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Introduction

Let p be an odd prime. Let f =
∑
n≥1

anq
n be a normalized cuspidal

eigenform of weight k ≥ 1, character ψ and level Γ1(N) such that

p ∤ N.

We note that f being an eigenform implies that it is an

eigenfunction for all the Hecke operators Tn with the

eigenvalues given by an ( for all n ∈ N).

The work of Deligne, Deligne-Serre, and Eichler-Shimura associate

to f a p-adic Galois representation ρf : Gal
(
Q̄/Q

)
→ GL2(Q̄p)

such that ρf is unramified at all primes l ∤ pN.
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Local structure of ρf at a prime l ̸= p

Further, the characteristic polynomial of ρf (Frobl) is given by

X 2 − alX + lk−1ψ(l), where al is the Tl -eigenvalue of f .

By local structure of ρf at a prime l , we mean ρf |Gl
, where

Gl = Gal
(
Q̄l/Ql

)
, identified as decomposition subgroup of

Gal
(
Q̄/Q

)
at the prime l .

We note that the local structure of ρf at a prime l such that

l ∤ pN is determined by (al , k , ψ).

Suneel Kumar (Joint work with Abhik Ganguli) On the local constancy of certain mod p Galois representations



Local structure (LS) of ρf at a prime l = p: Dcris

In the ordinary case, a result of Deligne determines the mod p

reduction ρ̄f |ssGp
at the decomposition group Gp of p for weights

k ≥ 2. In the non-ordinary case, Fontaine and Edixhoven

determine ρ̄f |Ip for 2 ≤ k ≤ p + 1.

Faltings et al proved that if p ∤ N (k ≥ 2), then ρf |Gp is a

crystalline representation of Hodge-Tate weights (0, k − 1).

Colmez and Fontaine proved that the functor Dcris , defined as

Dcris(V ) :=
(
Bcris ⊗Qp V

)Gp , is an equivalence of categories:

Category of crystalline

representations of Gp over Qp

Category of weakly admissible

filtered ϕ-modules over Qp.

Dcris

Suneel Kumar (Joint work with Abhik Ganguli) On the local constancy of certain mod p Galois representations



LS of ρf at a prime p: Definition of Vk ,ap

For an integer k ≥ 2 and 0 ̸= ap ∈ Q̄p with ν(ap) > 0, let Dk,ap be

the weakly admissible filtered ϕ-module of Scholl (of dimension

2). Then there exists a 2-dimensional crystalline representation

Vk,ap of Gp such that Dcris(V
∗
k,ap

) ∼= Dk,ap where V ∗
k,ap

is the dual

of Vk,ap . The representation Vk,ap is an irreducible crystalline

representation with Hodge-Tate weights (0, k − 1), and the

characteristic polynomial of Frobenius ϕ is given X 2 − apX + pk−1.

We note that up to an unramified twist, ρf |Gp is isomorphic to

Vk,ap . We note that the local structure of ρf at prime p is

determined by (ap, k , ψ).
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Results computing V̄k ,ap

Let V k,ap be the mod p reduction of a Gp-stable lattice of Vk,ap

upto semisimplification.

Note that V k,ap has been studied for various weight and slope

ranges, and here, we are mentioning some of the results computing

V k,ap . It is known for the following ranges of weights and slopes:

• (Breuil) For all ν(ap) > 0 and 2 ≤ k ≤ 2p + 1.

• (Berger-Li-Zhu) For all ν(ap) > ⌊k−2
p−1⌋.

• (Bergdall-Levin) For all ν(ap) > ⌊k−1
p ⌋.

• (Buzzard-Gee) For all ν(ap) ∈ (0, 1).

• (Ganguli-Ghate, Bhattacharya-Ghate,

Bhattacharya-Ghate-Rozensztajn, Ghate-Rai) For all ν(ap) ∈ [1, 2).

• (Ghate-Vangala, Chitrao-Ghate-Yasuda) Related to local

constancy.
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Local constancy (LC): Definition

We note that Vk,ap is completely determined by ap and the weight

k , and so is V k,ap . Fixing ap, we define the map k → V k,ap on

the weight space. We study the question of local constancy of

this map.

In general, local constancy may not exist for given values of k and

ap. The zig-zag conjecture of Ghate provides important

counterexamples of local constancy when k = 2ν(ap) + 2.
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ind(ωa
2): Definition

We fix a fundamental character ω2 of the inertia subgroup Ip at

prime p of level 2.

For a ∈ Z≥0 such that (p + 1) ∤ a, let ind(ωa
2) denote the unique

two dimensional irreducible representation of Gp such that

ind(ωa
2)|Ip ∼= ωa

2 ⊕ ωap
2 and the determinant character is given by

ωa, where ω is the modp reduction of the p-adic cyclotomic

character.
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LC dependency on ap: A counterexample

Let k = 5, p ≥ 7 and ap = p3/2 ∈ Q̄p.

