
Sumilan Banerjee 

8th Indian Statistical Physics Community Meeting
ICTS, February 2, 2023

Centre for Condensed Matter Theory, Department of Physics,
Indian Institute of Science

Classical limit of measurement-induced transition 
in many-body chaos in integrable and non-integrable 

oscillator chains 



Sibaram Ruidas
(Physics, IISc) 

S. Ruidas & SB, arXiv:2210.03760



2

limit of infinite on-site Hilbert space dimension d = 1,
we find that the entanglement transition is in the perco-
lation universality class, and we compute the exact value
of the universal coe�cient of the logarithm of subsys-
tem size in all nth Rényi entropies for n � 1 from the
exactly known CFT, obtaining the value = 1/6 for the
entanglement of half of the system and open boundary
conditions. This is in contrast to the value of the uni-
versal coe�cient of the logarithm of subsystem size of
the zeroth Rényi entropy computed in the same setting,
as mentioned above, in Ref. 41 using the ‘minimal cut’
method, which was found in that work to be equal to
⇡ 0.27. The fact that these two universal numbers dif-
fer (by about a factor of two) appears to indicate that,
while in the limit of infinite on-site Hilbert space dimen-
sion, the nth Rényi entropies for n � 1 and the zeroth
Rényi entropy S

0

happen to become critical at the same
parameter value (probability of measurement), they de-
scribe rather di↵erent and unrelated properties of the
system. (This is in line with the observation, mentioned
above, that these two quantities become critical at di↵er-
ent parameter values in the generic case of finite on-site
Hilbert space dimension.) The limit of infinite on-site
Hilbert space dimension also allows us to identify the
generic transition for finite on-site Hilbert space dimen-
sion as that generated by a crossover from the percola-
tion conformal field theory by a single (Renormalization
Group) relevant perturbation.

The remainder of this paper is organized as follows: in
section II, we introduce the model of random unitary cir-
cuits with random projective measurements, and explain
how to compute the entanglement entropy using a replica
approach. In section III, we map the calculation of the
entanglement entropy onto a statistical mechanics model,
and discuss the large d limit. Section IV describes the
consequences of conformal invariance for scaling of var-
ious quantities for any d, while section V addresses the
d = 1 limit in detail. Finally, Sec. VI deals with the
nature of the transition at finite d and the close rela-
tion to the entanglement transition [1] in random tensor
networks [1, 48, 49]; and Sec. VII contains concluding
remarks.

II. RANDOM QUANTUM CIRCUITS

We study the discrete-time dynamics of a 1D ‘qudit’
chain. That is, each site of this 1D qudit chain has a local
Hilbert space of dimension d. The discrete-time dynam-
ics we focus on is generated by the quantum circuit with
a “brick-wall” configuration shown Fig. 1 that consists
of random unitary operators and generalized measure-
ments. In Fig. 1, the 1D qudit chain is along the x

direction while the vertical direction represents time (or
discrete time steps). Each green block represents an in-
dependently Haar-random two-site unitary gate that acts
on a pair of neighbouring sites in the 1D qudit chain.

Each of the blue blocks represents a one-site gen-
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Figure 1: Random unitary dynamics of a 1D qudit chain.
The blue circles represent one-site generalized measurements,
while the green blocks represent Haar-random two-site uni-
tary gates that act on pairs of neighbouring sites in the 1D
qudit chain.

eralized measurement. Such generalized measurements
can be most conveniently described using the language
of quantum channels [44, 50], which we review in the
following. In general, a quantum channel is a com-
pletely positive trace-preserving map, which can be de-
scribed by a set M = {M

↵

} of Kraus operators M

↵

(with ↵ = 1, 2, ...). The Kraus operators are normal-
ized according to a generalized normalization conditionP

M

↵

2M w(M
↵

)M†
↵

M

↵

= 1 with w(M
↵
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nel. The left hand side of this normalization condi-
tion can be viewed as the weighted sum of M
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with non-negative weights w(M

↵

). In the following, we
will denote this weighted sum as E
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Given the set M and the weights, the quantum chan-
nel is defined as the map from any density matrix ⇢ to
E
M
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2M M

↵

⇢M

†
↵

. In fact, in the standard definition of
the Kraus operators and their normalization (see [50] for
example), the weights w(M

↵

) are all taken to be 1. Here,
we have made a generalization to non-unity weights and
to the corresponding weighted sum for the convenience of
later discussion. Given the set M (and the weights of the
Kraus operators), the quantum channel can also be un-
derstood as a “probabilistic evolution”. If one starts with
a pure quantum state | i, for every Kraus operatorM

↵

2
M, the quantum channel evolves | i to M

↵

| i
kM

↵

| ik with a

probability of w(M
↵

)kM
↵

| ik2 = w(M
↵

)h |M†
↵

M

↵

| i.
Note that this probability is normalized due to the gen-
eralized normalization condition of the Kraus operators.
Since we only consider one-site generalized measurements
in the quantum circuit shown in Fig. 1, we then restrict
the Kraus operators in M to be localized on the site
where the corresponding blue block is acting on.
The quantum channel description of generalized mea-

surements can easily recover the standard projective mea-
surement. For example, the one-site projective measure-
ment with respect to a (orthonormal) set of basis vec-
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FIG. 4. (a) Entanglement entropy SA(p; |A|, L) with fixed
|A|/L = 1/2, as functions of L, for different values of p.
(b) SA(p; |A|, L) with fixed L = 512, as functions of |A|, for different
values of p. Both plots are on a log-log scale. Notice that curves in
(a) and (b) corresponding to the same value of p < pc has the same
slope, s(p) (see main text).

Here our numerics for the random Clifford circuit sup-
ports a finite pc, consistent with [13,14]. In Fig. 4(a) we
plot the entanglement entropy SA(p; |A| = aL, L) for different
values of p as functions of L, with a fixed a = 1/2. We
find qualitatively distinct behavior of SA below and above
pc ≈ 0.16. For p < pc, the curves asymptote to straight lines
of slope 1 on a log-log scale, suggesting volume-law scaling
of the entanglement entropy, SA(p; |A| = aL, L) = s(p)L. For
p > pc, the curves are saturating to zero slope, suggesting an
area-law scaling, SA(p; |A| = aL, L) = c(p)L0.

In Fig. 4(b) we plot SA(p; |A|, L) as a function of |A| while
fixing L = 512. Similar scaling behavior is observed.

C. Entanglement entropy from stabilizer distribution

For Clifford circuits further information about the nature
of the two phases can be revealed by examining the stabilizer
distributions, as we now discuss. We start by listing several
results regarding the stabilizer formalism [17–20,23]. These
results are also reviewed in Appendix A.

(1) A wave function |ψ⟩ in the Clifford circuit of L qubits
is uniquely characterized by L mutually commuting and in-
dependent Pauli string operators G = {g1, . . . , gL} such that
each one “stabilizes” the wave function, gi|ψ⟩ = |ψ⟩.
Elements of G are called stabilizers. Such a wave function
is called a stabilizer state or codeword. Only stabilizer states
appear in the Clifford circuit.

Being Pauli string operators, the stabilizers have endpoints
where they terminate. Specifically, we define the left and right
endpoints of a stabilizer to be

l(g) = min{x : g acts nontrivially on site x}, (7)

r(g) = max{x : g acts nontrivially on site x}, (8)

where x is the coordinate of the site, which takes values
in {1, 2, . . . , L}. For systems with periodic spatial boundary
conditions, there is an arbitrariness in choosing the origin of
the coordinate system, and there is no absolute distinction
between left and right. However, we note that the functions
l(g) and r(g) are well defined once the origin is chosen and
fixed, which we will always assume to be the case in the rest
of the paper.

