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Motivation

Motivation of the study is the following: It is well known in the literature of quantum Ising model that the minimal model
of cft is sufficient to describe the central charge behaviour, now the question is it also sufficient to describe the central charge
behaviour for the quantum Ising model with longer range interaction.

This model Hamiltonian has also several gapless quantum critical lines along with multicritical

points, depending on the presence or absence of transverse field. We also raise the question whether there is any relation

between the central charge and quantum criticality and the transverse field.

[n this study we raise the queation whether there 1s any

possibility to find the emergence of quantum Lifshitz transition. There are several examples of cft criticality, we also raise the
question whether there is any possibility non-cft criticality?



The Basic Hamiltonian: Starting Point

-
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Here u is the transverse field, A; 1s the two spin interaction
of nearest-neighbour (NN) sites and A, is the three spin
interactions. Thus we term this model Hamiltonian as IgqIlm
with three spin interaction.



A few more variants of Model Hamiltonian:
(1). Anderson Pseudo-Spin Hamiltonian
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H=—-u Z(l — Zc;rq-} — A E (c;cis —I—c‘;rc{-'_, +h.c)— Az Z (¢;_(Ciy1+cipi1€i1 +h.c), (2)
i—1 i=1 i=2
Performing Jordan-Wigner transformation 6} = 1 —2¢/¢; and 6] = —[];-i(1 —2¢jcj)(ci+¢;)

The model Hamiltonian can be expressed in terms of pseudo spin-vector. The transition can be verified by investigating behavior
of pseudo spin-vector in the parameter space®?%. This model Hamiltonian can be expressed as,

H (k) =z (k).0 3)
The Bloch Hamiltonian of Eq.2, which is a 2 x 2 matrix, can be written as

H (k) = xz(k)o: — xy(k) Oy, @)
where y.(k) = —2A;cosk —2Arcos2k + 2, and ¥y(k) = 24, sink + 24, sin2k. The excitation spectra can be obtained as

Ei = £1/72(k) + 23(k). )
This model supports topological distinct gapped phases (i.e W =0, 1,2) separated by the three quantum critical lines as shown
in Fig.5. The energy gap closes at these quantum critical lines, Ao = u + A, A» = u — A and Ay = —u, obtained for momentum

ko = 47, ko = 0 and kg = cos ' (—A; /24) respectively. The topological angle can be written as ¢y = tan~! (jy,(k)/x.(k)).



(2). Majorana fermion presentation

The model Hamiltonian in Eq. (1) can be written in the
. . . aj+ib; aj—ib;
Majorana basis, using C} =28 ;=2 as

2 J 2
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where a; and bh; are Majorana operators satisfying anti-
commutation relation, yo = —pu, y1 = 41, and y2 = A2. The

Hamiltonian can be translated into the Fourier space as
) =2 012 €. Considering z = ¢* and interpreting
f(k) on the unit circle in a complex plane, the complex

function associated with the Hamiltonian can be written as

N-=1 N-1
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The BDI Hamiltonian is equivalent to a polynomial f(z)

> a tae’™ . Let us now interpret this as a compléx function evaluated on the unit circle,
z = ¢'*. This motivates us to associate a complex function f(z) (essentially a Laurent
series around the origin) to every translation-invariant Hamiltonian in the BDI class:

H=)Y teHoa = f(z2)=) taz®|. (2.4)
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Note that fr = f (Eék): 1.e., the single-particle spectrum and Bogoliubov angle are deter-
mined by the function on the unit circle. However, it is much more powerful to work with

using Fourier transformation, f(k) =Y, o, 7a€*®, with
z = ¢*. The complex function associated with the model
Hamiltonian can be written as,

Q)= ) tat"=—p+hz+ b, (B-3)
a=0.1.2

where for yq 1 2 are respectively —u, A1, and 4,. Here f(z) has
two solutions z; and z» which can be written as,

