v}$.
- Let $\phi_{v} \in \widehat{F_{v}}$ be non-trivial. Tate [1950] associated the local ε-factor with the local L-function by:

$$
\varepsilon\left(s, \chi_{v}, \phi_{v}\right)=\frac{\gamma\left(s, \chi_{v}, \phi_{v}\right) L\left(s, \chi_{v}\right)}{L\left(1-s, \chi_{v}^{-1}\right)}
$$

where $\gamma\left(s, \chi_{v}, \phi_{v},\right) \in \mathbb{C}\left(q_{v}^{-s}\right)$.

- $\varepsilon\left(s, \chi_{v}, \phi_{v}\right) \varepsilon\left(1-s, \chi_{v}^{-1}, \phi_{v}\right)=\chi_{v}(-1)$.
- $\varepsilon\left(s, \chi_{v}, \phi_{v}\right)=q_{v}^{(1 / 2-s) n\left(\chi_{v}, \psi_{v}\right)} \varepsilon\left(1 / 2, \chi_{v}, \phi_{v}\right), n\left(\chi_{v}, \psi_{v}\right) \in \mathbb{Z}$.
- $L(s, \chi)=\epsilon(s, \chi) L\left(1-s, \chi^{-1}\right)$.
- Let $a\left(\chi_{v}\right)$ be the smallest positive integer such that $\left.\chi_{v}\right|_{1+p_{v}^{a\left(\chi_{v}\right)}}=1$.
- Let $n\left(\phi_{v}\right) \in \mathbb{Z}$ such that $\left.\phi_{v}\right|_{\mathfrak{p}_{v}^{-n\left(\phi_{v}\right)}}=1$ but $\left.\phi_{v}\right|_{\mathfrak{p}_{v}^{-n\left(\phi_{v}\right)-1}} \neq 1$.
- We have,

$$
\varepsilon\left(\chi_{v}, \phi_{v}\right)=q_{v}^{-\frac{a\left(\chi_{v}\right)}{2}} \chi_{v}(c) \sum_{x \in \frac{\mathcal{O}_{v}^{x}}{1+p_{v}^{a}\left(\chi_{v}\right)}} \chi_{v}^{-1}(x) \phi_{v}\left(\frac{x}{c}\right)
$$

where $c \in F_{v}{ }^{\times}$has valuation $a\left(\chi_{v}\right)+n\left(\phi_{v}\right)$.
Property of ε-factors:
(1) $\varepsilon\left(\chi_{v} \theta_{v}, \phi_{v}\right)=\theta\left(\pi_{v}\right)^{a\left(\chi_{v}\right)+n\left(\phi_{v}\right)} \varepsilon\left(\chi_{v}, \phi_{v}\right)$, where θ_{v} is an unramified character of $F_{v} \times$. The element π_{v} is a uniformizer of F_{v}.
(2) $\varepsilon\left(\operatorname{Ind}_{W_{K}}^{W_{\mathbb{Q}_{p}}} \rho, \phi\right)=\varepsilon\left(\rho, \phi \circ \operatorname{Tr}_{K / \mathbb{Q}_{p}}\right)$, where ρ denotes a multiplicative character of a finite extension K / \mathbb{Q}_{p}.

(1) Introduction

(2) Quadratic twists

(3) Symmetric cube transfer

(4) Main results

- For an odd prime p, set $p^{*}:=\left(\frac{-1}{p}\right) \cdot p$.
- $\mathbb{Q}\left(\sqrt{p^{*}}\right) / \mathbb{Q}$ is ramified only at p.
- Let χ denote the quadratic character attached to $\mathbb{Q}\left(\sqrt{p^{*}}\right)$.
- χ can be identified with a character of the idèle group, i.e., characters $\left\{\chi_{q}\right\}_{q}$ with $\chi_{q}: \mathbb{Q}_{q}^{\times} \rightarrow \mathbb{C}^{\times}$satisfying the following conditions:
(1) For $q \neq p$, the character χ_{q} is unramified and $\chi_{q}(q)=\left(\frac{q}{p}\right)$.
(2) For $q=p, a\left(\chi_{p}\right)=1$ and $\left.\chi\right|_{\mathbb{Z}_{p}^{\times}}$factors through the unique quadratic character of \mathbb{F}_{p}^{\times}with $\chi_{p}(p)=1$.
- Let $f \in S_{k}(N, \epsilon)$ be a cusp form of weight k, level N and nebentypus ϵ. Write $N=p^{N_{p}} N^{\prime}$ with $p \nmid N^{\prime}$.
- Let π_{f} be the automorphic representation of the adèle group $\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$ attached to $f \in S_{k}(N, \epsilon)$. We have