(2) The choice of G is not unique. For any stabilizer state,
one can choose G such that there are exactly two stabilizer
endpoints on each site,

ρl(x) + ρr(x) = 2, for all sites x. (9)

We say G is in the clipped gauge [23].
Notice that G is not uniquely fixed by this gauge condition.

(3) Within the clipped gauge, the entanglement entropy
of a contiguous subregion A is given by half the number of
stabilizers that cross either its left or right boundary,

SA = 1
2 #{g ∈ G : [l(g) ∈ A and r(g) ∈ A] or

[l(g) ∈ A and r(g) ∈ A]}. (10)

With periodic spatial boundary conditions, the subregion A
can be either sites {x, x + 1, . . . , x + |A| − 1} when x + |A| !
L + 1, or x, x + 1, . . . , L, 1, 2, . . . , x + |A| − (L + 1) when
x + |A| > L + 1. In the clipped gauge, the entanglement en-
tropy is given solely by the end positions of the stabilizers,
and does not depend on their “internal” contents.

Consider the bigrams of stabilizer endpoints which encode
the “span” of each stabilizer,

B(G) ≡ {(l (g1), r(g1)), . . . , (l(gL ), r(gL ))}. (11)

As shown in Appendix A, for a given wave function this
object is unique, provided G = {g1, . . . , gL} is in the clipped
gauge. Generally there may be many different choices of G
that satisfy the (clipped) gauge condition, which all share
the same bigram. Nevertheless, the bigram fully characterizes
the entanglement entropy of the wave function(s) through the
relation in Eq. (10), being insensitive to the gauge redundancy.
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correlation functions. First, however, we address the toy
model for the transition in depth. While the toy model is in
a different universality class from the generic transition, it
captures many qualitative features of the phase diagram and
the transition remarkably well.
The toy model is an exact description of the dynamics

of the zeroth Rényi entanglement entropy (S0) in a
system with discrete-time dynamics that has a circuit
representation [19].
For circuit dynamics without measurement, the well-

known “minimal-cut” formula gives S0 exactly as a
function of time so long as the dynamics is not fine-tuned
(see Ref. [9] for a rigorous proof in one setting). We show
that the minimal-cut formula still holds exactly when there
are projective measurements—our key insight is that it
should be applied to a network in which some bonds are
“broken” by the presence of a measurement.
The minimal-cut representation of S0 yields an effective

classical optimization problem: finding the optimal cut
through a bond percolation configuration. We use this
mapping to characterize the scaling behavior of the
entanglement (S0) and mutual information (I0) at and on
both sides of the critical point of the toy model, which is at
the bond percolation threshold pc. The growth of entan-
glement in the three regimes is illustrated schematically in
Fig. 2 for a 1þ 1D system initialized in an area-law state.
The logarithmic entanglement growth at pc is a conse-
quence of scale invariance, which also leads to power-law
correlations of a certain type between distant spins. We
show that the three types of growth in Fig. 2 also character-
ize the regimes of the generic problem.
The existence of a transition in the toy model has a very

simple interpretation, which applies in any spatial dimen-
sion d. Namely, when the measurement rate exceeds pc, we
effectively break enough bonds for the circuit to fall apart
into disconnected pieces. Such pieces are disentangled
from each other, and the circuit no longer mediates long-
range correlations.
As we show below, the generic transition occurs at a

value of pc that is smaller than the value suggested by the
dynamics of S0. In other words, as p is increased,
entanglement production ceases well before the circuit
falls apart in the above sense. We diagnose the generic
transition using the von Neumann entanglement entropy
(and higher Rényi entropies). We focus on 1þ 1D spin
chains, where quantum simulations are feasible up to at

least L ¼ 24 using matrix product states [20]. The results
from the toy model guide our analysis of the data from
these systems. Strikingly, many qualitative features of the
toy model continue to hold, and we show clear evidence for
a transition at a finite pc. The universality class of the
transition, however, is distinct from classical percolation, as
we show by computing the correlation length exponent
close to the transition. In particular, as the transition is
approached, the characteristic length scale and timescale
diverge as ξ ∼ jp − pcj−ν and τ ∼ jp − pcj−νz, respectively,
with ν ¼ 2.03ð5Þ and a dynamical exponent z that is
consistent with z ¼ 1. We obtain consistent exponent
estimates for two different models, including a determin-
istic Floquet circuit and a random unitary circuit (each with
random measurements).
The specific models we study all have discrete time

dynamics. While this discretization is important in order for
the dynamics of S0 to be well defined [21] (i.e., for the
construction of the toy model), we do not expect that it will
affect the existence or universality class of the generic
transition that is manifest in physically meaningful quan-
tities (such as the von Neumann entanglement entropy S1 or
the mutual information between separated spins). It is also
possible to consider a continuous quantum measurement
process, which is obtained as a limiting case of very
frequent “weak” measurements [22,23]. The production
of entanglement in this setting has been considered for free
fermions in Ref. [24], where an arbitrarily weak measure-
ment was found to lead to an area-law state. This result was
explained in terms of a quasiparticle picture, making use of
integrability [24]. We conjecture that nonintegrable models
subjected to continuous measurement behave similarly to
the models we study here.
We briefly discuss the outlook for an analytical descrip-

tion of the dynamical transition that we find, making
connections with recent results for random unitary circuits
[9,18,25,26] and random tensor network states [27,28].

FIG. 2. Schematic illustration of entanglement production after
a quench from a product state in 1þ 1D. The growth of bipartite
entanglement entropy between the two semi-infinite halves of an
infinite chain is shown. In the entangling phase (p < pc; upper
curve), the entanglement grows “ballistically” with time. At the
critical point (p ¼ pc; middle curve), the entanglement grows
logarithmically. In the disentangling phase (p > pc; lower
curve), the entanglement saturates to a finite value. (Random
fluctuations are averaged over.)

Disentangling 
phase

Entangling
phase

Critical
dynamics

FIG. 1. Phase diagram as a function of p, the rate at which
measurements are made for each degree of freedom. Arrows
indicate renormalization-group flow.
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tracted from the finite-size scaling of vB differs from those
in the universality classes typically found in stochastic
STs in coupled-map lattices (CML)19,20,23,25,31,32. (iii)
For the stochastic dynamics of the integrable Toda chain,
�L changes non-monotonically with the noise strength,
vanishing for zero noise, as well as above a critical noise;
vB , on the other hand, shows a singular behavior ap-
proaching the integrable limit of zero noise strength.

(a)

(c)

A

B

(b)

FIG. 1. Measurement model and cOTOC: (a) Schematic
of the measurement model, where the positions of the coupled
oscillators (i = 1, . . . , L) on a chain are weakly measured at
time tn by meters prepared in Gaussian states just before the
measurements. (b) Schematic of two initially nearby classi-
cal trajectories, A and B, subjected to identical noise real-
izations. (c) The classical OTOC D(i = 0, t) as a function
of u across the chaos transition for � = 0.10 with u values
0.80 (darkest), 0.60, 0.50, 0.40, 0.35, 0.32 and 0.30 (lightest).
As shown by dashed magenta lines, the cOTOC grows ex-
ponentially (⇠ e2�Lt) for u > uc ' 0.32, whereas it decays
exponentially for u < uc in the synchronized phase.