A+ /A2 +4ul
1o = & VA + A (B-4)
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Some Interrelation of Polynomial function
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Edge modes and criticality from the zeros of f(z). The middle figure
shows the zeros of f(z). The zero zp within the disk (blue) corresponds to an

edge mode (for each edge) with localization length £ = Each zero on

1
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the unit circle (red) implies a massless Majorana field in the low-energy limit
(contributing a central charge ¢ = %}



Generalized Kitaev chains in the BDI class

Hi o6 Q9o & @ flz)=1/z = w=-1
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f(z) instead of fi.. Firstly, note that if the Hamiltonian has finite range, then f(z) is a
polynomial after we separate out the possible pole at the origin, f(z) = ﬁ fpoiy(2). We
can now invoke the fundamental theorem of algebra to conclude that fyaly (2) is completely

determined by its set of zeros {z;}; (up to a global prefactor), i.e.,

f(z) =

z-

‘,f H(z —2). (2.5)

Since t, € R, we have that f(z)* = f(z*), or, equivalently, that a is real and that the zeros
are either real or come in complex-conjugate pairs. Conversely, any set of zeros satisfying
these properties defines a unique model according to Eq. (2.4) (up to a global prefactor).



What is CFT

@ A conformal field theory is a quantum field theory that is invariant
under the conformal group.

@ [he conformal group is the set of transformations of spacetime that
preserve angles (but not necessarily distances).

@ Generally a conformal transformation is a coordinate transformation
that is a local rescaling of the metric.

@ A field theory with rotation, translation, and scale invariance is said
to have conformal invariance. Fixed point theories, such as the free
boson or the free fermion theories (and many interacting theories)
are thus conformal field theories.



CFT and its relation to quantum phase transition and

condensed matter physics

@ A critical point is the point at the end of a phase equilibrium curve
where a continuous phase transition occurs .

H
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@ Examples : The liquid-gas transition of water, or at the Curie
temperature of a ferromagnet.

@ Consider the case of a ferromagnet placed in an external magnetic
field H. In this case T (temparature) is the tunable parameter and

M (magnetization) is the order parameter.



@ As [ approaches some critical temperature T, , thermal fluctuations
become large and the material becomes paramagnetic.

@ Right at the critical point, the correlation length £ — oo i.e, the
corresponding field theory is therefore massless and becomes
invariant under a dilation of the length-scales (Scale invariance) 2.

@ In this regime we must be able to replace the lattice system with an
effective-field theory without a lattice, i.e. we have effectively a
continuum system, a system with these properties is said to be a
conformal field theory 3.

@ [he system with scale invariance will have other spatial
transformations which forms a class of conformal transformation.



e Conformal transformation r — r’ is the one which locally
corresponds to a combination of a translation, rotation and
dilatation by preserving the angles between the lattice vectors .

(a) (b) ) [[]]]

@ Operator Product Expansion (OPE) : For |x; — xp|<< € i.e for local
fields ¢p(x1) and ¢q(x2) one can write the operator algebra as,

oo

1
<bp(X1)¢’q(X2) — Z ng X1 — X2|dp+dq_dr Pr(x2), (1)

r=0

where ¢, is structure constant of operator algebra and dp, dg, d, are

the dimensions of scaling fields ¢,,¢,, ¢, respectively °.



Central Charge

The central charge (c) labels each universality class of the critical
systems.

For 0 < ¢ < 1 the number of primary fields is finite and their

conformal weights are rational numbers which are determined by the
Kac formula.

In ¢ = 1 theory any non-negative coformal weight is allowed and
there exist infinite number of primary fields.

The results for 0 < ¢ < 1 have been obtaind by making use of the
representation theory of the Virasoro algebra. In ¢ = 1 theory, the
representation theory is not powerful enough to specify the theory.

The ¢ =1 theory is the most relevant CFT for the description of 1D
quantum liquids ’.



A Few More Words on CFT

Two dimesional CFT has been developed with the seminal paper of Belavian, Polyakov and Zamolochikov. It has been
proven to be an extremely richness in mathematical physics with three main application in string theory, two-dimensional
critical system and application to mathematics in general and group theory. In the present study, we do the CFT for 2 (= 1+1 )
dimensional critical phenomena. We will see that different kinds of criticality shows in the present study by means of CFT. The
physics of quantum criticality in low dimensional (1+1) quantum many body system can be studied by using conformal field
theory. At the quantum critical point the most important parameter is the central charge. which is related with the quantum
fluctuations at zero temperature. The central charge can be calculated in many ways. At zero temperature it can be calculated
from the zeros of the polynomial of the model Hamiltonian system.

