Institute of Nano Science and Technology, India

<u>Suvankar Chakraverty</u>

Spin polarization and topological Hall effect: Oxide interfaces and thin films

Suvankar Chakraverty Institute of Nano Science and Technology

Topological effect: Oxide interfaces and thin films

Suvankar Chakraverty Institute of Nano Science and Technology

If this spin texture is in the real space: Signature in transverse-resistance (Hall) If this spin texture is in the momentum space: Signature in longitudinal-resistance (MR)

2.

Acknowledgements

<u>INST, Mohali</u>

• Dr. Chandan Bera

<u>IISER Mohali</u>

- Dr. Yogesh Singh
- Dr. Gautam Sheet
- Dr. Sanjeev Kumar

IISc Bangalore

- Prof. D.D. Sarma
 <u>SNBNCBS</u>
- Priya Mahadevan
 <u>NIT Durgapur</u>
- Prof. Sushanta
 Dattagupta
 <u>IIT Kanpur</u>
 - Amit Agarwal <u>BARC</u>
- Prof. S. Singh
 <u>IIT Roorkee</u>
- Vivek k. Malik

<u>International</u>

RIKEN Japan

• Dr. D. Maryenko

<u>University of</u> <u>Tokyo</u>

- Prof. H. Wadati
- Y. Yokoyama
- A. Yasui
- T. Fukumura

Funding Sources : DST Nanomission, DAE-BRNS and INST

Theory

Sushanta Dattagupta

Amit Agarwal and his group member

Sanjeev Kumar and his group members

Priya Mahadevan and her group member

<u>Out line of the talk</u>

Grow a oxide thin film using pulsed laser deposition system: Effect of laser fluence Materials : 1. LaVO3-SrTiO3 interface 2. Sr2FeMoO6 thin films

Unusual Quantum oscillation in resistance : Non-trivial spin texture in momentum space

Material : LaVO3 - KTaO3 interface

Looking at **longitudinal** conductivity

Unusual magneto-transport: negative MR, Anomalous Hall, Topological Hall

Material : 1. LaFeO3 - SrTiO3 interface 2. W: SFMO

Grow a oxide thin film using pulsed laser deposition system: Effect of laser fluence

TVER FAFER

ADVANCED MATERIALS INTERFACES

Conducting LaVO₃/SrTiO₃ Interface: Is Cationic Stoichiometry Mandatory?

Ruchi Tomar, Rahul Mahavir Varma, Nand Kumar, D. D. Sarma, Denis Maryenko,* and Suvankar Chakraverty*

ELECTRONIC MATERIALS

pubs.acs.org/acsaelm

B-Site Stoichiometry Control of the Magnetotransport Properties of Epitaxial Sr_2FeMoO_6 Thin Film

Nand Kumar, Raveena Gupta, Ripudaman Kaur, Daichi Oka, Sonali Kakkar, Sanjeev Kumar, Surendra Singh, Tomoteru Fukumura, Chandan Bera, and Suvankar Chakraverty*

Unusual Quantum oscillation in resistance : Non-trivial spin texture in momentum space

To motivate my young research scholars towards PLD

Story by a 93.2% thin film grower

1000 thin film grown = 100% thin film grower

Advantage:

Epitaxy Growth kinetics Thermodynami cs

Film

Substrate

<u>Grow an Oxide thin film:</u>

Thermodynamics

Ellingham Diagram

<u>Kinetics</u>

Laser fluence

Laser spot at focused position

What and Why Perovskite Oxide?

General Formula: ABO₃

A: Alkali- or rare-earth ion B: Transition metal-ion

Exhibit the full spectrum of electronic, optical and magnetic properties

Hwang et al. Nat. Mater. 2012, 11, 103

<u>A high mobility electron gas at LaAlO₃/SrTiO₃</u> <u>heterointerface</u>

A. Ohtomo et. al. Nature 2004, 427, 423

Possible mechanisms

- 1. Oxygen Vacancy.
- 2. Cation intermixing.
- 3. Polar Catastrophe.
- 4. Band alignment

Effect of film stoichiometry?

Conducting interface of two insulating perovskite Oxides: polar catastrophe !!!

Interface of two insulating perovskite Oxides: Why Conducting???