Quantum measurement model and the semiclassical
limit.— We generalize the well-known model of contin-
uous weak position measurement of a single particle by
Caves, and Milburn52 to the interacting oscillator chains.
The oscillator chain (system) with i = 1, . . . , L oscillators
and the measurement apparatus (meters) are described
by the following time-dependent Hamiltonian,

H(t) = Hs +

X

i,n

�(t� tn)x̂ip̂in (1)

The Hamiltonian of the system is Hs =

P
i(p̂

2
i /2m) +

V ({x̂i}), where x̂i, p̂i are the operators for displace-
ment of the i-th oscillator from the equilibrium posi-

tion and its momentum. We apply periodic boundary
conditions. The potential is V ({xi}) =

P
i v(ri) with

ri = xi+1 � xi. We take (i) v(r) = [(/2)r

2
+ (u/4)r

4
]

for the non-integrable chain with  spring constant and
u the strength of the anharmonicity, and (ii) v(r) =

[(a/b) exp (�br) + ar � (a/b)] for the integrable Toda
chain27–30,53 with parameters a and b. The displacement
xi of the i-th oscillator is weakly measured by the in-th
meter at time t = tn = n⌧ at regular intervals of ⌧ . p̂in

is the momentum operator of the in-th meter, which is
in a Gaussian state  (⇠in) = (⇡�)

�1/4
exp (�⇠2in/2�) at

t

�
n . At tn, the position ⇠in of the meter is projectively

measured and its state collapses to a position state |⇠ini.
The effect of this measurement on the system is described
by an operator  i(⇠in) = (⇡�)

�1/4
exp [�(⇠in � x̂i)

2
/2�]

acting on the system, as described in detail in the Supple-
mentary Material (SM), Sec.S1. In the continuous mea-
surement limit ⌧ ! 0,� ! 1 such that � = �⌧ is kept
fixed52.

The mean momentum and position of the particle jump
by an amount / ⇠in after each measurement52, and they
can wander far away from the initial values at long times.
Thus to incorporate feedback mechanism present in any
realistic measurement set up52 a displacement operator,
Di(⇠in) = exp [(i/~)�⌧⇠inp̂i] is applied on the system af-
ter in-th measurement, where � = c�

p
2~/m�, with

dimensionless coefficient c� . We do not apply a dis-
placement operator for the position, since the oscilla-
tors move on a ring due to the periodic boundary condi-
tion. The feedback mechanism on the momentum leads
to dissipation52, as discussed below.

The density matrix of the system at t

+
n is given by

⇢({⇠}n, t+n ) = M(⇠n)⇢({⇠}n�1, t
+
n�1)M†

(⇠n), which de-
pends on the outcomes of all the measurements {⇠}n till
t

+
n . Here M(⇠n) =

Q
i[Di(⇠in) i(⇠in)] exp (�iHs⌧/~).

For the evolution of an initial pure state, the above
time evolution can be written as a quantum state
diffusion54,55. Here we write the long-time evolution as
a Schwinger-Keldysh (SK) path integral56 for ⌧ ! 0, i.e.
Tr[⇢({⇠(t)})] =

´
Dx exp (iS[{⇠(t)}, x(t)]/~) with the ac-

tion,

S[{⇠}, x] =
ˆ 1

�1
dt

X

s=±
s[{

X

i

m

2

(ẋ

s
i )

2
+m�ẋ

s
i ⇠i

+ (is~/2�)(x

s
i � ⇠i)

2}� V ({xs
i})], (2)

where s = ± denotes two branches of the SK contour56,
ẋi = (dx

s
i/dt). To take the semiclassical limit of small ~,

we rewrite the above path integral in terms of classical
(xc

i ) and quantum components (xq
i ), i.e. x

±
i = x

c
i ± x

q
i .

To capture non-trivial effects of the quantum (xq
i ) fluc-

tuations, which act as noise in the semiclassical limit, we
need to scale � ⇠ ~2 (SM, Sec.S1). Taking the semi-
classical limit in this manner and keeping O(1/

p
~) and

O(1) terms, we find that a Langevin equation describes
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of the measurement model, where the positions of the coupled
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ẋi = (dx

s
i/dt). To take the semiclassical limit of small ~,

we rewrite the above path integral in terms of classical
(xc

i ) and quantum components (xq
i ), i.e. x

±
i = x

c
i ± x

q
i .

To capture non-trivial effects of the quantum (xq
i ) fluc-

tuations, which act as noise in the semiclassical limit, we
need to scale � ⇠ ~2 (SM, Sec.S1). Taking the semi-
classical limit in this manner and keeping O(1/

p
~) and

O(1) terms, we find that a Langevin equation describes

𝑡9(

Meters
H𝜉I9, 𝑝̂I9

𝜓 𝜉I9 ∼ exp −
𝜉I90

2𝜎

2

tracted from the finite-size scaling of vB differs from those
in the universality classes typically found in stochastic
STs in coupled-map lattices (CML)19,20,23,25,31,32. (iii)
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FIG. 1. Measurement model and cOTOC: (a) Schematic
of the measurement model, where the positions of the coupled
oscillators (i = 1, . . . , L) on a chain are weakly measured at
time tn by meters prepared in Gaussian states just before the
measurements. (b) Schematic of two initially nearby classi-
cal trajectories, A and B, subjected to identical noise real-
izations. (c) The classical OTOC D(i = 0, t) as a function
of u across the chaos transition for � = 0.10 with u values
0.80 (darkest), 0.60, 0.50, 0.40, 0.35, 0.32 and 0.30 (lightest).
As shown by dashed magenta lines, the cOTOC grows ex-
ponentially (⇠ e2�Lt) for u > uc ' 0.32, whereas it decays
exponentially for u < uc in the synchronized phase.

Quantum measurement model and the semiclassical
limit.— We generalize the well-known model of contin-
uous weak position measurement of a single particle by
Caves, and Milburn52 to the interacting oscillator chains.
The oscillator chain (system) with i = 1, . . . , L oscillators
and the measurement apparatus (meters) are described
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ẋi = (dx

s
i/dt). To take the semiclassical limit of small ~,

we rewrite the above path integral in terms of classical
(xc

i ) and quantum components (xq
i ), i.e. x

±
i = x

c
i ± x

q
i .

To capture non-trivial effects of the quantum (xq
i ) fluc-

tuations, which act as noise in the semiclassical limit, we
need to scale � ⇠ ~2 (SM, Sec.S1). Taking the semi-
classical limit in this manner and keeping O(1/

p
~) and

O(1) terms, we find that a Langevin equation describes

𝑡9

Apply

S
I

𝛿 𝑡 − 𝑡9 U𝑥I 𝑝̂I9

2

tracted from the finite-size scaling of vB differs from those
in the universality classes typically found in stochastic
STs in coupled-map lattices (CML)19,20,23,25,31,32. (iii)
For the stochastic dynamics of the integrable Toda chain,
�L changes non-monotonically with the noise strength,
vanishing for zero noise, as well as above a critical noise;
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FIG. 1. Measurement model and cOTOC: (a) Schematic
of the measurement model, where the positions of the coupled
oscillators (i = 1, . . . , L) on a chain are weakly measured at
time tn by meters prepared in Gaussian states just before the
measurements. (b) Schematic of two initially nearby classi-
cal trajectories, A and B, subjected to identical noise real-
izations. (c) The classical OTOC D(i = 0, t) as a function
of u across the chaos transition for � = 0.10 with u values
0.80 (darkest), 0.60, 0.50, 0.40, 0.35, 0.32 and 0.30 (lightest).
As shown by dashed magenta lines, the cOTOC grows ex-
ponentially (⇠ e2�Lt) for u > uc ' 0.32, whereas it decays
exponentially for u < uc in the synchronized phase.
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limit.— We generalize the well-known model of contin-
uous weak position measurement of a single particle by
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and the measurement apparatus (meters) are described
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for the non-integrable chain with  spring constant and
u the strength of the anharmonicity, and (ii) v(r) =
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acting on the system, as described in detail in the Supple-
mentary Material (SM), Sec.S1. In the continuous mea-
surement limit ⌧ ! 0,� ! 1 such that � = �⌧ is kept
fixed52.