Physical significance of central charge: The central charge counts the number of massless degrees of freedom. For the

gapped system, there are no low energy degrees of freedom and central charge is zero. There are different physical significance
between the integer and fractional central charge. Theories with integer central charge have free field representation. Theories
with half-integer central charge, example of quantum Ising model (2D Ising model ) have a free Majorana representation at the
transition point. But in the present study we will see that for the longer range interaction it is not possible to express/derive the
Dirac equation for Majorana fermions. Theories with fractional central charge other than quantum Ising model is gapped.
A conformal field theory is characterized by a number c called the conformal charge. This number is roughly a measure of the
number of degrees of freedom of the model considered. By convention, the free boson theory has conformal charge ¢ = 1. So
does the free complex fermion. Conformal field theories with conformal charge ¢ < 1 correspond to known critical statistical
models, like the Ising model, solution to be equivalent to a free Majorana fermion). The central charge labels each universality
class of the critical of the theory.



W=1,C=0 — e

W=0,C=0 C=1/2
_'f:u o b_.ﬂ h
W=1,G=0
W=0,C=0
e \ c
C=1
W=2,C=0
/’Cﬂ 2
=
: : B i Y
Ay

Figure 1. Topological phase diagram of model Hamiltonian for it = 1. Line ‘ac’ represents the critical line A3 = u — A (blue
line), line ‘be’ represents the critical line Ap = —u (magenta line) and line ‘ad” represents the critical line Ay = u + 2; (red
line). Points ‘a’ and ‘b’ are multi-critical points (green and black dots respectively) which differentiate between three distinct
gapped phases with W =0, 1,2 and C is the central charge.
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Figure 2. Topological phase diagram of model Hamiltonian for u = 0. line gf represents the critical line Ay = u — A4 line “fd’
represents the critical line A2 = u + 41 (red line). Point “f” is the multicritical which differentiate between three distinct gapped
phases with W =0, 1,2 and C is the central charge.



Unitary representions of Virasoro Algebra: Central
Charge Analysis of Quantum Ising Model

This discrete set of points. where unitary representations of the Virasoro

algebra are not excluded, occur at values of the central charge

] )
= 1 _—— — 3 4.. aaa 4-'3
¢ mi{m 4+ 1) m=5% (4.6a)
(m = 2 is the trivial theory ¢ = 0). To each such value of ¢ there are m(m—1)/2

allowed values of h given by

[(m+1)p— mgr]i —1
dm{m + 1)

hpg(m) =

(4.6b)

where p, g are integers satisfyinge 1l <p<m-1, 1<g<p

Thus we see that the necessary conditions for unitary highest weight repre-
sentations of the Virasoro algebra are (e > 1, h = 0) or (4.6a, b). That the latter
of these two conditions is also sufficient, i.e. that there indeed exist unitary rep-

resentations of the Virasoro algebras for these discrete values of e, h, was shown
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Fig. 6. First few vanishing eurves h = hy ¢(c) in the k. ¢ plane.

While the ¢ < 1 discrete series distinguishes a set of representations of the
Virasoro algebra, it is not obvious that these should be realized by readily con-
structed statistical mechanical model at their eritical points. The first few mem-
bers of the series (4.6a) with m = 3,4, 5,6, i.e. central charge ¢ = %,]—TG,%._ %._
were associated in [18] respectively with the critical points of the Ising model,

tricritical Ising model, 3-state Potts model, and trieritical 3-state Potts model,



