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1. If this spin texture is in the 
real space: Signature in 
transverse-resistance (Hall)

2. If this spin texture is in the 
momentum space: Signature in 
longitudinal-resistance (MR)
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Out line of the talk

Unusual Quantum oscillation in resistance : Non-trivial spin texture 
in momentum space

Material : LaVO3 – KTaO3 interface

Looking at longitudinal conductivity

Grow a oxide thin film using pulsed laser deposition system: Effect of 
laser fluence

Materials : 1. LaVO3-SrTiO3 interface
      2. Sr2FeMoO6  thin films

?
Unusual magneto-transport: negative MR, Anomalous Hall, Topological Hall

Material : 1. LaFeO3 – SrTiO3 interface
    2. W: SFMO



Grow a oxide thin film using pulsed laser deposition system: Effect of 
laser fluence

Unusual Quantum oscillation in resistance : Non-trivial spin texture 
in momentum space

A few more And Struggling
Unusual magneto-transport: negative MR, Anomalous Hall, Topological Hall



Story by a 
93.2% thin film 
grower

1000 thin film 
grown = 100% 
thin film grower

Advantage:

1. Epitaxy
2. Growth 

kinetics
3. Thermodynami

cs

To motivate my young research scholars towards PLD



Substrate

Film

Thermodynamics Kinetics
Ellingham Diagram

LaFeO3

Fe+3

Prescription: 
Pressure ~E-5 Torr
Tg ~ 700C

Grow an Oxide thin film:

Laser fluence



What and Why Perovskite Oxide?

B

O

A

General Formula: 
ABO3

A: Alkali- or rare-earth ion
     B: Transition metal-ion
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ABO3

Exhibit the full spectrum of electronic, 
optical and magnetic properties 

Hwang et al. Nat. Mater. 2012, 11, 103



A high mobility electron gas at LaAlO3/ SrTiO3 
heterointerface

A. Ohtomo et. al. Nature 2004, 427, 423

LaAlO3 Thin Film Crystal

2DEG

SrTiO3 Substrate Crystal
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STO Era
Started KTO Era

Continue

STO Era 
Revised
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Possible mechanisms

1. Oxygen Vacancy.

2. Cation intermixing.

3. Polar Catastrophe.

4. Band alignment 

Effect of film stoichiometry?
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Conducting interface of two insulating perovskite Oxides: 
polar catastrophe !!!
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Interface of two insulating perovskite Oxides: Why Conducting???
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Conducting interface of two insulating perovskite Oxides: 
polar catastrophe !!!

Polar Catastrophe : 1. ½ electron per unit cell at the interface
       2. A critical thickness of film is needed
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0. Why Such interfaces are conducting???



Target

IR laser
substrate

600
℃

Vacuum
（10-6 torr）

Pulsed laser deposition

e-beam

UV laser
pulses

Oxygen
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Thin film growth using Pulse Laser Deposition
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What have we done? 

We have prepared several samples: Several LaVO3 thin 
films on SrTiO3 substrate: kept all growth parameter same 
for all samples only laser energy (laser fluence) was varied.

▪ Mott Insulator with 
band gap ~1.1eV

▪ Lattice mismatch<0.4%

Less possibility of oxygen vacancies in STO of LVO/STO 
heterostruture as compared to LAO-STO



26

Laser Fluence: Laser energy per unit area on the target
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Effect of Laser Fluence:

4
3.3
2
1.2
1.1
0.9
0.8
0.6

1.0

Fluence
J/cm2

On conducting property of the interface

Conducting above 1.1J/cm2
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Effect of Laser Fluence:

4
3.3
2
1.2
1.1
0.9
0.8
0.6

1.0

Fluence
J/cm2

On conducting property of the interface

Conducting above 1.1J/cm2

On film stoichiometry

Below 1J/cm2 La-rich
Above La-deficient
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Film stoichiometry: La-deficiency is needed for interface conductivity

2. Nat. Comm.  2013, 4, 23511. PRL 2013, 110, 196804
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What about other mechanisms are they meaningless???