The mean momentum and position of the particle jump
by an amount / ⇠in after each measurement52, and they
can wander far away from the initial values at long times.
Thus to incorporate feedback mechanism present in any
realistic measurement set up52 a displacement operator,
Di(⇠in) = exp [(i/~)�⌧⇠inp̂i] is applied on the system af-
ter in-th measurement, where � = c�
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2~/m�, with

dimensionless coefficient c� . We do not apply a dis-
placement operator for the position, since the oscilla-
tors move on a ring due to the periodic boundary condi-
tion. The feedback mechanism on the momentum leads
to dissipation52, as discussed below.
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+
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For the evolution of an initial pure state, the above
time evolution can be written as a quantum state
diffusion54,55. Here we write the long-time evolution as
a Schwinger-Keldysh (SK) path integral56 for ⌧ ! 0, i.e.
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FIG. 1. Measurement model and cOTOC: (a) Schematic
of the measurement model, where the positions of the coupled
oscillators (i = 1, . . . , L) on a chain are weakly measured at
time tn by meters prepared in Gaussian states just before the
measurements. (b) Schematic of two initially nearby classi-
cal trajectories, A and B, subjected to identical noise real-
izations. (c) The classical OTOC D(i = 0, t) as a function
of u across the chaos transition for � = 0.10 with u values
0.80 (darkest), 0.60, 0.50, 0.40, 0.35, 0.32 and 0.30 (lightest).
As shown by dashed magenta lines, the cOTOC grows ex-
ponentially (⇠ e2�Lt) for u > uc ' 0.32, whereas it decays
exponentially for u < uc in the synchronized phase.

Quantum measurement model and the semiclassical
limit.— We generalize the well-known model of contin-
uous weak position measurement of a single particle by
Caves, and Milburn52 to the interacting oscillator chains.
The oscillator chain (system) with i = 1, . . . , L oscillators
and the measurement apparatus (meters) are described
by the following time-dependent Hamiltonian,

H(t) = Hs +
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V ({x̂i}), where x̂i, p̂i are the operators for displace-
ment of the i-th oscillator from the equilibrium posi-

tion and its momentum. We apply periodic boundary
conditions. The potential is V ({xi}) =
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i v(ri) with
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for the non-integrable chain with  spring constant and
u the strength of the anharmonicity, and (ii) v(r) =

[(a/b) exp (�br) + ar � (a/b)] for the integrable Toda
chain27–30,53 with parameters a and b. The displacement
xi of the i-th oscillator is weakly measured by the in-th
meter at time t = tn = n⌧ at regular intervals of ⌧ . p̂in

is the momentum operator of the in-th meter, which is
in a Gaussian state  (⇠in) = (⇡�)

�1/4
exp (�⇠2in/2�) at
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n . At tn, the position ⇠in of the meter is projectively

measured and its state collapses to a position state |⇠ini.
The effect of this measurement on the system is described
by an operator  i(⇠in) = (⇡�)

�1/4
exp [�(⇠in � x̂i)

2
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acting on the system, as described in detail in the Supple-
mentary Material (SM), Sec.S1. In the continuous mea-
surement limit ⌧ ! 0,� ! 1 such that � = �⌧ is kept
fixed52.

The mean momentum and position of the particle jump
by an amount / ⇠in after each measurement52, and they
can wander far away from the initial values at long times.
Thus to incorporate feedback mechanism present in any
realistic measurement set up52 a displacement operator,
Di(⇠in) = exp [(i/~)�⌧⇠inp̂i] is applied on the system af-
ter in-th measurement, where � = c�

p
2~/m�, with

dimensionless coefficient c� . We do not apply a dis-
placement operator for the position, since the oscilla-
tors move on a ring due to the periodic boundary condi-
tion. The feedback mechanism on the momentum leads
to dissipation52, as discussed below.

The density matrix of the system at t

+
n is given by
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+
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For the evolution of an initial pure state, the above
time evolution can be written as a quantum state
diffusion54,55. Here we write the long-time evolution as
a Schwinger-Keldysh (SK) path integral56 for ⌧ ! 0, i.e.
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need to scale � ⇠ ~2 (SM, Sec.S1). Taking the semi-
classical limit in this manner and keeping O(1/

p
~) and

O(1) terms, we find that a Langevin equation describes

𝑡9@

Readings
{𝜉I9}

Projective 
measurements

Caves and Milburn, Phys. Rev. A 36 (1987)

2

tracted from the finite-size scaling of vB differs from those
in the universality classes typically found in stochastic
STs in coupled-map lattices (CML)19,20,23,25,31,32. (iii)
For the stochastic dynamics of the integrable Toda chain,
�L changes non-monotonically with the noise strength,
vanishing for zero noise, as well as above a critical noise;
vB , on the other hand, shows a singular behavior ap-
proaching the integrable limit of zero noise strength.

(a)

(c)

A

B

(b)
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of the measurement model, where the positions of the coupled
oscillators (i = 1, . . . , L) on a chain are weakly measured at
time tn by meters prepared in Gaussian states just before the
measurements. (b) Schematic of two initially nearby classi-
cal trajectories, A and B, subjected to identical noise real-
izations. (c) The classical OTOC D(i = 0, t) as a function
of u across the chaos transition for � = 0.10 with u values
0.80 (darkest), 0.60, 0.50, 0.40, 0.35, 0.32 and 0.30 (lightest).
As shown by dashed magenta lines, the cOTOC grows ex-
ponentially (⇠ e2�Lt) for u > uc ' 0.32, whereas it decays
exponentially for u < uc in the synchronized phase.

Quantum measurement model and the semiclassical
limit.— We generalize the well-known model of contin-
uous weak position measurement of a single particle by
Caves, and Milburn52 to the interacting oscillator chains.
The oscillator chain (system) with i = 1, . . . , L oscillators
and the measurement apparatus (meters) are described
by the following time-dependent Hamiltonian,
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u the strength of the anharmonicity, and (ii) v(r) =
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oscillators (i = 1, . . . , L) on a chain are weakly measured at
time tn by meters prepared in Gaussian states just before the
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cal trajectories, A and B, subjected to identical noise real-
izations. (c) The classical OTOC D(i = 0, t) as a function
of u across the chaos transition for � = 0.10 with u values
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As shown by dashed magenta lines, the cOTOC grows ex-
ponentially (⇠ e2�Lt) for u > uc ' 0.32, whereas it decays
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Quantum measurement model and the semiclassical
limit.— We generalize the well-known model of contin-
uous weak position measurement of a single particle by
Caves, and Milburn52 to the interacting oscillator chains.
The oscillator chain (system) with i = 1, . . . , L oscillators
and the measurement apparatus (meters) are described
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chain27–30,53 with parameters a and b. The displacement
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�
n . At tn, the position ⇠in of the meter is projectively

measured and its state collapses to a position state |⇠ini.
The effect of this measurement on the system is described
by an operator  i(⇠in) = (⇡�)

�1/4
exp [�(⇠in � x̂i)

2
/2�]

acting on the system, as described in detail in the Supple-
mentary Material (SM), Sec.S1. In the continuous mea-
surement limit ⌧ ! 0,� ! 1 such that � = �⌧ is kept
fixed52.