How to Calculate Central Charge for longer
range Ising model

The topological property of the system can be captured by the winding number (W) which counts the number of edge modes in
the corresponding gapped or critical phases. The critical properties of the system can be captured from the C which measures
the CFT of the corresponding criticality. Due to the one-to-one correspondence between the Hamiltonian and the associated
complex function f((), the central charge can be obtained using the zeros ({ = 1,2,3) in the complex plane if they are
non-degenerate. Among the zeros of the complex function f(C), that lie on the unit circle carries the information that the
system is at criticality. Therefore, the number of zeros on the unit circle determines the value of C as

1
C= E(numher of zeros on the unit circle). (10)
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Figure 3. This figure present the zeros of the complex function (Eq. 9). Parameter space for this figure is A; = 1, 2, = 1077.
This figure panel consist of three figure for three different values of i . The left, middle and right are for y = 0.8,1 and 1.2
respecively. The upper and lower panel are respectively for A7 = 0 and A1 = 0 line solutions. The bottom panel shows the zero
central charge for the gapped region.



Analysis of Central Charge for Quantum
Critical lines
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Figure 5. This figure present the zeros of the complex function (Eq.9 ). This figure consists of two panels. Upper, middle and

lower panels are respectively for the quantum critical line A» = i + A1, A2 = ¢ — A1 and 2 = —p. For all panels we consider
u=0.
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Figure 6. This figure panel consists of two rows and each panel consists three figures. The upper and lower rows are
respectively for the energy dispersion and the corresponding scaling analysis for that region of parameter space. The left,
middle and right figures are respectively for enegy dispersion of quantum Ising model and quantum Ising model with longer

range interaction. All three figures are at the quantum critical points.



Conformal and non-Conformal Quantum
Criticality

We have already discussed that the f(z) is proportional to the energy dispersion. If f(k) is nondegenerate, the energy dispersion
(e(k)(k —kg)) is a relavistic dispersion. In order to treat the model Hamiltonian system using CFT, Lorentz symmetry has to be
manifest, i.e., it must have a relativistic dispersion and a dynamical critical exponent z = 1. For the case of m degenerate zeros,

it implies a non-linear dispersion £(k) ~ (k — kg)*, here is the breakdown of Lorentz invariance, for this situation CFT can not
be used.



Results for Energy Dispersion and Scaling Relation

Fig.6 present the energy dispersion and the scaling relation for our model Hamiltonian. This figure panel consists of two
rows and each row consists of three figures. The left, right and middle figures are respectively for the three quantum critical
points. This dispersion base on eq. 5. In the upper row, the left panel is for the qlm at the topological quantum phase transition
with W =1 and C = 1/2 (point b), where both the dispersion branches meet at the origin.

The middle figure is for the dispersion is for the point point a (W = 0 and C = 1), It is one of the multicritical point, where
there the dispersion branches meet phase at the origin and also at the Brillouin zone boundary. Thus it has no topological phase
but with integer value of C. The right figure is for the another multicritical point, which is non conformal quantum critical

point, where the physics of CFT is not applicable. One of the most interesting feature we obtain a flat feature of dispersion
close to the origin.

In the lower panel we present the scaling relation of energy dispersion near to the energy dispersion and from that dispersion
we extract the dynamical critical exponent (z =). It reveals from our study that z = 1 is for the left and middle but for the rigt
figure it is 2.

This entails the fact that there is a topological quantum critical point where the Lifshitz universality class with z = 2 and
v = 1/2, between two distinct gapless phases through muticritical point. The Lifshitz transition that emerges in our study only
for the presence of transverse field. At this multicritical point system is in non-CFT criticality. To the best of our knowledge
this is the first study of the existence conformal criticality and non-conformal criticality for this model Hamiltonian system.



Conclusions

(1). We have presented the results of conformal field theory study for quantum
Ising model with longer range interaction in presence and absence of transverse
field.

(2). We have shown explicitly that the central charge is zero for the gapped phase
of the system but finite for gapless quantum critical lines.

(3). The topological properties is the same for the all quantum critical lines with
out transverse field but it is different for a quantum critical line in presence of
transverse field.

(4). We have predicted two different kind of muticritical points, one is conformal
guantum critical point and the other is non-conformal quantum critical points.

(5). We have predicted the existence of quantum Lifshitz transition point.



Thank You
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