Quadratic twist of epsilon factor of symmetric cube transfers of modular forms.

Sudipa Mondal

Based on joint work with Dr. Debargha Banerjee & Dr. Tathagata Mandal

Department of Mathematics, HRI Prayagraj

September 11, 2023

3 Symmetric cube transfer

Main results

Introduction

- Let F be a number field.
- Let χ be a character of $\mathbb{A}_{F}^{\times}/F^{\times}$. Then $\chi = \otimes_{v} \chi_{v}$.
- Let $\phi_{\nu} \in \widehat{F_{\nu}}$ be non-trivial. Tate [1950] associated the local ε -factor with the local *L*-function by:

$$\varepsilon(s,\chi_{\nu},\phi_{\nu})=\frac{\gamma(s,\chi_{\nu},\phi_{\nu})L(s,\chi_{\nu})}{L(1-s,\chi_{\nu}^{-1})},$$

where
$$\gamma(s, \chi_{v}, \phi_{v},) \in \mathbb{C}(q_{v}^{-s})$$
.
• $\varepsilon(s, \chi_{v}, \phi_{v}) \varepsilon(1 - s, \chi_{v}^{-1}, \phi_{v}) = \chi_{v}(-1)$.
• $\varepsilon(s, \chi_{v}, \phi_{v}) = q_{v}^{(1/2 - s)n(\chi_{v}, \psi_{v})} \varepsilon(1/2, \chi_{v}, \phi_{v}), n(\chi_{v}, \psi_{v}) \in \mathbb{Z}$.
• $L(s, \chi) = \epsilon(s, \chi)L(1 - s, \chi^{-1})$.

- Let $a(\chi_{\nu})$ be the smallest positive integer such that $\chi_{\nu}|_{1+\mathfrak{g}_{\nu}^{\mathfrak{a}(\chi_{\nu})}}=1.$
- Let $n(\phi_{\nu}) \in \mathbb{Z}$ such that $\phi_{\nu}|_{\mathfrak{p}_{\nu}^{-n(\phi_{\nu})}} = 1$ but $\phi_{\nu}|_{\mathfrak{p}_{\nu}^{-n(\phi_{\nu})-1}} \neq 1$.

• We have,

$$\varepsilon(\chi_{\nu},\phi_{\nu}) = q_{\nu}^{-\frac{a(\chi_{\nu})}{2}}\chi_{\nu}(c)\sum_{\substack{x \in \frac{\mathcal{O}_{\nu}^{\times}}{1+\mathfrak{p}_{\nu}^{a(\chi_{\nu})}}}}\chi_{\nu}^{-1}(x)\phi_{\nu}(\frac{x}{c})$$

where $c \in F_{v}^{\times}$ has valuation $a(\chi_{v}) + n(\phi_{v})$.

Property of ε -factors:

- $\varepsilon(\chi_{\nu}\theta_{\nu},\phi_{\nu}) = \theta(\pi_{\nu})^{a(\chi_{\nu})+n(\phi_{\nu})}\varepsilon(\chi_{\nu},\phi_{\nu})$, where θ_{ν} is an unramified character of F_{ν}^{\times} . The element π_{ν} is a uniformizer of F_{ν} .
- **3** $\varepsilon(\operatorname{Ind}_{W_{\kappa}}^{W_{\mathbb{Q}_{\rho}}}\rho,\phi) = \varepsilon(\rho,\phi\circ\operatorname{Tr}_{K/\mathbb{Q}_{\rho}})$, where ρ denotes a multiplicative character of a finite extension K/\mathbb{Q}_{ρ} .

3 Symmetric cube transfer

4 Main results

- For an odd prime p, set $p^* := \left(\frac{-1}{p}\right) \cdot p$.
- $\mathbb{Q}(\sqrt{p^*})/\mathbb{Q}$ is ramified only at p.
- Let χ denote the quadratic character attached to $\mathbb{Q}(\sqrt{p^*})$.
- χ can be identified with a character of the idèle group, i.e., characters $\{\chi_q\}_q$ with $\chi_q : \mathbb{Q}_q^{\times} \to \mathbb{C}^{\times}$ satisfying the following conditions:
 - **(**) For $q \neq p$, the character χ_q is unramified and $\chi_q(q) = \left(\frac{q}{p}\right)$.
 - ② For q = p, a(χ_p) = 1 and χ|_{Z[×]_p} factors through the unique quadratic character of 𝔽[×]_p with χ_p(p) = 1.