The mean momentum and position of the particle jump
by an amount / ⇠in after each measurement52, and they
can wander far away from the initial values at long times.
Thus to incorporate feedback mechanism present in any
realistic measurement set up52 a displacement operator,
Di(⇠in) = exp [(i/~)�⌧⇠inp̂i] is applied on the system af-
ter in-th measurement, where � = c�

p
2~/m�, with

dimensionless coefficient c� . We do not apply a dis-
placement operator for the position, since the oscilla-
tors move on a ring due to the periodic boundary condi-
tion. The feedback mechanism on the momentum leads
to dissipation52, as discussed below.

The density matrix of the system at t

+
n is given by

⇢({⇠}n, t+n ) = M(⇠n)⇢({⇠}n�1, t
+
n�1)M†

(⇠n), which de-
pends on the outcomes of all the measurements {⇠}n till
t

+
n . Here M(⇠n) =

Q
i[Di(⇠in) i(⇠in)] exp (�iHs⌧/~).

For the evolution of an initial pure state, the above
time evolution can be written as a quantum state
diffusion54,55. Here we write the long-time evolution as
a Schwinger-Keldysh (SK) path integral56 for ⌧ ! 0, i.e.
Tr[⇢({⇠(t)})] =

´
Dx exp (iS[{⇠(t)}, x(t)]/~) with the ac-

tion,
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s
i ⇠i

+ (is~/2�)(x

s
i � ⇠i)

2}� V ({xs
i})], (2)

where s = ± denotes two branches of the SK contour56,
ẋi = (dx

s
i/dt). To take the semiclassical limit of small ~,

we rewrite the above path integral in terms of classical
(xc

i ) and quantum components (xq
i ), i.e. x

±
i = x

c
i ± x

q
i .

To capture non-trivial effects of the quantum (xq
i ) fluc-

tuations, which act as noise in the semiclassical limit, we
need to scale � ⇠ ~2 (SM, Sec.S1). Taking the semi-
classical limit in this manner and keeping O(1/

p
~) and

O(1) terms, we find that a Langevin equation describes
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tracted from the finite-size scaling of vB differs from those
in the universality classes typically found in stochastic
STs in coupled-map lattices (CML)19,20,23,25,31,32. (iii)
For the stochastic dynamics of the integrable Toda chain,
�L changes non-monotonically with the noise strength,
vanishing for zero noise, as well as above a critical noise;
vB , on the other hand, shows a singular behavior ap-
proaching the integrable limit of zero noise strength.

(a)

(c)

A

B

(b)

FIG. 1. Measurement model and cOTOC: (a) Schematic
of the measurement model, where the positions of the coupled
oscillators (i = 1, . . . , L) on a chain are weakly measured at
time tn by meters prepared in Gaussian states just before the
measurements. (b) Schematic of two initially nearby classi-
cal trajectories, A and B, subjected to identical noise real-
izations. (c) The classical OTOC D(i = 0, t) as a function
of u across the chaos transition for � = 0.10 with u values
0.80 (darkest), 0.60, 0.50, 0.40, 0.35, 0.32 and 0.30 (lightest).
As shown by dashed magenta lines, the cOTOC grows ex-
ponentially (⇠ e2�Lt) for u > uc ' 0.32, whereas it decays
exponentially for u < uc in the synchronized phase.
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acting on the system, as described in detail in the Supple-
mentary Material (SM), Sec.S1. In the continuous mea-
surement limit ⌧ ! 0,� ! 1 such that � = �⌧ is kept
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by an amount / ⇠in after each measurement52, and they
can wander far away from the initial values at long times.
Thus to incorporate feedback mechanism present in any
realistic measurement set up52 a displacement operator,
Di(⇠in) = exp [(i/~)�⌧⇠inp̂i] is applied on the system af-
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dimensionless coefficient c� . We do not apply a dis-
placement operator for the position, since the oscilla-
tors move on a ring due to the periodic boundary condi-
tion. The feedback mechanism on the momentum leads
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For the evolution of an initial pure state, the above
time evolution can be written as a quantum state
diffusion54,55. Here we write the long-time evolution as
a Schwinger-Keldysh (SK) path integral56 for ⌧ ! 0, i.e.
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Δ = 𝜎𝜏Limit of continuous weak measurement

𝜎 → ∞, 𝜏 → 0 with Δ finite
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with the partition function

Z = Tr[exp (−βH )] (14)

and inverse temperature β = 1/T (kB = 1). Inserting the iden-
tity operator

∫
d2c|c⟩⟨c| = I in the coherent state basis, we get

χN (ξ) = Z−1
∫ 1∏

n=0

d2cn⟨−c0|e−βH |c1⟩⟨c1|DN (ξ)|c0⟩, (15)

with d2cn =
∏

i dc̄indcin.

Using Eq. (6), the matrix element for the displacement
operator is easily evaluated as

⟨c1|DN (ξ)|c0⟩ = exp

(
∑

i∈A

c̄i,1ξi − ξ̄ici,0

)

⟨c1|c0⟩. (16)

Finally, following the standard methodology [36] of
fermionic coherent state, e.g., evaluating ⟨ − c0|e−βH |c1⟩ via
Trotter decomposition β = Nτ%τ and taking the continuum
limit Nτ → ∞,%τ → 0, we get

χN (ξ) = Z−1
∫

D(c̄, c) exp

[

−
∫ β

0
dτ

{
∑

i

c̄i(τ )∂τ ci(τ ) + H (c̄i(τ ), ci(τ )) −
∑

i∈A

c̄i(τ )δ(τ+)ξi +
∑

i∈A

ξ̄iδ(τ )ci(τ )

}]

, (17)

as the path-integral representation of the characteristic func-
tion. The above equation offers a significant advantage over
the usual field-theoretic formalism [1–3] used to compute
Rényi entropy. The imaginary-time boundary condition for
the Grassmann fields ci(τ ) and c̄i(τ ) are still antiperiodic, i.e.,
ci(τ + β ) = −ci(τ ), irrespective of whether i belongs to the
region A. Instead, the distinction between subsystem A and the
rest of the system is encoded by the auxiliary fields ξ which
only couple with the fields ci(τ ) and c̄i(τ ) for i ∈ A. Under
time discretization, relevant for the numerical implementation
discussed later, we have

c̄i(τ )∂τ ci(τ ) = c̄i,n
(ci,n − ci,n−1)

%τ

δ(τ+) = 1
%τ

δn,1, δ(τ ) = 1
%τ

δ0,n, (18)

where n denotes the nth time index.