• By a result of Breuil, we have that V k,ap
∼= ind(ω4

2).

V̄k ′,ap
∼= ind(ωp+3

2 )

V̄k,ap
∼= ind(ω4

2)

≇

• A result of Ghate-Rai

(Zig-zag conjecture for

ν(ap) = 3/2) gives

that V k ′,ap
∼= ind(ωp+3

2 )

∀ k ′ ∈ k + pt(p − 1)Z>0

and for all t ≥ 1.

• Thus, local constancy does not exist around k = 5 for ap = p3/2

as V k ′,ap ̸∼= V k,ap for all k ′ ∈ k + pt(p − 1)Z>0 and for all t ≥ 1.
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LC dependency on ap: An example

Let k = 5, p ≥ 7, and ap = p3/2(1 + p1/2)1/2 ∈ Q̄p.

• By the result of Breuil, we have V k,ap
∼= ind(ω4

2).

V̄k ′,ap
∼= ind(ω4

2)

V̄k,ap
∼= ind(ω4

2)

V̄k ′′,ap (reducible)

∼=

≇

• For all

k ′ ∈ k + pt(p − 1)Z>0,

the result of Ghate-Rai

gives that

V k ′,ap
∼= ind(ω4

2) for

all t ≥ 2 and V k ′,ap is

reducible for t = 1.

• Thus, k + p2(p − 1)Z≥0 is the largest disk in the weight space

on which V k ′,ap is constant. Hence, we have that p−2 is the radius

of local constancy for k and ap as given above.

Suneel Kumar (Joint work with Abhik Ganguli) On the local constancy of certain mod p Galois representations



Local constancy: Existing results

The first result proving the existence of local constancy is due to

Berger. He proves the following result.

Theorem (Berger)

Suppose ap ̸= 0 with ν(ap) > 0 and k > 3ν(ap) +
(k−1)p
(p−1)2

+ 1, then

there exists m = m(k , ap) such that V k ′,ap
∼= V k,ap , if

k ′ ∈ k + pm−1(p − 1)Z≥0.

The above theorem does not give any explicit bounds on

m(k , ap) (equivalently on the radius of local constancy) and also

does not determine the explicit structure of V k,ap within the disk

of local constancy.
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Continued...

Bhattacharya gives the first explicit upper bound on m(k, ap)

for small weights by computing V k,ap explicitly, where

k > 2ν(ap) + 2. The bound depends only on the slope ν(ap).

Bhattacharya proves the following result.

Theorem (Bhattacharya)

For c ∈ {0, 1, 2, 3}, let b ≥ 2c and suppose k = b + c(p − 1) + 2,

2 ≤ b ≤ p − 1. In the range c < ν(ap) < p/2 + c of slopes, if

k > 2ν(ap) + 2 and k ̸≡ 3 mod (p + 1), then Berger’s constant

m(k , ap) exists and is bounded above by 2ν(ap) + 1. Moreover,

V k,ap
∼= ind

(
ωk−1
2

)
.
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Our key ideas to prove LC

We prove local constancy by showing that V k ′,ap is constant for

all k ′ ∈ k + pt(p − 1)Z>0, where t ≥ t0 by explicitly computing

V k ′,ap .

V̄k ′,ap

V̄k,ap

∼=

This gives local constancy

in the punctured disk

{k ′| k ′ ∈
k + pt(p − 1)Z>0 &t ≥ t0}
around k in the weight space.

Next, we determine the

structure of V k,ap by either applying Berger’s local constancy

theorem or the following result of Berger-Li-Zhu to establish local

constancy in the whole disk.
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Theorem (Berger-Li-Zhu)

If ν(ap) > ⌊k−2
p−1⌋ then

V k,ap
∼=

ind(ωk−1
2 ) if (p + 1) ∤ (k − 1)(

µ√−1 ⊕ µ−
√
−1

)
⊗ ω

k−1
p+1 if (p + 1) | (k − 1).

We now fix some notations. Let k = b + c(p − 1) + 2 with

2 ≤ b ≤ p, 0 ≤ c ≤ p − 2 and p ≥ 7.
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Main result

We prove the following result.

Theorem (Ganguli,K)

Fix ap such that c < ν(ap) < min{p
2 + c − ϵ, p − 1} and

k > 2ν(ap) + 2. Assume that (b, c) ̸∈ E.

1 Then V k ′,ap
∼= V k,ap for all k ′ ∈ k + pt(p − 1)Z≥0, where

t ≥ ⌈2ν(ap)⌉+ ϵ.

2 Moreover, V k,ap
∼= ind

(
ωk−1
2

)
.

In the above theorem, E is a finite “sporadic set” given by

k ≡ 1, 3 mod (p + 1).
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In the context of the above theorem, we make the following

comments.