- Let f ∈ S_k(N, ε) be a cusp form of weight k, level N and nebentypus
 ε. Write N = p^{N_p}N' with p ∤ N'.
- Let π_f be the automorphic representation of the adèle group $\operatorname{GL}_2(\mathbb{A}_{\mathbb{Q}})$ attached to $f \in S_k(N, \epsilon)$. We have

$$\pi_f = \bigotimes_p \pi_{f,p}.$$

- $\pi_{f,p}$ can be principal series, special or supercuspidal representation.
- Consider the variance number:

$$\varepsilon_{\boldsymbol{p}} := \frac{\varepsilon \left(\pi_{f,\boldsymbol{p}} \otimes \chi_{\boldsymbol{p}}\right)}{\varepsilon \left(\pi_{f,\boldsymbol{p}}\right)}.$$

Theorem (A. Pacetti, [1], 2013)

Let $f \in S_k(N)$ and p|N be an odd prime with $\pi_{f,p}$ be the ramified supercuspidal representation i.e. $\pi_{f,p} = \operatorname{Ind}_{W_K}^{W_{\mathbb{Q}_p}}(\varkappa)$ with $[K/\mathbb{Q}_p] = 2$. Then,

•
$$K = \mathbb{Q}_p[\sqrt{p^*}]$$
 if $\varepsilon(\pi_f \otimes \chi_p) = \chi_p(N')\varepsilon(\pi_f)$.

- $K = \mathbb{Q}_p[\delta \sqrt{p^*}]$ if $\varepsilon(\pi_f \otimes \chi_p) = -\chi_p(N')\varepsilon(\pi_f)$ where δ is any non-square.
 - Banerjee & Mandal [2020] generalized the results of [1] for arbitrary nebentypus ϵ .

${\rm sym}^3$ transfer

- Let $\pi = \bigotimes_{p} \pi_{p}$ be a cuspidal automorphic representation of $\operatorname{GL}_{2}(\mathbb{A}_{\mathbb{Q}})$.
- For each prime p, let ϕ_p be the two dimensional representation of the Weil-Deligne group attached to π_p .
- \bullet consider the third symmetric power sym $^3:{\rm GL}_2\to {\rm GL}_4$ of the standard representation.
- Then $\operatorname{sym}^3 \circ \phi_p$ is a four dimensional representation of the Weil-Deligne group. Using Local Langlands correspondence, this gives an irreducible representation of $\operatorname{GL}_4(\mathbb{Q}_p)$, denoted by $\operatorname{sym}^3(\pi_p)$.

Define

$$\operatorname{sym}^3(\pi) := \bigotimes_p \operatorname{sym}^3(\pi_p).$$

Due to Kim & Shahidi (2002), sym³(π) is an automorphic representation of $GL_4(\mathbb{A}_{\mathbb{Q}})$.

Supercuspidal types

Let π_p be a supercuspidal representation of $\operatorname{Gl}_2(\mathbb{Q}_p)$ with p odd. Then $\pi_p = \operatorname{Ind}_{W_K}^{W_{\mathbb{Q}_p}}(\varkappa)$ with $[K : \mathbb{Q}_p] = 2$ and $\varkappa \in \widetilde{K^{\times}}$ which is not trivial on $\ker(N_{K/\mathbb{Q}_p}(K^{\times}))$. Then,

$$\mathsf{sym}^3(\pi_\rho) = \mathrm{Ind}_{W_{\mathcal{K}}}^{W_{\mathbb{Q}\rho}}(\varkappa^3) \oplus \mathrm{Ind}_{W_{\mathcal{K}}}^{W_{\mathbb{Q}\rho}}(\varkappa^2\varkappa^\sigma), \quad \sigma \in W_{\mathbb{Q}\rho} \backslash W_{\mathcal{K}}.$$

We have the following types:

- (Type I): $\operatorname{Ind}_{W_{\mathcal{K}}}^{W_{\mathbb{Q}_{p}}}(\varkappa^{3})$ is irreducible and it is isomorphic to $\operatorname{Ind}_{W_{\mathcal{K}}}^{W_{\mathbb{Q}_{p}}}(\varkappa^{2}\varkappa^{\sigma}).$
- (Type II): $\operatorname{Ind}_{W_{\mathcal{K}}}^{W_{\mathbb{Q}p}}(\varkappa^3)$ is irreducible and it is not isomorphic to $\operatorname{Ind}_{W_{\mathcal{K}}}^{W_{\mathbb{Q}p}}(\varkappa^2\varkappa^{\sigma}).$
- (Type III): $\operatorname{Ind}_{W_{\mathcal{K}}}^{W_{\mathbb{Q}_{p}}}(\varkappa^{3})$ is reducible.

- Let $f \in S_k(N, \epsilon)$ be a newform with $N = p^{N_p} N', p \nmid N', \epsilon = \epsilon_p \cdot \epsilon'$.
- Let $\pi_f = \otimes \pi_{f,p}$ be the attached automorphic representation.
- We aim to study:

$$\varepsilon_{\boldsymbol{p}} := \frac{\varepsilon \left(\operatorname{sym}^3(\pi_{f,\boldsymbol{p}}) \otimes \chi_{\boldsymbol{p}} \right)}{\varepsilon \left(\operatorname{sym}^3(\pi_{f,\boldsymbol{p}}) \right)}.$$

• *f* is called *p*-minimal if the *p*-part of its level is the smallest among all its twists by Dirichlet character.

September 11, 2023

12/20

3 Symmetric cube transfer

Proposition (Banerjee, Mandal, —, 2023)

Let f be a p-minimal newform with a_p being the p-th Fourier coefficient. Let $\pi_{f,p}$ be a ramified principal series representation.