2. Path integral for nonequilibrium evolution

The density matrix, at a time t , evolving under a time-
dependent Hamiltonian H (t ) is given by

ρ(t ) = U (t, t0)ρ0U (t0, t ), (19)

where ρ0 is the initial density matrix at time t0. The operator
U (t1, t2) is the unitary evolution operator associated with the
Hamiltonian H (t ) and defined as

U (t1, t2) =
{

T
[
exp

(
−i

∫ t2
t1

dt H (t )
)]

t1 ! t2
T̃
[
exp

(
−i

∫ t2
t1

dt H (t )
)]

t1 < t2
, (20)

where T and T̃ are the time-ordering and anti-time-ordering
operators respectively. We use Schwinger-Keldysh closed
time-contour formalism [37,38] to obtain a path-integral rep-
resentation for the Rényi entropy, e.g., S(2)(t ), which is now
time dependent and given by

e−S(2)
A (t ) =

∫

ξ,η∈A
d2(ξ, η) fN (ξ, η)χN (ξ, t )χN (η, t ). (21)

Here we have rewritten the trace identity [Eq. (7)] (see Ap-
pendix A) to define the time-dependent characteristic function

as

χN (ξ, t ) = Tr[DN (ξ)ρ(t )] = Tr[U (t0, t )DN (ξ)U (t, t0)ρ0],
(22)

for the sake of convenience in constructing the path-integral
representation.

As in the standard Schwinger-Keldysh closed-time contour
formalism [37,38], the last line in Eq. (22) may be interpreted,
from right to left, as starting from an initial density matrix
ρ0, evolving forward in time [represented by + branch in
Fig. 1(a)] by U (t, t0) from t0 to t , applying fermionic source
fields ξ in region A, through DN (ξ), at time t and then go-
ing back to t0 via the backward time-evolution [− branch in
Fig. 1(a)] U (t0, t ). We refer to the closed-time contour with
the symbol C and use a contour variable z, which takes values
(t,+), (t,−) at time t for the +, − branches. As done often
in the Schwinger-Keldysh formalism, the contour is extended
to +∞ [see Fig. 1]. We incorporate this contour extension in
our expression for the characteristic function:

χN (ξ, t ) = Tr[U (t0, t )U (t,∞)U (∞, t )DN (ξ)U (t, t0)ρ0].
(23)

Again following standard route [36,37], as in the thermal
equilibrium case, we obtain a path-integral representation for

FIG. 1. Closed time contours (CTCs): (a) The Schwinger-
Keldysh contour, for an arbitrary initial density matrix ρ0, starting
at time t0 extending to +∞ and returning back to t0. The two
branches represent the forward (+) and backward (−) evolution of
time respectively. (b) The modified contour for an initial density
matrix picked from a thermal ensemble, i.e., ρ0 ∼ exp(−βH ). The
exp(−βH ) term is incorporated into the contour as an evolution
in imaginary time, represented by the additional vertical branch of
length β.
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Schwinger-Keldysh path integral
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Expand in ℏ while scaling Δ ∼ ℏ0

Semiclassical limit, small ℏ

⇒ Stochastic Langevin equation
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Integrable and non-integrable anharmonic chains of oscillators

Two models:

1. Non-integrable model
Anharmonic coupled oscillators

𝑉 𝑥I =S
I

𝑘
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2. Integrable model
Toda chain
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Can one meaningfully define chaos in the presence of noise?
System is randomly kicked at each instant of time.

Take exactly the same noise realizations for the two copies 
𝜂I' 𝑡 = 𝜂I� 𝑡 ∀𝑡

Momentum OTOC

𝐷 𝑖, 𝑡 = 𝑝I' 𝑡 − 𝑝I� 𝑡
0

|,{�}
with perturbation at 𝑖 = 0, 𝑡 = 0

Ø Thermal initial condition at temperature 𝑇 is generated using Langevin dynamics
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𝜂'(𝑡0)

0 1−1
𝑥I' 0 − 𝑥I� 0 = 𝜀𝛿I,<

Noise strength, 𝛾 ≠ 0
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FIG. S3. Lyapunov exponent extraction: We extract the Lyapunov exponent by fitting the 0-th site decorrelation function
with an exponential growth D(i = 0, t) ⇠ e

2�Lt at di↵erent values of u across the transition. Lyapunov exponents corresponding
to di↵erent u values are shown in the main text.

Non-integrable model,   Anharmonic oscillators

𝑉 𝑥I =S
I

𝑘
2 𝑥I@) − 𝑥I 0 +

𝑢
4 𝑥I@) − 𝑥I �

Noise-induced chaotic to non-chaotic transition

o Harmonic limit (𝑢 = 0) is 
non-chaotic.

o Transition from exponential 
growth to exponential decay 
as a function of decreasing 𝑢
or 𝑢/𝛾

o 𝜆2 > 0 → 𝜆2 < 0 for 𝑢 < 𝑢7 𝛾 or 𝛾 < 𝛾7 𝑢

Lyapunov exponent

OTOC 𝐷 𝑖, 𝑡 = 𝑝I' 𝑡 − 𝑝I� 𝑡
0

|,{�}

0 1−1
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FIG. S5. Transition in the light cone for the non-integrable chain: Chaotic to non-chaotic transition in terms of the
light cone for cOTOC (color). Above plots are shown with u varied and the noise strength � = 0.10 fixed for system size
L = 1024. The critical value of interaction is uc = 0.32, below which the transition to the non-chaotic phase takes place.

𝑢 > 𝑢7

𝑢 < 𝑢7

Light cone and butterfly velocity

o Light cone is destroyed for 𝑢 < 𝑢7 𝛾 .
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(a)

(b)

(c)

FIG. 3. Butterfly velocity and finite-size scaling in the
non-integrable chain: (a) vB as a function of u for different
noise strength �. (b) The system size (L) dependence of vB(u)
is shown for � = 0.08 in the inset, and the finite-size scaling
collapse is shown in the main panel with exponents �v = 1.04
and ⌫ = 0.27 for uc = 0.24. (c) vB as a function of � for
u = 1.0 for different Ls.

light cone becomes progressively ill-defined and we could
not extract vB all the way up to the transition. Un-
like �L, vB shows perceptible and systematic L depen-
dence [Fig.3(b)(inset)], especially for the transition as
function of u. Thus we perform a finite-size scaling
analysis of the data for � = 0.08, where we collapse
the data for different L and �u = (u � uc) > 0 using
vB(u, L) = L

��vF((�u)L

1/⌫
). Here F(x) is a scaling

function (SM, Sec.S5). Reasonably, good scaling collapse
is obtained with �v ' 1.03±0.03 and ⌫ ' 0.30±0.05, for
the range uc = 0.21�0.25, which is close to the uc ' 0.25

obtained from �L in Fig.2(c). The scaling form implies
that for L ! 1, vB ⇠ (�u)

� with � = ⌫�v ' 0.28,
and a correlation length ⇠ diverges as (�u)

�⌫ in the
chaotic phase. The correlation length exponent ⌫ ' 0.3

is different from that for the usual universality classes of
STs, such as multiplicative noise or directed percolation,
found in earlier studies in CMLs19,20,23,25,31,32, cellular
automaton33 and kinetically constrained model34,35. We
note that exponents different from the known universal-
ity classes have been found for some cases in previous
works on CMLs as well20.

