Equilibrium and transient behaviour of modulated binary colloid

Suravi Pal

Senior Research Fellow

Under the supervision of

Prof. Jaydeb Chakrabarti

Department of Physics of Complex Systems, Satyendra Nath Bose National Centre for Basic Sciences,

03.04.2024

Binary colloids under modulation

A system of binary colloids consisting of polysterene beads → subjected to an external sinusoidal laser beam along x-direction.

• Alignments of bigger particles.

S. U. Egelhaalf *et al. J. chem. Phys.* 2018 **148** 114903

- The smaller particles form triangular arrangements within the cages of bigger particles.
- They tune strength of laser beam and packing fraction to observe the particles arrangement. themselves along and away from minima.

> Objective:

- Phase behaviour of binary modulated system.
- Dynamics of structural changes.

System and Model (MC simulation)

> The particles interact via repulsive potential of the form of :

$$V_{ij}^{(\alpha\beta)}(r) = 4\epsilon_{\alpha\beta}(\frac{o_{\alpha\beta}}{r_{ij}})^{12}$$

subject the system to an external spatially periodic potential of the form of :

 $V_{ext}(x_i) = -fV_0 \cos(\frac{2\pi x_i}{\lambda})$ > Packing fraction $\eta (=\frac{N_b \pi R_b^2 + N_s \pi R_s^2}{A}) = 0.7201.$

- > $\alpha = \beta =>$ particles of the same species,
- > $\alpha \neq \beta =>$ particles of the different species.
- \succ D_b/D_s=2.0, N_b=N_s
- $\succ \lambda = D_b$
- \rightarrow f=1 => bigger particles,
- > f=0.5 => smaller particles.

 $\varepsilon_{bb} = \varepsilon_{ss} = 1.0$

 $D_{\rm b} = 5 \mu m$

 $\epsilon_{bs} = 1.5$

 $D_{s} = 2.5 \mu m$

System and Model (MC simulation)

> The particles interact via repulsive potential of the form of :

$$V_{ij}^{(\alpha\beta)}(r) = 4\epsilon_{\alpha\beta}(\frac{o_{\alpha\beta}}{r_{ij}})^{12}$$

subject the system to an external spatially periodic potential of the form of :

 $V_{ext}(x_i) = -fV_0 \cos(\frac{2\pi x_i}{\lambda})$ > Packing fraction $\eta (=\frac{N_b \pi R_b^2 + N_s \pi R_s^2}{A}) = 0.7201.$

- > $\alpha = \beta =>$ particles of the same species,
- > $\alpha \neq \beta =>$ particles of the different species.
- \succ D_b/D_s=2.0, N_b=N_s
- $\succ \lambda = D_b$
- > f=1 => bigger particles,
- > f=0.5 => smaller particles.

 $\varepsilon_{bb} = \varepsilon_{ss} = 1.0$

 $D_{\rm h} = 5 \mu n$

 $\epsilon_{bs} = 1.5$

 $D_{s} = 2.5 \mu m$

Demixing order parameter and specific heat

Jump in order parameter increases with system size \rightarrow First order phase transition

- The peaks in $C_{_{\!\rm V}}$ shift to higher βV_0 values with increment of N.
- The peak value (heat capacity max) increases in the order of N;
- The exponent comes out to be ~ 1 which is in agreement with the case of first order phase transition.

KINETICS (BD SIMULATION)

• The kinetics and dynamics of modulated binary colloidal system, i.e. dynamics of growth of clusters, is yet to be explored in details.

Mixed modulated binary liquid

Phase separated binary liquid

STRUCTUAL EVOLUTION

• Average cluster size :

We compute the average cluster size :
Two particles are in a cluster if their relative center to center distance → ≤ x_{cl} and y_{cl}
Gradual growth in size and then saturates.
Growth follows linear time dependence with exponent 0.92.

• Transient time : The time until the mean cluster size becomes 50% of the equilibrium size $(T_s=40)$.

RADIUS OF GYRATION : SHAPE OF THE CLUSTERS

 $x(t)_{G}^{2} = \frac{1}{N} \sum_{i=1}^{N} |x_{i}(t) - x_{CM}(t)|^{2}, \qquad y(t)_{G}^{2} = \frac{1}{N} \sum_{i=1}^{N} |y_{i}(t) - y_{CM}(t)|^{2}.$

and $\langle A_G(t) \rangle = \frac{\langle x_G(t) \rangle}{\langle Y_G(t) \rangle}$

- Shape changes from elongated small clusters to big circular compact type ones;
- Ratio of radii of gyration in x and y direction is plotted.
- Ratio reaches unity as the system reaches equilibrium.

Mean Square displacement (ONLY AVERAGED OVER DIFFERENT BD TRAJECTORIES.)

$$<(\Delta r; t_0)_b^2 > = <\frac{1}{N} \sum_i \left[(x_{ib}(t) - x_{ib}(t_0))^2 + (y_{ib}(t) - y_{ib}(t_0))^2 \right] > \text{And}$$

$$<(\Delta r; t_0)_s^2 > = <\frac{1}{N} \sum_i \left[(x_{is}(t) - x_{is}(t_0))^2 + (y_{is}(t) - y_{is}(t_0))^2 \right] >$$

- Both D_b and D_s plotted against $t_0 < T_s$
- Linear MSD for all t0's for bigger particles
- Linear MSD at long time limit for smaller particles
- Faster diffusion for bigger particles and slower for smaller particles.
- a) and c) \rightarrow bigger particles,
- b) and d) \rightarrow smaller particles

Conclusion

- In, summary, we study, using MC and BD simulations, phase behaviour and dynamics of a two dimensional binary colloidal film subjected to one dimensional periodic modulation.
- The density modulation ensures modulated liquid phase.
- Big clusters of small particles are broken into smaller clusters.
- Transition from de-mixed to mixed state occurs with increment of field strength, through a first order phase transition.
- The clusters of smaller particles grow over time until they saturate in size as the system reaches new equilibrium.
- The smaller particles forms slower moving clusters in a background of faster moving bigger particles.

Thank you !

00

Acknowledgements

- My supervisors.
- Computer facilities of SNBNCBS.

100

- DST for funding the research.
- My past and present lab members.

Laser induced freezing: modulated colloids

Other system sizes

