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Quantum Entanglement 

• Strange aspects of quantum mechanics (QM) - Superposition,  Measurements …

But probably the strangest feature of QM  -  Entanglement 

Example- Bell pair                     |ψ⟩ =
|01⟩ + |10⟩

2
 Two qubits perfectly correlated

➡ “True quantum correlation”  



Quantum Entanglement 

• Strange aspects of quantum mechanics (QM) - Superposition,  Measurements …

But probably the strangest feature of QM  -  Entanglement 

Example- Bell pair                     |ψ⟩ =
|01⟩ + |10⟩

2
 Two qubits perfectly correlated

➡ “True quantum correlation”  

A

B
NA

Measure of Entanglement - Entanglement entropy

For state    (pure or mixed) -  the subsystem reduced density matrix

 





Von Neumann entanglement entropy :  


-th Renyi entropy :   

ρ

ρA = TrB[ρ]

SA = TrA(ρA ln ρA)

n S(n) =
1

1 − n
ln TrA[ρn

A]



Why care about entanglement in condensed matter systems ?

• Entanglement measures can be used to characterize the “true quantum 
nature”  of various symmetry broken, critical and topological (ground) 

states   

N. Laflorencie, Phys. Rep. (2016)

CorrectionSA ∼ Area law (Ld−1) +

* Topological entanglement entropy – 

one of the unambiguous 

ways to define and detect 

topological order 

• Entanglement and dynamics- MBL,  new paradigm in Entanglement transitions (in unitary and non 
unitary circuit etc).  Bao et al. (2019); Jian et al. (2019), 


Skinner et al. PRX (2019), ...




How do we compute entanglement entropy ?
➡ Difficult to compute entanglement entropy

• Interacting system - Exact diagonalisation (ED), density matrix renormalisation group 
(DMRG), quantum monte carlo( QMC)… etc 

➡      Limitation in system sizes or heavily numerical or sophisticated conformal field theory (CFT) 
techniques

★ Lack a general quantum manybody approach to compute Renyi entropy   

• Non-interacting system-  Correlation matrix approch
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S(3)
A

Complicated boundary conditions

New path integral method

Usual antiperodic boundary conditions

on fermionic fields 

A. Haldar, S. Bera & SB, Phys. Rev. Research (2020)

★ Lack a general quantum manybody approach to compute Renyi entropy   

τ0

• Non-interacting system-  Correlation matrix approch



Second Renyi entropy  of Interacting fermionsS(2)
A

New path integral for :                            S(2)
A e−S(2)

A =
Z(2)

Z2
=

1
Z2 ∫ D[c̄, c]e−S Z(2) = TrA[ρ2

A]

Entanglement action for Hubbard Model:  ,     S(λ) = SU + λSkick S = S(λ = 1)

   


   


 where    

Skick = ∫ dτdτ′￼∑ c̄iα(τ)δi∈AMαβ(τ, τ′￼)cjβ(τ′￼)

Mαβ(τ, τ′￼) = ( 1 1
−1 1)

αβ
δ(τ′￼− τ+

0 )δ(τ − τ0)

SU → The usual imaginary time action for Hubbard Hamiltonian 

For example-  Hubbard Model:  H = − ∑
<ij>

tijc†
i cj + U∑

i

ni↑ni↓

A

B
NA

kick ≠ 0
A. Haldar, S. Bera & SB, Phys. 
Rev. Research (2020)

τ0



Extraction of  using “kick term”  integrationS(2)
A

Noble way to extract by employing strength of kick term, we get - S(2)
A = ∫

1

0
dλ < Skick >Z(2)(λ)

< Skick >Z(2)(λ) = ∑
i,α,β

δi∈AMαβGλ
ii,βα(0,0+)

•   can be computed  within DMFTGλ
ab(τ, τ′￼)

• We use Iterated Perturbation Theory (IPT) as impurity solver

★ More sophisticated impurity solver like 

continious time  quantum monte carlo 

(CTQMC) can be used

DMFT: Impurity problem 

in self-consistent bath

(Source: Internet)

    Leads to calculation of thermodynamic potential  (very difficult )S(2)
A = − ln(Z(2)) + 2 ln Z →

To get entanglement,  we need to compute  and take   extrapolationS(2)
A (T ) T → 0

Path integral of  :                         S(2)
A e−S(2)

A =
Z(2)

Z2
=

1
Z2 ∫ D[c̄, c]e−[SU+λSkick]



Comparision with Exact Diagonalisation (ED) in 1d Hubbard Model
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Spectral properties in ED and DMFT for such small systems for 1d  are very different
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Comparision with QMC in 1d Hubbard Model

QMC →

•  Comparision with QMC at intermediate  is quite good even in 1d T

(P. Broecker & S Trebst) 
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 Thermal entropy to entanglement crossover in S(2)
A (NA, T )

• Arc like feature: signature of 
more entanglement contribution

• Linear feature  more thermal entropy→

•   What is scaling of   ?S(2)(NA, T )

• How interaction affects on    within DMFT ?S(2)
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• How to “disentangle” entropy and entanglement ?



Subsystem scaling and thermal to entanglement crossover in Fermi-liquid   

 Renyi entanglement entropy  :   S(n)
A (T = 0,NA) =

c
2

(1 +
1
n

)log[ N
π

sin( πNA

N )] + kn

Logarithmic correction to boundary law

 Subsystem Renyi entropy in finite temperature  : 


  

(T = 1/β)

S(n)
A (T, NA) =

c
2

(1 +
1
n

)log[ βv
π

sinh( πNA

βv )] + kn

c → Central charge of CFT

renormalized fermi velocityv →

For free fermi system c = 1

replace   N → − iβv

From conformal field theory (CFT) -
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• Does the correlated metalic state in DMFT follow the above crossover formula ?

These formula are valid for .  Finite  and finite   is not known in CFT.N → ∞ N T

(Cardy, Calabrese et al. )

From conformal field theory (CFT) -



Crossover formula fitting and the effect of interaction in central charge 
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• Fits to crossover formula is reasonably well With system size extracted   very 
slowly tends toward CFT values 

c



Renyi entropy in 2d Hubbard Model

• What is scaling of   in higher dimension (2d)  in fermi-
liquid phase ?

S(2)

Widom formula for scaling:  Finite Fermi surface as collection 
of  1d gapless mode

In Metalic phase - 

Cylindrical cut subsystem →

Depends relative 
orientation of real 
and momentum 
space geometry


S(n)
A (T, NA) = (1

2 ∫ ∫
dAxdAk

(2π)d−1
|nk ⋅ nx |)× [ c

2
(1 +

1
n

)log[ βv
π

sinh( πNA

βv )] + kn]
Effective no of  

1d  mode 
1d subsystem 

scaling from CFT

Real space

-spacek

(B. Swingle, PRL 105, 050502 (2010) )

 



Result:  Metalic phase 

T = 0.1

• Fits to crossover formula is reasonably well

c

U

Substantial changes of  for large c U



Summary and Conclusion 

• Developed a new path integral method to compute Renyi entropy and present 
“kick term”  integration method to extract Renyi entropy efficiently. 

• Have shown computation of Renyi entropy within DMFT  

• Subsystem scaling of 1d DMFT  fermi-liquid phase reasonably well described by 
CFT  but 2d DMFT correlated fermi-liquid phase is not. 

• Future direction:  Study of second Renyi entropy in Mott phase and study of 
mutual information across finite temperature metal-insulator critical point

Thank you