The dynamical transition in the stochastic evolution
of a non-integrable oscillator chain is not seen in the
usual dynamical properties of a single trajectory. It can
only be detected through many-body chaos by comparing
two trajectories. To reconfirm that a single trajectory is
oblivious to the chaos transition, we compute the average
mean-square displacement (MSD) for the trajectories, i.e.
h�q

2
(t)i = (1/N)

P
ih[xi(t)� xi(0)]

2i (SM, Sec.S6). For
� = 0, in the harmonic chain (u = 0) with periodic

boundary condition, h�q

2
(t)i ⇠ t exhibits a diffusive

behaviour as shown in ref.59. The diffusive behaviour
persists for u 6= 0 and � = 0. However, turning on � 6= 0,
dynamics becomes subdiffusive with h�q

2
(t)i ⇠

p
t even

for u = 0. This is well understood in the context of
monomer subdiffusion in polymers60. Again, for u 6= 0

this subdiffusive behavior remains without any change
across the ST seen via many-body chaos.

We now compare the many-body chaos in the non-
integrable chain with that in the integrable classical Toda
chain. The results for �L and vB as a function of � for
the Toda chain with a = 0.07 and b = 15.0 are shown
in Figs. 4(a) and (b) (see SM, Sec.S4 for more details).
As expected, the integrable limit with � = 0 does not
show any exponential growth, implying �L = 0. How-
ever, the cOTOC still exhibits ballistic spreading in this
limit (Fig.S7, SM), yielding a non-zero vB as shown in
Fig.4(b).

As soon as � becomes nonzero, the dynamics be-
comes chaotic with both exponential growth and ballistic
spreading of cOTOC. As shown in Figs.4(a) and (b), the
extracted �L increases57,61 rapidly as �

0.3 and vB ex-
hibits a jump near the integrable limit with increasing
�. Thus integrable limit appears singular with respect
to vB for � ! 0

+. Further increasing �, vB monotoni-
cally decreases and approaches zero at a critical � = �c,
indicating a transition to a non-chaotic phase. In con-
trast, �L shows a non-monotonic dependence on �, with
a maximum at an intermediate �. Nevertheless, �L even-
tually vanishes at �c, becoming negative for � > �c, as in
the non-integrable model. Thus, the noise/dissipation,
though initially making the integrable model chaotic,
eventually destroy chaos due to the stochastic synchro-
nization. The fact that �L = 0 for � = 0 and � > �c, and
�L > 0 for small � due to the breaking of intigribility57,61,
dictates that �L(�) is non-monotonic.

FIG. 4. Transitions in many-body chaos in Toda
model: (a) Lyapunov exponent �L and (b) butterfly velocity
vB as function of noise strength � for different system sizes.
For � ! 0, �L ⇠ �0.26 as shown by the dashed line in (a).
The shaded region in (a) corresponds to �L < 0. The chaos
transition occurs around �c ' 3.30 (dashed line) for both �L

and vB .

Discussions.— In summary, we show that the dynam-
ics of quantum particles under continuous weak position
measurements maps to standard stochastic Langevin evo-
lution in the semiclassical limit of small ~. The Langevin
dynamics for non-integrable and integrable chains, re-

Butterfly velocity

o 𝑣� → 0 for 𝑢 ≲ 𝑢7 𝛾 .



Dynamical transition and finite-size scaling
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FIG. 3. Butterfly velocity and finite-size scaling in the
non-integrable chain: (a) vB as a function of u for different
noise strength �. (b) The system size (L) dependence of vB(u)
is shown for � = 0.08 in the inset, and the finite-size scaling
collapse is shown in the main panel with exponents �v = 1.04
and ⌫ = 0.27 for uc = 0.24. (c) vB as a function of � for
u = 1.0 for different Ls.

light cone becomes progressively ill-defined and we could
not extract vB all the way up to the transition. Un-
like �L, vB shows perceptible and systematic L depen-
dence [Fig.3(b)(inset)], especially for the transition as
function of u. Thus we perform a finite-size scaling
analysis of the data for � = 0.08, where we collapse
the data for different L and �u = (u � uc) > 0 using
vB(u, L) = L

��vF((�u)L

1/⌫
). Here F(x) is a scaling

function (SM, Sec.S5). Reasonably, good scaling collapse
is obtained with �v ' 1.03±0.03 and ⌫ ' 0.30±0.05, for
the range uc = 0.21�0.25, which is close to the uc ' 0.25

obtained from �L in Fig.2(c). The scaling form implies
that for L ! 1, vB ⇠ (�u)

� with � = ⌫�v ' 0.28,
and a correlation length ⇠ diverges as (�u)

�⌫ in the
chaotic phase. The correlation length exponent ⌫ ' 0.3

is different from that for the usual universality classes of
STs, such as multiplicative noise or directed percolation,
found in earlier studies in CMLs19,20,23,25,31,32, cellular
automaton33 and kinetically constrained model34,35. We
note that exponents different from the known universal-
ity classes have been found for some cases in previous
works on CMLs as well20.

The dynamical transition in the stochastic evolution
of a non-integrable oscillator chain is not seen in the
usual dynamical properties of a single trajectory. It can
only be detected through many-body chaos by comparing
two trajectories. To reconfirm that a single trajectory is
oblivious to the chaos transition, we compute the average
mean-square displacement (MSD) for the trajectories, i.e.
h�q

2
(t)i = (1/N)

P
ih[xi(t)� xi(0)]

2i (SM, Sec.S6). For
� = 0, in the harmonic chain (u = 0) with periodic

boundary condition, h�q

2
(t)i ⇠ t exhibits a diffusive

behaviour as shown in ref.59. The diffusive behaviour
persists for u 6= 0 and � = 0. However, turning on � 6= 0,
dynamics becomes subdiffusive with h�q

2
(t)i ⇠

p
t even

for u = 0. This is well understood in the context of
monomer subdiffusion in polymers60. Again, for u 6= 0

this subdiffusive behavior remains without any change
across the ST seen via many-body chaos.

We now compare the many-body chaos in the non-
integrable chain with that in the integrable classical Toda
chain. The results for �L and vB as a function of � for
the Toda chain with a = 0.07 and b = 15.0 are shown
in Figs. 4(a) and (b) (see SM, Sec.S4 for more details).
As expected, the integrable limit with � = 0 does not
show any exponential growth, implying �L = 0. How-
ever, the cOTOC still exhibits ballistic spreading in this
limit (Fig.S7, SM), yielding a non-zero vB as shown in
Fig.4(b).

As soon as � becomes nonzero, the dynamics be-
comes chaotic with both exponential growth and ballistic
spreading of cOTOC. As shown in Figs.4(a) and (b), the
extracted �L increases57,61 rapidly as �

0.3 and vB ex-
hibits a jump near the integrable limit with increasing
�. Thus integrable limit appears singular with respect
to vB for � ! 0

+. Further increasing �, vB monotoni-
cally decreases and approaches zero at a critical � = �c,
indicating a transition to a non-chaotic phase. In con-
trast, �L shows a non-monotonic dependence on �, with
a maximum at an intermediate �. Nevertheless, �L even-
tually vanishes at �c, becoming negative for � > �c, as in
the non-integrable model. Thus, the noise/dissipation,
though initially making the integrable model chaotic,
eventually destroy chaos due to the stochastic synchro-
nization. The fact that �L = 0 for � = 0 and � > �c, and
�L > 0 for small � due to the breaking of intigribility57,61,
dictates that �L(�) is non-monotonic.