Conducting interface of two insulating perovskite Oxides: polar catastrophe !!!

Polar Catastrophe : 1. $\frac{1}{2}$ electron per unit cell at the interface 2. A critical thickness of film is needed

0. Why Such interfaces are conducting???

FULL PAPER

www.advmatinterfaces.de

Conducting LaVO₃/SrTiO₃ Interface: Is Cationic Stoichiometry Mandatory?

Ruchi Tomar, Rahul Mahavir Varma, Nand Kumar, D. D. Sarma, Denis Maryenko,* and Suvankar Chakraverty*

Thin film growth using Pulse Laser Deposition

What have we done?

We have prepared several samples: Several LaVO3 thin films on SrTiO3 substrate: kept all growth parameter same for all samples only laser energy (laser fluence) was varied.

Less possibility of oxygen vacancies in STO of LVO/STO heterostruture as compared to LAO-STO

25

Laser Fluence: Laser energy per unit area on the target

Laser spot at focused position

Effect of Laser Fluence:

On conducting property of the interface

Conducting above 1.1J/cm2

Effect of Laser Fluence:

On conducting property of the interface

Conducting above 1.1J/cm2

Below 1J/cm2 La-rich Above La-deficient

Film stoichiometry: La-deficiency is needed for interface conductivity

1. PRL 2013, 110, 196804 2. Nat. Comm. 2013, 4, 2351

What about other mechanisms are they meaningless???

1. Oxygen Vacancy. : Annealing under oxygen

2. Cation intermixing. : No critical thickness of the flim is needed

3. Polar Catastrophe. : A critical thickness of the film is needed

<u>Film thickness dependent transport</u> <u>measurements</u>

Laser Fluence kept constant $(2J/cm^2)$ and grow film with different thicknesses

LVO films < 4ML, Insulating

LVO films ≥ 4ML, Conducting

Conclusion:

Both A-site deficient film and a critical thickness of the film is needed to realize a conducting interface of two insulating perovskite oxide

A-site deficient film triggers polar catastrophe!!!

Non-trivial spin texture in momentum space

Material : LaVO3 - KTaO3 interface

Looking at **longitudinal** conductivity

Signature of non-trivial spin texture in real space: Topological Hall Effect

What if there is non-trivial spin texture in "Momentum -Space"

Possible Non-trivial spin texture in momentum space: Rashba

Rashba Effect

<u>Possible perovskite oxide with strond spin-orbit</u> <u>coupling: KTaO3</u>

Possible Strong Spin Orbit Coupled perovskite oxides

KTaO3(001) Single crystal: SOC ~ 300mEv

Phys. Rev. Lett. 108, 117602 (2012)

KTaO₃—The New Kid on the Spintronics Block

Anshu Gupta, Harsha Silotia, Anamika Kumari, Manish Dumen, Saveena Goyal, Ruchi Tomar, Neha Wadehra, Pushan Ayyub,* and Suvankar Chakraverty*

RESEARCH ARTICLE

Possible Signatures of Chiral Anomaly in the Magnetoresistance of a Quasi-2-Dimensional Electron Gas at the Interface of LaVO₃ and KTaO₃

Harsha Silotia, Anamika Kumari, Anshu Gupta, Joydip De, Santanu Kumar Pal, Ruchi Tomar, and Suvankar Chakraverty*

40

Systems to be discussed

4monolayer LaVO3 Thin Film Crystal 2DEG KTaO3 Substrate Crystal (~3.5ev)

B_{so} ~ 4.4T : Rashba!!! Non Trivial spin texture in "Momentum Space"

Present sample 4ml LVO on KTO carrier density ~ $5E13 \text{ cm}^2$

Towards the observation of quantum oscillation in the magneto-resistance: Shubnikov-de Hass oscillation

Background subtracted data

Raw data

Lifshitz-Onsager equation

For a Trivial Parabolic band

For a non-Trivial band: Say with Dirac point Berry's Phase

 $n = \left(\frac{A\hbar}{2\pi e}\right)\frac{1}{B}$

Non-trivial spin texture in K-space???

n linear to 1/B???

$$N = \frac{F}{B} - \gamma + CB, \, \delta = 0$$

Zero-field magnetic response functions in Landau levels Yang Gao^{3,1} and Qian Niu^{3,b} PNAS, 114, 7295-7300 (2017)

