Renyi entanglement entropy in Hubbard model within dynamical mean field theory

Surajit Bera (IISc)

Collaborator: Sumilan Banerjee (IISc), Arijit Haldar (U toronto)

Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science.

(Thanking you organizer)

Quantum Entanglement

• Strange aspects of quantum mechanics (QM) - Superposition, Measurements ...

But probably the strangest feature of QM - Entanglement

Example- Bell pair $|\psi\rangle = \frac{|01\rangle + |10\rangle}{\sqrt{2}}$ Two qubits perfectly correlated \Rightarrow "True quantum correlation"

Quantum Entanglement

• Strange aspects of quantum mechanics (QM) - Superposition, Measurements ...

But probably the strangest feature of QM - Entanglement

Example- Bell pair

$$|\psi\rangle = \frac{|01\rangle + |10\rangle}{\sqrt{2}}$$

Two qubits perfectly correlated → "True quantum correlation"

```
Measure of Entanglement - Entanglement entropy
```

For state ρ (pure or mixed) - the subsystem reduced density matrix

$$\rho_A = \mathrm{Tr}_B[\rho]$$

Von Neumann entanglement entropy : $S_A = \text{Tr}_A(\rho_A \ln \rho_A)$

n-th Renyi entropy :
$$S^{(n)} = \frac{1}{1-n} \ln \operatorname{Tr}_{A}[\rho_{A}^{n}]$$

Why care about entanglement in condensed matter systems ?

• Entanglement measures can be used to characterize the "true quantum nature" of various symmetry broken, critical and topological (ground) states

$S_A \sim \text{Area law} (L^{\alpha})$			
Physical state	Entropy	Example	
Gapped (brok. disc. sym.)	$aL^{d-1} + \ln(\deg)$	Gapped XXZ [143]	
d = 1 CFT	$\frac{c}{3} \ln L$	$s = \frac{1}{2}$ Heisenberg chain [21]	
$d \ge 2 \text{ QCP}$	$aL^{d-1} + \gamma_{\rm QCP}$	Wilson–Fisher O(N) [136]	
Ordered (brok. cont. sym.)	$aL^{d-1} + \frac{n_{\rm G}}{2} \ln L$	Superfluid, Néel order [147]	
Topological order	$aL^{d-1} - \gamma_{top}$	\mathbb{Z}_2 spin liquid [159]	N. Laflorencie, Phys. Rep.

* Topological entanglement entropy – one of the unambiguous ways to define and detect topological order

• Entanglement and dynamics- MBL, new paradigm in Entanglement transitions (in unitary and non unitary circuit etc). Bao et al. (2019); Jian et al. (2019),

Skinner et al. PRX (2019), ...

How do we compute entanglement entropy?

→ Difficult to compute entanglement entropy

- Non-interacting system- Correlation matrix approch
- Interacting system Exact diagonalisation (ED), density matrix renormalisation group (DMRG), quantum monte carlo(QMC)... etc
- Limitation in system sizes or heavily numerical or sophisticated conformal field theory (CFT) techniques
- **Lack a general quantum manybody approach to compute Renyi entropy**

How do we compute entanglement entropy?

→ Difficult to compute entanglement entropy

- Non-interacting system- Correlation matrix approch
- Interacting system Exact diagonalisation (ED), density matrix renormalisation group (DMRG), quantum monte carlo(QMC)... etc
- Limitation in system sizes or heavily numerical or sophisticated conformal field theory (CFT) techniques
- ★ Lack a general quantum manybody approach to compute Renyi entropy

Usual replica field theory approach (Cardy, Calabrese et al.)

Complicated boundary conditions

 $S_A^{(3)}$

New path integral method

Usual antiperodic boundary conditions on fermionic fields

A. Haldar, S. Bera & SB, Phys. Rev. Research (2020)

Second Renyi entropy $S_A^{(2)}$ of Interacting fermions

For example- Hubbard Model: $H = -\sum_{\langle ij \rangle} t_{ij}c_i^{\dagger}c_j + U\sum_i n_{i\uparrow}n_{i\downarrow}$

New path integral for $S_A^{(2)}$: $e^{-S_A^{(2)}} = -\frac{2}{2}$

$${}^{(2)}_{A} = \frac{Z^{(2)}}{Z^2} = \frac{1}{Z^2} \int D[\bar{c}, c] e^{-S} \qquad Z^{(2)} = \text{Tr}_A[\rho_A^2]$$

Entanglement action for Hubbard Model: $S(\lambda) = S_U + \lambda S_{kick}$, $S = S(\lambda = 1)$

 $S_U \rightarrow$ The usual imaginary time action for Hubbard Hamiltonian

$$S_{\text{kick}} = \int d\tau d\tau' \sum \bar{c}_{i\alpha}(\tau) \delta_{i\in A} M_{\alpha\beta}(\tau,\tau') c_{j\beta}(\tau')$$

where
$$M_{\alpha\beta}(\tau, \tau') = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}_{\alpha\beta} \delta(\tau' - \tau_0^+) \delta(\tau - \tau_0)$$

$$\begin{array}{c} N_A \\ \hline kick \neq 0 \\ A \end{array} B$$

A. Haldar, S. Bera & SB, Phys. Rev. Research (2020)

Extraction of $S_A^{(2)}$ using "kick term" integration

Path integral of
$$S_A^{(2)}$$
: $e^{-S_A^{(2)}} = \frac{Z^{(2)}}{Z^2} = \frac{1}{Z^2} \int D[\bar{c}, c] e^{-[S_U + \lambda S_{kick}]}$

