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A Few Words on Quantum Ising Model

This is remarkable for a simple model of

the electronic structure of a magnet. Devised in 1920 by Wilhelm Lenz, Ernst Ising’s doctoral supervisor, it was given to Ising
and solved by him in 1925 [3]. Ising solved a one-dimensional model, by way of transfer matrix. The solution is simple, but
unfortunately, there is no phase transition in one-dimension, making the classical one-dimensional Ising model not interesting.
In two- dimensions, we observe a phase transition from a paramagnet —disordered spins, no magnetisation —to a ferromagnet

at temperatures below a critical point. On the other hand, in two-dimensions, the interactions become too complex to solve for
analytically with any ease.
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Motivation

(1). The physics of qguantum Ising model (QIM) has studied
extensively in literature but the physics of strong correlation
for has not explored.

(2). This model Hamiltonian have already been studied from
the perspective of topological phases but the main motivation
of our studyis to explore the physics from the perspective of
correlated quantum many body system.

(3). This model Hamiltonian has three competiting interaction
terms, the most interesting feature of this study is to show
how the behaviour of RG flow lines for these three
competiting interaction and finally leads to the different
emergence phases.



Model Hamiltonian
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Here p i1s the transverse field, A; 1s the two spin interaction
of nearest-neighbour (NN) sites and A, is the three spin
interactions. Thus we term this model Hamiltonian as IgIlm
with three spin interaction.

It is well known to us for qIm, the system is in disorder
quantum phase when the transverse field exceed the FM
coupling, we term this disorder quantum phase as dqpl. The
coupling A, is related with the three sites (i-1, i and i+1 ), the
left (i-1) and right (i+1 ) sites are related with the o, operator
and the middle site (i) is with the o, operator. It is very
clear from this interaction term that next-nearest-neighbour
(NNN) sites are related with the FM interaction with spin
alignment in the Z direction. But NN sites are related with
the XZ interaction, i.e, the spin flipping occurs at the site 1.
This interaction introduce the frustration in the system and
finally leads to the disorder quantum phase.



Another Presentation of Model Hamiltonian
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where o) (o = x, y, z) are the Pauli matrices acting on the site
n of the lattice and we impose periodic boundary conditions
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Bosonized Hamiltonian

H =Hy + % fcos[d Vrd(r)dr—
v f cos[2 Vrd(r)] cos[ Vao(r)]dr

- A f cos[2 Vrg(r)] cos| Vao(r)] (,é6(r))* dr  (2)

where Hy = % [[(0, VK¢(r))*]dr with v = 4. 6(x) is the dual
field of ¢(x) and satisfy the following commutation relation .
(1), 0,6(r" )] = —imd(r — 1').

The bosonized form of the model Hamiltonian consists four
terms. The first term is the Kinetic energy term and the rest
three terms present the sine-Gordon coupling terms. It is to
be noted that the starting Hamiltonian (eq. 1) has no K. term
but it appears after the continuum field theoretical calculation
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The field, ¢. corresponds to the spin fluctuations and & is

). ¢ and 6 represent the bosonic fluctuation of the system.

S* = [cos(2 VaK¢(r)) + (—1)"] CGS[\/%H(;’)] (12)
Sy = [cos(2 VaK¢(r)) + (—1)"] sin| \/%ﬂ(rn (13)

% = (=1)" cos(2 VaKe(r) + , /%&qb(r). (14)

Here K is the Luttinger liquid parameter. The physics of low-dimensional quan-
tum many body condensed matter system is enriched with its
new and interesting emergent behavior. K < 1 and K > 1

and K = 1 characterizes the repulsive, attractive interactions

and non-interacting, respectively

effect of strong correlation on glm and 1gIm through the Lut-
tinger liquid parameter.



Sine-Gordon model Hamiltonian

We notice that the nearest-neighbour (NN) coupling term (.1)
is related with the a single sine-Gordon coupling term of the
field (¢ (x) ). The transverse field is the product of two sine-
Gordon coupling terms of ¢(x) and ¢(x) which are dual to the
each other. But we notice that for the longer range coupling
with three spin interaction is also product of two sine-Gordon
coupling terms augmented with a part of the kinetic energy
term from the field é(x). These extra sine-Gordon coupling
terms for the longer range interaction over the quantum Ising
model give the enrich quantum physics over the qlm.