FIG. 4. Transitions in many-body chaos in Toda
model: (a) Lyapunov exponent �L and (b) butterfly velocity
vB as function of noise strength � for different system sizes.
For � ! 0, �L ⇠ �0.26 as shown by the dashed line in (a).
The shaded region in (a) corresponds to �L < 0. The chaos
transition occurs around �c ' 3.30 (dashed line) for both �L

and vB .

Discussions.— In summary, we show that the dynam-
ics of quantum particles under continuous weak position
measurements maps to standard stochastic Langevin evo-
lution in the semiclassical limit of small ~. The Langevin
dynamics for non-integrable and integrable chains, re-

𝛿𝑢 = 𝑢 − 𝑢7 > 0

𝑣� 𝑢, 𝐿 = 𝐿(
�
�ℱ(𝛿𝑢 𝐿)/�)

𝑣� ∼ 𝛿𝑢 �

𝜉 ∼ 𝛿𝑢 (�

𝛽 ≃ 0.28, 𝜈 ≃ 0.3

o The transition shows critical scaling.

o The critical exponents do not match with known universality classes 
like directed percolation (DP) or multiplicative noise (MN) 

Recent works on chaotic transition in classical systems
Willsher et al. PRB (2022); Deger et al. PRLs (2022)   

- DP universality class  



Integrable model

Noise-induced chaotic to non-chaotic transitions in Toda chain

𝑉 𝑥I =S
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𝑎
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o 𝜆2 → 0, 𝑣� → large in the 
integrable limit 𝛾 → 0.

o 𝜆2, 𝑣� → 0 for 𝛾 > 𝛾7.

Lyapunov exponent

Butterfly velocity

o Weak noise induces weak chaos in 
integrable model

Lam and Kurchan, J. Stat. Phys. 156 
(2014)



Summary and conclusion

o Semiclassical limit of a model of continuous weak 
measurements

⇒ Stochastic Langevin equation
noise/dissipation ∝ “measurement strength”

2

tracted from the finite-size scaling of vB differs from those
in the universality classes typically found in stochastic
STs in coupled-map lattices (CML)19,20,23,25,31,32. (iii)
For the stochastic dynamics of the integrable Toda chain,
�L changes non-monotonically with the noise strength,
vanishing for zero noise, as well as above a critical noise;
vB , on the other hand, shows a singular behavior ap-
proaching the integrable limit of zero noise strength.

(a)

(c)

A

B

(b)

FIG. 1. Measurement model and cOTOC: (a) Schematic
of the measurement model, where the positions of the coupled
oscillators (i = 1, . . . , L) on a chain are weakly measured at
time tn by meters prepared in Gaussian states just before the
measurements. (b) Schematic of two initially nearby classi-
cal trajectories, A and B, subjected to identical noise real-
izations. (c) The classical OTOC D(i = 0, t) as a function
of u across the chaos transition for � = 0.10 with u values
0.80 (darkest), 0.60, 0.50, 0.40, 0.35, 0.32 and 0.30 (lightest).
As shown by dashed magenta lines, the cOTOC grows ex-
ponentially (⇠ e2�Lt) for u > uc ' 0.32, whereas it decays
exponentially for u < uc in the synchronized phase.

Quantum measurement model and the semiclassical
limit.— We generalize the well-known model of contin-
uous weak position measurement of a single particle by
Caves, and Milburn52 to the interacting oscillator chains.
The oscillator chain (system) with i = 1, . . . , L oscillators
and the measurement apparatus (meters) are described
by the following time-dependent Hamiltonian,

H(t) = Hs +

X

i,n

�(t� tn)x̂ip̂in (1)

The Hamiltonian of the system is Hs =

P
i(p̂

2
i /2m) +

V ({x̂i}), where x̂i, p̂i are the operators for displace-
ment of the i-th oscillator from the equilibrium posi-

tion and its momentum. We apply periodic boundary
conditions. The potential is V ({xi}) =

P
i v(ri) with

ri = xi+1 � xi. We take (i) v(r) = [(/2)r

2
+ (u/4)r

4
]

for the non-integrable chain with  spring constant and
u the strength of the anharmonicity, and (ii) v(r) =

[(a/b) exp (�br) + ar � (a/b)] for the integrable Toda
chain27–30,53 with parameters a and b. The displacement
xi of the i-th oscillator is weakly measured by the in-th
meter at time t = tn = n⌧ at regular intervals of ⌧ . p̂in

is the momentum operator of the in-th meter, which is
in a Gaussian state  (⇠in) = (⇡�)

�1/4
exp (�⇠2in/2�) at

t

�
n . At tn, the position ⇠in of the meter is projectively

measured and its state collapses to a position state |⇠ini.
The effect of this measurement on the system is described
by an operator  i(⇠in) = (⇡�)

�1/4
exp [�(⇠in � x̂i)

2
/2�]

acting on the system, as described in detail in the Supple-
mentary Material (SM), Sec.S1. In the continuous mea-
surement limit ⌧ ! 0,� ! 1 such that � = �⌧ is kept
fixed52.

The mean momentum and position of the particle jump
by an amount / ⇠in after each measurement52, and they
can wander far away from the initial values at long times.
Thus to incorporate feedback mechanism present in any
realistic measurement set up52 a displacement operator,
Di(⇠in) = exp [(i/~)�⌧⇠inp̂i] is applied on the system af-
ter in-th measurement, where � = c�

p
2~/m�, with

dimensionless coefficient c� . We do not apply a dis-
placement operator for the position, since the oscilla-
tors move on a ring due to the periodic boundary condi-
tion. The feedback mechanism on the momentum leads
to dissipation52, as discussed below.

The density matrix of the system at t

+
n is given by

⇢({⇠}n, t+n ) = M(⇠n)⇢({⇠}n�1, t
+
n�1)M†

(⇠n), which de-
pends on the outcomes of all the measurements {⇠}n till
t

+
n . Here M(⇠n) =

Q
i[Di(⇠in) i(⇠in)] exp (�iHs⌧/~).

For the evolution of an initial pure state, the above
time evolution can be written as a quantum state
diffusion54,55. Here we write the long-time evolution as
a Schwinger-Keldysh (SK) path integral56 for ⌧ ! 0, i.e.
Tr[⇢({⇠(t)})] =

´
Dx exp (iS[{⇠(t)}, x(t)]/~) with the ac-

tion,

S[{⇠}, x] =
ˆ 1

�1
dt

X

s=±
s[{

X

i

m

2

(ẋ

s
i )

2
+m�ẋ

s
i ⇠i

+ (is~/2�)(x

s
i � ⇠i)

2}� V ({xs
i})], (2)

where s = ± denotes two branches of the SK contour56,
ẋi = (dx

s
i/dt). To take the semiclassical limit of small ~,

we rewrite the above path integral in terms of classical
(xc

i ) and quantum components (xq
i ), i.e. x

±
i = x

c
i ± x

q
i .

To capture non-trivial effects of the quantum (xq
i ) fluc-

tuations, which act as noise in the semiclassical limit, we
need to scale � ⇠ ~2 (SM, Sec.S1). Taking the semi-
classical limit in this manner and keeping O(1/

p
~) and

O(1) terms, we find that a Langevin equation describes

o Noise/measurement induced chaotic to non-chaotic transition
Stochastic synchronization transition 

𝜂(𝑡))
𝜂(𝑡0)

Chaotic, 𝜆2 > 0 Synchronized, 𝜆2 < 0
𝛾

𝛾7
Noise/dissipation (measurement) strength

Thank You!

Non-integrable

Integrable