$$
\pi_{f}=\bigotimes \pi_{f, p}
$$

- $\pi_{f, p}$ can be principal series, special or supercuspidal representation.
- Consider the variance number:

$$
\varepsilon_{p}:=\frac{\varepsilon\left(\pi_{f, p} \otimes \chi_{p}\right)}{\varepsilon\left(\pi_{f, p}\right)}
$$

Theorem (A. Pacetti, [1], 2013)

Let $f \in S_{k}(N)$ and $p \mid N$ be an odd prime with $\pi_{f, p}$ be the ramified supercuspidal representation i.e. $\pi_{f, p}=\operatorname{Ind}_{W_{K}}^{W_{\mathbb{Q}_{p}}}(\varkappa)$ with $\left[K / \mathbb{Q}_{p}\right]=2$. Then,
(1) $K=\mathbb{Q}_{p}\left[\sqrt{p^{\star}}\right]$ if $\varepsilon\left(\pi_{f} \otimes \chi_{p}\right)=\chi_{p}\left(N^{\prime}\right) \varepsilon\left(\pi_{f}\right)$.
(2) $K=\mathbb{Q}_{p}\left[\delta \sqrt{p^{\star}}\right]$ if $\varepsilon\left(\pi_{f} \otimes \chi_{p}\right)=-\chi_{p}\left(N^{\prime}\right) \varepsilon\left(\pi_{f}\right)$ where δ is any non-square.

- Banerjee \& Mandal [2020] generalized the results of [1] for arbitrary nebentypus ϵ.

(1) Introduction

(2) Quadratic twists

(3) Symmetric cube transfer

(4) Main results

sym 3 transfer

- Let $\pi=\bigotimes_{p} \pi_{p}$ be a cuspidal automorphic representation of $\mathrm{GL}_{2}\left(\mathbb{A}_{\mathbb{Q}}\right)$.
- For each prime p, let ϕ_{p} be the two dimensional representation of the Weil-Deligne group attached to π_{p}.
- consider the third symmetric power sym ${ }^{3}: \mathrm{GL}_{2} \rightarrow \mathrm{GL}_{4}$ of the standard representation.
- Then $\operatorname{sym}^{3} \circ \phi_{p}$ is a four dimensional representation of the Weil-Deligne group. Using Local Langlands correspondence, this gives an irreducible representation of $\mathrm{GL}_{4}\left(\mathbb{Q}_{p}\right)$, denoted by $\operatorname{sym}^{3}\left(\pi_{p}\right)$.
- Define

$$
\operatorname{sym}^{3}(\pi):=\bigotimes_{p} \operatorname{sym}^{3}\left(\pi_{p}\right)
$$

Due to Kim \& Shahidi (2002), $\operatorname{sym}^{3}(\pi)$ is an automorphic representation of $\mathrm{GL}_{4}\left(\mathbb{A}_{\mathbb{Q}}\right)$.

Supercuspidal types

Let π_{p} be a supercuspidal representation of $\mathrm{Gl}_{2}\left(\mathbb{Q}_{p}\right)$ with p odd. Then $\pi_{p}=\operatorname{Ind}_{W_{K}}^{W_{\mathbb{Q}_{p}}}(\varkappa)$ with $\left[K: \mathbb{Q}_{p}\right]=2$ and $\varkappa \in \widehat{K^{\times}}$which is not trivial on $\operatorname{ker}\left(N_{K / \mathbb{Q}_{p}}\left(K^{\times}\right)\right)$. Then,

$$
\operatorname{sym}^{3}\left(\pi_{p}\right)=\operatorname{Ind}_{W_{K}}^{W_{\mathbb{Q}_{p}}}\left(\varkappa^{3}\right) \oplus \operatorname{Ind}_{W_{K}}^{W_{\mathbb{Q}_{p}}}\left(\varkappa^{2} \varkappa^{\sigma}\right), \quad \sigma \in W_{\mathbb{Q}_{p}} \backslash W_{K} .
$$