^aDepartment of Physics, The University of Texas at Austin, Austin, TX 78712; and ^bInternational Center for Quantum Materia Beijing 100871, China

Edited by David Vanderbilt, Rutgers, The State University of New Jersey, Piscataway, NJ, and approved June 2, 2017 (received

We present a fresh perspective on the Landau level quantization rule; that is, by successively including zero-field magnetic esponse functions at zero temperature, such as zero-field mag

inverse of the magnetic field B and re the n axis. Despite its success in graphe

Lifshitz-Onsager equation

 $N = \frac{F}{B} - \gamma + CB$, : This fits our Landau plot with Berry's Phase $\gamma = \pi$

Non-trevial electronic state + Non-trivial spin texture at k-space (???)

45

Unusual Quantum oscillation in resistance : Non-trivial spin texture in momentum space

Material : LaVO3 - KTaO3 interface

Looking at **longitudinal** conductivity

?

Interface conductivity: Non-stoichiometry triggers the conductivity

Real space non-trivial spin texture: Transverse resistance as Topological Hall

Momentum space non-trivial spin texture: longitudinal resistance unusual SdH

Conducting interface of LaFeO3 and SrTiO3

Transparent Oxide electronics!!!

Structural phase transition of STO around 120K

Spin polarized interface to spin-polarized thin film

Thin films

<u>Summary</u>

Question: Can we increase this in thin film

ACS APPLIED ELECTRONIC MATERIALS

pubs.acs.org/acsaelm

Letter

B-Site Stoichiometry Control of the Magnetotransport Properties of Epitaxial Sr_2FeMoO_6 Thin Film

Nand Kumar, Raveena Gupta, Ripudaman Kaur, Daichi Oka, Sonali Kakkar, Sanjeev Kumar, Surendra Singh, Tomoteru Fukumura, Chandan Bera, and Suvankar Chakraverty*

Changing the laser fluence

Summary

Laser fluence can play a vital role !!!

Problem with SFMO

W: SFMO Thin Film

Several magneto-electronic Phases???

Conclusion

Grow a oxide thin film using pulsed laser deposition system: Effect of laser fluence

Materials : 1. LaVO3-SrTiO3 interface 2. Sr2FeMoO6 thin <u>films</u>

Crucial role of film stoichiometry

Unusual Quantum oscillation in resistance : Non-trivial spin texture in momentum space

Material : LaVO3 - KTaO3 interface

Looking at longitudinal conductivity

Non-linear Landau Fan diagram

Unusual magneto-transport: negative MR, Anomalous Hall, Topological Hall

Material : 1. LaFeO3 - SrTiO3 interface 2. W: SFMO

Crystal structure driven spin polarization transition

Our recent setected publications relevant for this talk:

- 1. Phys. Rev. B 109, 245405 (2024)
- 2. Phys. Rev. B (Lett.) 109, L201114 (2024)
- 3. Advanced Electronic Materials 8 (9), 2200195 (2023).
- 4. Adv. Quantum Technol, 2100105 (2022).
- 5. Adv, Mat. 34, 2106481 (2022).
- 6. Phys. Rev. B (Lett.) 104, L081111 (2021).
- 7. Adv. Quantum Technol. 2000081 (2020).
- 8. Advanced Materials Interfaces, 000: 2000646 (2020).
- 9. Nature communication, 11: 874(1-7) (2020).
- 10. Applied Surface Science, 509: 145214 (2020).
- 11. Advanced Material Interfaces, 1900941(1-6) (2019).
- 12. Journal of Applied Physics, 126: 35303 (2019).