 $S_A^{(2)} = -\ln(Z^{(2)}) + 2\ln Z \rightarrow$ Leads to calculation of thermodynamic potential (very difficult)

Noble way to extract by employing strength of kick term, we get - $S_A^{(2)}$ =

$$= \int_0^1 d\lambda < S_{\text{kick}} >_{Z^{(2)}(\lambda)}$$

$$< S_{\text{kick}} >_{Z^{(2)}(\lambda)} = \sum_{i,\alpha,\beta} \delta_{i \in A} M_{\alpha\beta} G_{ii,\beta\alpha}^{\lambda}(0,0^+)$$

- $G_{ab}^{\lambda}(\tau, \tau')$ can be computed within DMFT
- We use Iterated Perturbation Theory (IPT) as impurity solver
- ★ More sophisticated impurity solver like continious time quantum monte carlo (CTQMC) can be used

DMFT: Impurity problem in self-consistent bath (Source: Internet)

To get entanglement, we need to compute $S_A^{(2)}(T)$ and take $T \to 0$ extrapolation

Comparision with Exact Diagonalisation (ED) in 1d Hubbard Model

Spectral properties in ED and DMFT for such small systems for 1d are very different

Comparision with QMC in 1d Hubbard Model

• Comparision with QMC at intermediate *T* is quite good even in 1d

Thermal entropy to entanglement crossover in $S_A^{(2)}(N_A, T)$

- Arc like feature: signature of more entanglement contribution
- Linear feature \rightarrow more thermal entropy
- What is scaling of $S^{(2)}(N_A, T)$?
- How to "disentangle" entropy and entanglement ?
- How interaction affects on $S^{(2)}$ within DMFT ?

Subsystem scaling and thermal to entanglement crossover in Fermi-liquid

From conformal field theory (CFT) -

Renyi entanglement entropy : $S_A^{(n)}(T = 0, N_A) = \frac{c}{2}(1 + \frac{1}{n})\log\left[\frac{N}{\pi}\sin\left(\frac{\pi N_A}{N}\right)\right] + k_n$

Logarithmic correction to boundary law

 $c \rightarrow \text{Central charge of CFT}$

For free fermi system c = 1

Subsystem Renyi entropy in finite temperature $(T = 1/\beta)$:

$$S_A^{(n)}(T, N_A) = \frac{c}{2}(1 + \frac{1}{n})\log\left[\frac{\beta v}{\pi}\sinh\left(\frac{\pi N_A}{\beta v}\right)\right] + k_n$$

replace $N \rightarrow -i\beta v$

 $v \rightarrow$ renormalized fermi velocity

Subsystem scaling and thermal to entanglement crossover in Fermi-liquid

From conformal field theory (CFT) -

Renyi entanglement entropy : $S_A^{(n)}(T = 0, N_A) = \frac{c}{2}(1 + \frac{1}{n})\log\left[\frac{N}{\pi}\sin\left(\frac{\pi N_A}{N}\right)\right] + k_n$

Logarithmic correction to boundary law

 $c \rightarrow \text{Central charge of CFT}$

For free fermi system c = 1

Subsystem Renyi entropy in finite temperature $(T = 1/\beta)$:

$$S_A^{(n)}(T, N_A) = \frac{c}{2}(1 + \frac{1}{n})\log\left[\frac{\beta v}{\pi}\sinh\left(\frac{\pi N_A}{\beta v}\right)\right] + k_n$$

replace $N \rightarrow -i\beta v$

 $v \rightarrow$ renormalized fermi velocity

• Does the correlated metalic state in DMFT follow the above crossover formula ?

These formula are valid for $N \rightarrow \infty$. Finite *N* and finite *T* is not known in CFT.

(Cardy, Calabrese et al.)

Crossover formula fitting and the effect of interaction in central charge

• Fits to crossover formula is reasonably well

With system size extracted *c* very slowly tends toward CFT values

Renyi entropy in 2d Hubbard Model

Cylindrical cut subsystem \rightarrow

(B. Swingle, PRL 105, 050502 (2010))

Depends relative orientation of real and momentum space geometry

In Metalic phase -

Widom formula for scaling: Finite Fermi surface as collection of 1d gapless mode

$$S_A^{(n)}(T, N_A) = \left(\frac{1}{2} \iint \frac{dA_x dA_k}{(2\pi)^{d-1}} |n_k \cdot n_x|\right) \times \left[\frac{c}{2}(1 + \frac{1}{n})\log\left[\frac{\beta v}{\pi}\sinh\left(\frac{\pi N_A}{\beta v}\right)\right] + k_n\right]$$

Effective no of 1d mode

1d subsystem scaling from CFT

Result: Metalic phase

• Fits to crossover formula is reasonably well

Substantial changes of c for large U

Summary and Conclusion

- Developed a new path integral method to compute Renyi entropy and present "kick term" integration method to extract Renyi entropy efficiently.
- Have shown computation of Renyi entropy within DMFT
- Subsystem scaling of 1d DMFT fermi-liquid phase reasonably well described by CFT but 2d DMFT correlated fermi-liquid phase is not.
- Future direction: Study of second Renyi entropy in Mott phase and study of mutual information across finite temperature metal-insulator critical point

Shank you