We have the following types:

- (Type I): $\operatorname{Ind}_{W_{K}}^{W_{\mathbb{Q}_{p}}}\left(\varkappa^{3}\right)$ is irreducible and it is isomorphic to $\operatorname{Ind}_{W_{K}}^{W_{\mathbb{Q}_{p}}}\left(\varkappa^{2} \varkappa^{\sigma}\right)$.
- (Type II): $\operatorname{Ind}_{W_{K}}^{W_{\mathbb{Q}_{p}}}\left(\varkappa^{3}\right)$ is irreducible and it is not isomorphic to $\operatorname{Ind}_{W_{K}}^{W_{\mathbb{Q}_{P}}}\left(\varkappa^{2} \varkappa^{\sigma}\right)$.
- (Type III): $\operatorname{Ind}_{W_{K}}^{W_{\mathbb{Q}_{p}}}\left(\varkappa^{3}\right)$ is reducible.

Main Object

- Let $f \in S_{k}(N, \epsilon)$ be a newform with $N=p^{N_{p}} N^{\prime}, p \nmid N^{\prime}, \epsilon=\epsilon_{p} \cdot \epsilon^{\prime}$.
- Let $\pi_{f}=\otimes \pi_{f, p}$ be the attached automorphic representation.
- We aim to study:

$$
\varepsilon_{p}:=\frac{\varepsilon\left(\operatorname{sym}^{3}\left(\pi_{f, p}\right) \otimes \chi_{p}\right)}{\varepsilon\left(\operatorname{sym}^{3}\left(\pi_{f, p}\right)\right)}
$$

- f is called p-minimal if the p-part of its level is the smallest among all its twists by Dirichlet character.

(1) Introduction

(2) Quadratic twists

(3) Symmetric cube transfer

4) Main results

(5) References

Proposition (Banerjee, Mandal, -, 2023)

Let f be a p-minimal newform with a_{p} being the p-th Fourier coefficient. Let $\pi_{f, p}$ be a ramified principal series representation.

- Let $p \geq 5$. If $N_{p}>1$, then the number

$$
\varepsilon_{p}=\left\{\begin{array}{lll}
\chi_{p}(c) p^{\frac{3-3 k}{2}} a_{p}^{3}, & \text { if } p \equiv 1 & (\bmod 4), \\
i \chi_{p}(c) p^{\frac{3-3 k}{2}} a_{p}^{3}, & \text { if } p \equiv 3 & (\bmod 4)
\end{array}\right.
$$

where c has valuation $-3\left(N_{p}-1\right)$ satisfying a "certain" property. If $\pi_{f, p}$ is a special representation with $p \geq 3$, then ε_{p} is given by

$$
\varepsilon_{p}=-p^{\frac{8-3 k}{2}} a_{p}^{3} .
$$

Proposition (Banerjee, Mandal, -, 2023)

Let p be an odd prime such that $\pi_{f, p}=\operatorname{Ind}_{W(K)}^{W\left(\mathbb{Q}_{p}\right)}(\varkappa)$, where $\left[K: \mathbb{Q}_{p}\right]=2$. Then, ε_{p} is given as follows:

- Assume that K / \mathbb{Q}_{p} is ramified. For Type I and II representations, we have $\varepsilon_{p}=1$ when $p \geq 5$ or $p=3$ with $a(\varkappa) \equiv a\left(\varkappa^{3}\right)(\bmod 2)$. If $p=3$ with $a(\varkappa) \not \equiv a\left(\varkappa^{3}\right)(\bmod 2)$, then we have

$$
\varepsilon_{3}= \begin{cases}1, & \text { if }\left(3, K / \mathbb{Q}_{3}\right)=1 \\ -1, & \text { if }\left(3, K / \mathbb{Q}_{3}\right)=-1\end{cases}
$$

- Let $\operatorname{sym}^{3}\left(\pi_{f, p}\right)$ be of Type III. This is possible only when $p=3$. If $a\left(\varkappa^{3}\right)>1$ then we have $\varepsilon_{3}=\chi_{3}(d)$ or $-\chi_{3}(d)$ depending upon $\left(3, K / \mathbb{Q}_{3}\right)=1$ or $\left(3, K / \mathbb{Q}_{3}\right)=-1$ respectively. Here, d has valuation $-a\left(\varkappa^{3}\right)+1$ satisfying a "certain" property. Otherwise, $\varepsilon_{3}=1$.