Conventional magnetoresistance measurements

Signature of weak-antilocalization ! $\Delta \sigma = \frac{e^2}{2\pi^2 \hbar} \left[\ln \left(\frac{B_{\phi}}{B} \right) - \psi \left(\frac{1}{2} + \frac{B_{\phi}}{B} \right) + \ln \left(\frac{B_{so}}{B} \right) - \psi \left(\frac{1}{2} + \frac{B_{so}}{B} \right) - A_k B^2 \right]$

B_{so} ~ 4.4T : Rashba!!! Non Trivial spin texture in "Momentum Space"

Finite frequency in only one direction

Open Fermi surface: 2D type carrier

12

12

12

15

9

B (T)

8 B (T)

8 B(T)

4

Finite frequency in all direction:3D type carrier

<u>Reflection High Energy Electron beam diffraction</u> (RHEED) technique

Precise film thickness control by RHEED technique

<u>Is cationic stoichiometry mandatory to produce</u> <u>conductivity at oxide interface?</u>

Ruchi et. al. Adv. Mater. Interfaces 2019, 1900941

Less possibility of oxygen vacancies in STO of LVO/STO heterostruture as compared to LAO-STO

<u>Electron Motion through a non-trivial spin texture</u>

Thin film growth using Pulse Laser Deposition

LaVO₃-SrTiO₃ (001) heterostructures

Deposition parameters:

 \Box Oxygen partial pressure (1x10⁻⁶ Torr)

 \Box Growth temperature (T_a = 600°C)

- \Box Laser spot area (A=0.03 cm²)
- □ Frequency (2Hz)
- □ Laser fluence (Laser energy/area)

Laser fluence is varied

Non-trivial spin texture in real space

Multiple q-vectors

skyrmion crystal

Mühlbauer et al, Science (2009)

<u>Detection techniques :</u>

Skyrmion : magnetic mono pole !!!

Solid angle $\Omega = 4\pi$ $\Phi = (\Omega/4\pi)\phi_0: \phi_0 = h/e$ One Skyrmion \rightarrow One magnetic flux $\Phi = \phi_0 = h/e$ Magnetic mono pole !!!

Detection techniques :

Film stoichiometry by XPS and EDX Spectroscopy

Change in film stoichiometry with laser fluence

Change in film stoichiometry with laser fluence

Solid angle by spins acting as a Fictitious
magnetic field

$$\int_{k} \int_{k} \int_{k$$

What will be shown?

I. Fundamental Aspects

<u>O. Why Such interfaces are conducting???</u>

<u> LaVO3 – KTaO3: conducting interface</u>	 LaFeO3 – SrTiO3: conducting interface		
1. Non-trivial quantum oscillation in magneto-transport:	4. A step towards room		
a. Nonlinear Landau fan diagram b. Angular dependent quantum mobility	a. Room temperature anomalous Hall effect and Negative magneto resistance		

II. Some Possible applications

- a. Holographic Memory
- b. Electrostatic Memory

Today we are going to discuss on:

<u>2DEG at the interface of</u> <u>two insulators</u>

New aspect: Introduction of a. strong spin-orbit coupling. b. magnetic interaction.

Applied Magnetic field

SrFeO3 Thin film

Rapid Communication

Access by Institute of Nano Science

Multiple helimagnetic phases and topological Hall effect in epitaxial thin films of pristine and Co-doped SrFeO₃

S. Chakraverty, T. Matsuda, H. Wadati, J. Okamoto, Y. Yamasaki, H. Nakao, Y. Murakami, S. Ishiwata, M. Kawasaki, Y. Taguchi, Y. Tokura, and H. Y. Hwang Phys. Rev. B 88, 220405(R) – Published 5 December 2013

PHYSICAL REVIEW LETTERS

Highlights Recent Accepted Collections Authors Referees Search Press About Editorial Team Access by Institute of Nano Science and Technolog Photoinduced Demagnetization and Insulator-to-Metal Transition in Ferromagnetic Insulating BaFeO₃ Thin Films T. Tsuyama, S. Chakraverty, S. Macke, N. Pontius, C. Schüßler-Langeheine, H. Y. Hwang, Y. Tokura, and H. Wadati Phys. Rev. Lett. 116, 256402 - Published 21 June 2016

Such material in cubic perovskite family : SrFeO₃

Phys. Rev. B 88, 220405(R)

J. Mater. Chem., 2001, 11, 2235-2237

Fig. 2 Temperature dependences of resistivity and the Hall coefficient of the $SrFeO_3/LSAT$ film.

There is a dramatic change in Hall resistivity as a function of temperature.