• Let $p \ge 5$. If $N_p > 1$, then the number

$$\varepsilon_p = \begin{cases} \chi_p(c)p^{\frac{3-3k}{2}}a_p^3, & \text{if } p \equiv 1 \pmod{4}, \\ i\chi_p(c)p^{\frac{3-3k}{2}}a_p^3, & \text{if } p \equiv 3 \pmod{4}, \end{cases}$$

where c has valuation $-3(N_p - 1)$ satisfying a "certain" property. If $\pi_{f,p}$ is a special representation with $p \ge 3$, then ε_p is given by

$$\varepsilon_p = -p^{\frac{8-3k}{2}}a_p^3.$$

Proposition (Banerjee, Mandal, —, 2023)

Let p be an odd prime such that $\pi_{f,p} = \operatorname{Ind}_{W(\mathcal{K})}^{W(\mathbb{Q}_p)}(\varkappa)$, where $[\mathcal{K} : \mathbb{Q}_p] = 2$. Then, ε_p is given as follows:

Assume that K/Q_p is ramified. For Type I and II representations, we have ε_p = 1 when p ≥ 5 or p = 3 with a(x) ≡ a(x³) (mod 2). If p = 3 with a(x) ≢ a(x³) (mod 2), then we have

$$arepsilon_3 = egin{cases} 1, & \textit{if} (3, \mathcal{K}/\mathbb{Q}_3) = 1, \ -1, & \textit{if} (3, \mathcal{K}/\mathbb{Q}_3) = -1. \end{cases}$$

• Let $\operatorname{sym}^3(\pi_{f,p})$ be of Type III. This is possible only when p = 3. If $a(\varkappa^3) > 1$ then we have $\varepsilon_3 = \chi_3(d)$ or $-\chi_3(d)$ depending upon $(3, K/\mathbb{Q}_3) = 1$ or $(3, K/\mathbb{Q}_3) = -1$ respectively. Here, d has valuation $-a(\varkappa^3) + 1$ satisfying a "certain" property. Otherwise, $\varepsilon_3 = 1$.

イロト イポト イヨト イヨト 二日

Theorem (Banerjee, Mandal, —, 2023)

Let $\pi_{f,p} = \operatorname{Ind}_{W_{K}}^{W_{\mathbb{Q}_{p}}} \varkappa$ with K/\mathbb{Q}_{p} quadratic. If N_{p} is even, then $K = \mathbb{Q}_p(\zeta_{p^2-1})$ is the unique unramified quadratic extension of \mathbb{Q}_p . For $a(\epsilon_p) \neq \frac{N_p}{2}$, if $p \geq 5$ then we have the following: • sym³($\pi_{f,p}$) is of Type I or II if $\varepsilon(\operatorname{sym}^3(\pi_f) \otimes \chi_p) = \chi_p(M')\chi'_p(s_1)\varepsilon(\operatorname{sym}^3(\pi_f)).$ 2 sym³($\pi_{f,p}$) is of Type III if $\varepsilon(\operatorname{sym}^3(\pi_f) \otimes \chi_p) = \chi_p(M's_2)\chi'_p(s_3)\varepsilon(\operatorname{sym}^3(\pi_f)).$ where M' denote the prime-to-p part of $a(sym^3(\pi_f))$ and $s_1, s_2, s_3 \in K^{\times}$ have valuations $-a(\varkappa) + 1$, $-a(\varkappa) - a(\varkappa^3) + 2$ and $-2a(\varkappa^3) + 2$ respectively satisfying "certain" properties.

Theorem (Banerjee, Mandal, —, 2023)

Let $\pi_{f,p}$ be as above. If N_p odd, then K/\mathbb{Q}_p ramified. Suppose 3|N with $a(\varkappa^3) \ge 3$ odd, and $\operatorname{sym}^3(\pi_{f,3})$ is of Type I or II, then the corresponding ramified extensions are determined as follows:

• $K = \mathbb{Q}_3[\sqrt{-3}]$ if $\varepsilon(\operatorname{sym}^3(\pi_f) \otimes \chi_3) = \chi_3(M')\varepsilon(\operatorname{sym}^3(\pi_f)).$

where δ is a non-square and M' denotes the prime-to-p part of the conductor of sym³(π_f).

• We have similar classification of the ramified extensions when $\operatorname{sym}^3(\pi_{f,3})$ is of Type III.

< 3 > < 3 >

17 / 20

September 11, 2023

3 Symmetric cube transfer

4 Main results

- A. Pacetti, On the change of root numbers under twisting and applications, Proc. Amer. Math. Soc. 141 (2013), no. 8, 2615–2628.
- [2] D. Banerjee and T. Mandal, A note on quadratic twisting of epsilon factors for modular forms with arbitrary nebentypus. Proceedings of the American Mathematical Society 148.4 (2020): 1509-1525.
- [3] D. Banerjee, T. Mandal and S. Mondal, *Two properties of symmetric cube transfer of a modular form.* arXiv preprint arXiv:2304.14555 (2023).

Thank You

★ B > < B >

æ