The above theorem shows that Berger’s constant exists

such that m(k , ap) ≤ ⌈2ν(ap)⌉+ ϵ+ 1.

The set E={(2c−1,c),(2c−2−p,c),(2c+1,c),(2c−p,c),(p,0)}.

The ordered pairs (b, c) in E are those points for which V k ′,ap

may possibly be reducible.

If local constancy exists for k, then using the result of

Berger-Li-Zhu, we expect that V k ′,ap will always be reducible

if k ≡ 1 mod (p + 1), and it will be irreducible in all other

cases.
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V k ′,ap via the mod p LLC

The mod p local Langlands correspondence is an injection

between:

semisimple 2-dimensional F̄p

representation of Gal
(
Q̄p/Qp

) semisimple finite length

smooth admissible F̄p

representation of GL2(Qp)

LL

By a smooth representation, we mean that the stabilizer of

each vector of the representation is an open subgroup of

GL2(Qp).

A smooth representation is called an admissible

representation if its invariant spaces under every compact

open subgroup of GL2(Qp) are finite-dimensional.
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Compatibility of the p-adic and mod p LLC

The p-adic local Langlands correspondence for GL2(Qp) associates

to Vk,ap a unitary Banach space representation B(Vk,ap) of

GL2(Qp).

Breuil gave a locally algebraic representation Πk,ap of GL2(Qp),

such that B(Vk,ap) is a suitable completion of Πk,ap with respect

to a G -invariant norm, and a GL2(Qp)-stable lattice Θk,ap in

Πk,ap .

Berger proved the compatibility of the p-adic and the modp local

Langlands correspondences that gives Θ̄ss
k,ap

∼= LL(V k,ap), where

Θ̄k,ap := Θk,ap ⊗ F̄p.
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Compatibility of p-adic and mod p LLC: Pictorial View

crystalline reps of Gp unitary Banach space reps of G

semisimple smooth F̄p-reps Gp semisimple finite length smooth
admissible F̄p-reps of GL2(Qp)

Vk ′,ap B(Vk ′,ap)

V k ′,ap B(Vk ′,ap)
∼= LL(V k ′,ap)

p-adic LLC

LL (injection)

mod p mod p

“rep = representation”.
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Compatibility of p-adic and mod p LLC

Vk ′,ap B(Vk ′,ap)

Πk ′,ap
∪

: locally algebraic rep of G

Θk ′,ap : G -stable lattice

V k ′,ap
B(Vk ′,ap)

∼= LL(V k ′,ap)

∼= Θ̄k ′,ap

p-adic LLC

LL (injection)

mod p

“completion”

mod p

mod p

Cl LLC
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Our key idea to determine Θ̄k ′,ap

For r = k ′ − 2 ≥ 0, let Vr = Symr (F̄2
p) be the symmetric power

representation of GL2(Fp).

Let θ := xpy − xyp ∈ Vp+1. We note that GL2(Fp) acts on θ by

the determinant character. For m ∈ N, let us denote

V
(m)
r = {f ∈ Vr | θm divides f in F̄p[x , y ]}

which is a subrepresentation of Vr . From Buzzard-Gee [BG09], we

get a surjective map

P : indGKZ

(
Vr

V
(ν+1)
r

)
↠ Θk ′,ap ⊗ F̄p.
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An important filtration

We consider the following chain of submodules

0 ⊆ indGKZ

(
V

(ν)
r

V
(ν+1)
r

)
⊆ indGKZ

(
V

(ν−1)
r

V
(ν+1)
r

)
⊆ · · · ⊆ indGKZ

(
Vr

V
(ν+1)
r

)
.

For 0 ≤ m ≤ ν, observe that indGKZ

(
V

(m)
r

V
(m+1)
r

)
are the successive

quotients in the above filtration.

In order to prove our main result, we show that the map P in fact

surjects from indGKZ

(
V

(c−ϵ)
r

V
(c+1−ϵ)
r

)
, i.e.,

P : indGKZ

(
V

(c−ϵ)
r

V
(c+1−ϵ)
r

)
↠ Θk ′,ap ⊗ F̄p.

Suneel Kumar (Joint work with Abhik Ganguli) On the local constancy of certain mod p Galois representations



References I

L. Barthel and R. Livné.
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Thank You
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Notations

Gp := Gal
(
Q̄p/Qp

)
, G := GL2(Qp), K := GL2 (Zp), and

Z := Q∗
p.

We denote q(i) := x r−(b−m+i(p−1))yb−m+i(p−1) for all

n0 ≤ i ≤ c , where n0 = 0 if b ≥ m and 1 otherwise.

We define ϵ as follows

ϵ =


0 if 2c − 1 ≤ b ≤ p

1 if 2(c − 1)− p ≤ b ≤ 2(c − 1)

2 if 2 ≤ b ≤ 2(c − 1)− (p + 1).
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