Phys. Rev. B 84, 054427 (2011)

Bulk Single crystal: Several Magnetic Phases

Applied Magnetic field (T)

<u>Comparison of our LVO-STO case with reported</u> <u>LAO-STO interface</u>

Film stoichiometry is a key to realize conducting interface of Perovskite oxides

References: 1. E. Breckenfeld PRL 2013, 110, 196804 2. M. P. Warusawithana et. al. Nat. Comm. 2013, 4, 2351

98

Possible structure of Skyrmions

Non-trivial spin texture in real space

Material : SrFeO3

Reflected in <u>transverse</u> conductivity as THE

Out line of the talk

Non-trivial spin texture in real space

Material : SrFeO3

Observed in transverse conductivity

Topological Hall Effect

Non-trivial spin texture in momentum space

Material : LaVO3 - KTaO3 interface

Observed in **longitudinal** conductivity

Non-linear Fan Diagram

$LaVO_{3}$ -KTaO₃ (LVO-KTO)

Growth Parameters:

- Substrate temperature : 600°C
- Oxygen partial pressure: 9.7 x10⁻⁷ torr
- Laser fluence : 4Jcm⁻²

- 1. Layer by Layer growth of LVO
- 2. Epitaxial film of LVO on KTO
- 3. Atomically well defined interface

102 Nature Communication, **1**, 874 (2020).

Resistance vs Temperature

Q. Is interface of LVO-KTO or LVO conducting?

Different thickness of LVO grown

2D resistivity of the system is independent of thickness of LVO

Ans: Interface conducting

Charge carrier density and mobility

- 1. Carrier density $\sim 3 \times 10^{14}$ cm⁻² : $\frac{1}{2}$ electron per unit cell:
- 2. Critical thickness 3 monolayers of LVO on KTO.

Compare:	LAO/STO	GTO/	STO	LVO/KTO		
Critical Thickness:	YES	No	YES			
¹ / ₂ Carrier doping	No (Much less)	YES		YES		105
				Scientific Reports	5:18647 DOI: 10.1	1038/srep18647

Normal vs Planar Hall

Some analogy: Motivation for further measurements

Signatures:

- 1. Negative in plane Magnetoresistance.
- 2. Planar Hall.
- 3. Anisotropic Magnetoresistance.

<u>LVO-KTO vs reported (Weyl)</u>

Our Sample

Reported Weyl
<u>Calculating the effective masd of the carrier</u>

 λT

 $2\pi^2 K_B m^*$

Very low effective mass

<u>LVO-KTO vs reported (Weyl)</u>

In plane

110

Conclusion: Rashba – Weyl Or Something else???

RESEARCH ARTICLE

Possible Signatures of Chiral Anomaly in the Magnetoresistance of a Quasi-2-Dimensional Electron Gas at the Interface of LaVO₃ and KTaO₃

Harsha Silotia, Anamika Kumari, Anshu Gupta, Joydip De, Santanu Kumar Pal, Ruchi Tomar, and Suvankar Chakraverty*

RESEARCH ARTICLE

www.advquantumtech.com

Unique Signatures of Rashba Effect in Angle Resolved Magnetoresistance

Anshu Gupta, Deepak S. Kathyat, Arnob Mukherjee, Anamika Kumari, Ruchi Tomar, Yogesh Singh, Sanjeev Kumar,* and Suvankar Chakraverty*

What is the angular dependence of AMD and PHE???

Conducting interface of two insulating perovskite Oxides: polar catastrophe !!!

Interface of two insulating perovskite Oxides: Why Conducting???

114

Conducting interface of two insulating perovskite Oxides: polar catastrophe !!!

Polar Catastrophe : 1. $\frac{1}{2}$ electron per unit cell at the interface 2. A critical thickness of film is needed

Planar magnetotransport measurements

Nature Communication, 1, 874 (2020).

Conclusion 1

Realization of 3D like carrier, with

- 1. low effective mass
- 2. Doesn't follow linear 1/B relation in Landau fan diagram: topologically non-trivial spin texture in k-space?
- 3. Barry's phase in Landau fan diagram: linear band dispersion?
- 4. Quantum mobility depends on the relative orientation of applied E and B field. ???

KTaO₃—The New Kid on the Spintronics Block

Anshu Gupta, Harsha Silotia, Anamika Kumari, Manish Dumen, Saveena Goyal, Ruchi Tomar, Neha Wadehra, Pushan Ayyub,* and Suvankar Chakraverty*