Theorem (Banerjee, Mandal, -, 2023)

Let $\pi_{f, p}=\operatorname{Ind}_{W_{K}}^{W_{\mathbb{Q}_{p}}} \varkappa$ with K / \mathbb{Q}_{p} quadratic. If N_{p} is even, then $K=\mathbb{Q}_{p}\left(\zeta_{p^{2}-1}\right)$ is the unique unramified quadratic extension of \mathbb{Q}_{p}. For $a\left(\epsilon_{p}\right) \neq \frac{N_{p}}{2}$, if $p \geq 5$ then we have the following:
(1) $\operatorname{sym}^{3}\left(\pi_{f, p}\right)$ is of Type I or II if

$$
\varepsilon\left(\operatorname{sym}^{3}\left(\pi_{f}\right) \otimes \chi_{p}\right)=\chi_{p}\left(M^{\prime}\right) \chi_{p}^{\prime}\left(s_{1}\right) \varepsilon\left(\operatorname{sym}^{3}\left(\pi_{f}\right)\right)
$$

(2) $\operatorname{sym}^{3}\left(\pi_{f, p}\right)$ is of Type III if

$$
\varepsilon\left(\operatorname{sym}^{3}\left(\pi_{f}\right) \otimes \chi_{p}\right)=\chi_{p}\left(M^{\prime} s_{2}\right) \chi_{p}^{\prime}\left(s_{3}\right) \varepsilon\left(\operatorname{sym}^{3}\left(\pi_{f}\right)\right)
$$

where M^{\prime} denote the prime-to-p part of $a\left(\operatorname{sym}^{3}\left(\pi_{f}\right)\right)$ and $s_{1}, s_{2}, s_{3} \in K^{\times}$ have valuations $-a(\varkappa)+1,-a(\varkappa)-a\left(\varkappa^{3}\right)+2$ and $-2 a\left(\varkappa^{3}\right)+2$ respectively satisfying "certain" properties.

Theorem (Banerjee, Mandal, —, 2023)

Let $\pi_{f, p}$ be as above. If N_{p} odd, then K / \mathbb{Q}_{p} ramified. Suppose $3 \mid N$ with $a\left(\varkappa^{3}\right) \geq 3$ odd, and $\operatorname{sym}^{3}\left(\pi_{f, 3}\right)$ is of Type I or II, then the corresponding ramified extensions are determined as follows:
(1) $K=\mathbb{Q}_{3}[\sqrt{-3}]$ if $\varepsilon\left(\operatorname{sym}^{3}\left(\pi_{f}\right) \otimes \chi_{3}\right)=\chi_{3}\left(M^{\prime}\right) \varepsilon\left(\operatorname{sym}^{3}\left(\pi_{f}\right)\right)$.
(2) $K=\mathbb{Q}_{3}[\delta \sqrt{-3}]$ if $\varepsilon\left(\operatorname{sym}^{3}\left(\pi_{f}\right) \otimes \chi_{3}\right)=-\chi_{3}\left(M^{\prime}\right) \varepsilon\left(\operatorname{sym}^{3}\left(\pi_{f}\right)\right)$.
where δ is a non-square and M^{\prime} denotes the prime-to-p part of the conductor of $\operatorname{sym}^{3}\left(\pi_{f}\right)$.

- We have similar classification of the ramified extensions when $\operatorname{sym}^{3}\left(\pi_{f, 3}\right)$ is of Type III.

(1) Introduction

(2) Quadratic twists

(3) Symmetric cube transfer

(4) Main results
(5) References

References

[1] A. Pacetti, On the change of root numbers under twisting and applications, Proc. Amer. Math. Soc. 141 (2013), no. 8, 2615-2628.
[2] D. Banerjee and T. Mandal, A note on quadratic twisting of epsilon factors for modular forms with arbitrary nebentypus. Proceedings of the American Mathematical Society 148.4 (2020): 1509-1525.
[3] D. Banerjee, T. Mandal and S. Mondal, Two properties of symmetric cube transfer of a modular form. arXiv preprint arXiv:2304.14555 (2023).

Thank You