Renormalization Group Study

our model Hamiltonian contains three strongly relevant and
mutually nonlocal perturbations over the Gaussian (critical)
theory. In such a situation, the strong coupling fixed point is
usually determined by the most relevant perturbation whose
amplitude grows up according to its Gaussian scaling dimen-
sions and it is not much affected by the less relevant coupling
terms. However, this is not the general rule if the operators
exclude each other. In this case, the interplay between the
three competing relevant operators (here u, .1y and A;) are
the three competing relevant operators, which are related with
dual fields #(x) and &(x) can produce a novel quantum phase
transition through a critical point or a critical line ***, There-
fore, the present study based on RG equations will give us
the appropriate results for these model Hamiltonian. Now we
present the RG equations for the present study:



Renormalization Group Equations
for Correlated Quantum Ising Models
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Renormalization Group Equations With Out Transverse
Field
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Benchmarking the results

H=—=\) (90 +0i0in”).
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where g = 3%

A nonzero g allows for tunnelling between the up and the down states of the spin with an
amplitude proportional to g. The eigenvalues of 0,7 are £1 and the corresponding eigen-
states can be labelled as |[T> and []>. This model Hamiltonian is quite well studied in
the quantum condensed matter physics. Now we state the main results very briefly in the

different limits.



(A). In the case of g << 1, the tunnelling between the [T and the ||> states can be
neglected. This leads to a ferromagnetically ordered state in the z-direction with the Zs
symmetry broken. The fundamental excitations away from this ground state correspond
to domain walls between lines of flipped spins. For g = 0. each spin configuration is an
eigenstate of the Hamiltonian as we have already seen in the classical Ising model. As
we increase g to a small but nonzero value, the domain walls become mobile even at zero

temperature. This leads to the development of zero-point motion and quantum kinetics.

(B). In the case of g >> 1, the ground state is an eigenstate of o%,. It is well known the

two eigenstates of o,.

The state where all spins are aligned with the transverse field (i.e. they are all in the
|—>; configuration) corresponds to the ground state of a quantum paramagnet with no
spontaneously broken symmetry. The system can be excited out of the ground state by
flipping spins in the direction opposite to the external field (i.e. into the |<=>,. configuration

). These flipped spins then correspond to quasiparticles which are stationary for g = 1 and
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Fig. 1. (Color online.) This figure shows the behaviour of renormalization
group flow lines for the couplings A; and u (eq. 3) for the different initial

values of K as depicted in figures.

Fig. 2. (Color online.) This figure shows the behaviour of renormalization
group flow lines for the couplings A; and u (eq. 3) for the different initial
values of K as depicted in figures.
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Fig. 3. (Color online.) This figure shows the behaviour of renormalization
group flow lines for the couplings Ay and u (eq. 4) for the different initial
values of K and A, as depicted in the figure.
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Fig. 4. (Color online.) This figure show the behaviour of renormalization
group flow lines for the couplings A; and A, (eq. 4) for the different initial
values of K as depicted in figures.
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Fig. 5. (Color online.) Shows the behaviour of renormalization group flow
lines for the couplings 1> and A; for the different initial values of K and p.
This figure consists of three rows for different initial values of K. We present
the RG flow lines based on eq.4 . The left and right figures are respectively
forpu =0.1 and pu = 0.3.
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Fig. 6. (Color online.) This figure shows the behaviour of renormalization
group flow lines for the couplings A; and u (eq. 4) for the different initial
values of K and A, as depicted in figures.



Scaling Analysis

[t is well known that the critical theory is invariant under
the rescaling. Then the singular part of the free energy density
satisfies the following scaling relations .
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Fig. 7. (Color online.) Shows the results for scaling analysis based on the
equations (6) and (9). The Green, Magenta, Blue, Black and Red lines are
respectively for K = 0.6,0.75,1,1.2 and 1.5.



Results

(1). We have found two emergent quantum disorder
phase. One is due to the transverse field and the other is
due to the three spin interaction term.

(2). Three different kinds of mixed phases due to the
following sources.

(a). Coexistence of transverse field flow and FM coupling.

(b). Coexietence of ferromagnetc coupling and three spin
Interactions.

(C). Coexistence of three spin interactions and transverse
field.

(3). We derive three scaling relations for our model
Hamiltonian. Scaling theory results is consistent with the
results of RG study.



Conclusions

(1). Quantum Ising Chain: Order ferromagnetic phase
to disorder quantum paramagnetic phase transition
occurs only for strongly correlated regime.

(2). Longer Range Quantum Ising Chain: Order
ferromagnetic phase to disorder guantum
paramagnetic phase transition occurs for more
correlated regime.

(3). We have predicted three different regimes of
coexistence phase in three different regime of strongly
correlated phase.

(4). Our analysis of scaling consistent with the results
of quantum field theoretical RG results.



Thank You
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