1. Oxygen Vacancy. : Annealing under oxygen 

2. Cation intermixing. : No critical thickness of 
the flim is needed

3. Polar Catastrophe. : A critical thickness of 
the film is needed



Film thickness dependent transport 
measurements

LVO films < 4ML, Insulating
LVO films ≥ 4ML, Conducting 31

Laser Fluence kept constant (2J/cm2) and grow film with different 
thicknesses



32

Conclusion:

Both A-site deficient film and a critical thickness of the film is needed 
to realize a conducting interface of two insulating perovskite oxide

A-site deficient film triggers polar catastrophe!!! 



Non-trivial spin texture in momentum space

Material : LaVO3 – KTaO3 interface

Looking at longitudinal conductivity



t = 0

Magnetic 
field seen by 
electron 
from time 
“0” to “t”

Signature of non-trivial spin texture in 
real space: Topological Hall Effect



MH

Vyx

I

 RBz
eff

Topological Hall
Berry phase in real space

ρ yx

Magnetic field
ρyx =     RoBz   +     RsM   +

Empirical relation

Normal Hall
Lorentz force

Anomalous Hall
Proportional to M



What if there is non-trivial spin texture in 
“Momentum -Space”
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Possible Non-trivial spin texture in momentum space: Rashba
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Free Electron Model

Rashba Effect
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Strong SOC + Electric field
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Possible perovskite oxide with strond spin-orbit 
coupling: KTaO3

KTaO3(001) Single 
crystal: SOC ~ 300mEv

Phys. Rev. Lett. 108, 117602 (2012)

Possible Strong Spin Orbit 
Coupled perovskite oxides
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Systems to be discussed

4monolayer LaVO3 Thin 
Film Crystal

Insulator (~1.1ev)2DEG

KTaO3 Substrate Crystal 
(~3.5ev)
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Present sample 4ml LVO on KTO 
carrier density ~ 5E13 cm-2

Bso ~ 4.4T : Rashba!!!
Non Trivial spin texture in
“Momentum Space”



Towards the observation of quantum oscillation in the 
magneto-resistance: Shubnikov-de Hass oscillation 

V

B

Classical Quantum

1. Orbit size not-quantized

2. Energy not-quantized

 

En = ђωc (n+1/2): 
ωc = qB/m

Rxx

B

B

Rxx

i

1. Shape of the Fermi 
Surface : Nature of 
the charge carrier, 
2D/3D

2. Effective mass 
3. Nature of the band: 

Trivial/Non-trivial
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Raw data Background subtracted data
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Lifshitz-Onsager equation

 

For a Trivial 
Parabolic band

n

1/B

For a non-Trivial  
band: Say with Dirac 
point
Berry’s Phase

 

n

1/B

0.5

n linear to 1/B!!!

E

k

  

Non-trivial spin 
texture in K-space???

n linear to 1/B???

 

PNAS, 114, 7295–7300 (2017)
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Lifshitz-Onsager equation

B

 

Non-trevial electronic state + Non-trivial spin texture at k-space (???)



Unusual Quantum oscillation in resistance : Non-trivial spin texture 
in momentum space

Material : LaVO3 – KTaO3 interface

Looking at longitudinal conductivity

?



Interface conductivity: Non-stoichiometry triggers the 
conductivity

Real space non-trivial spin texture: Transverse resistance 
as Topological Hall

Momentum space non-trivial spin texture: longitudinal 
resistance unusual SdH
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STO Era
Started KTO Era

Continue

STO Era 
Revised
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Conducting interface of LaFeO3 and SrTiO3
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Sample preparation: RHEED

Resistivity vs temperature: 
conducting interface

Hall and Magnetoresistance
100K 300K



51

Transparent Oxide 
electronics!!!



Solid angle by spins acting as a Fictitious 
magnetic field

Beffective=Ω

S
j

S
i

S
k

e

Fictitious flux (in a continuum limit)

scalar spin chirality
Solid angle : Ω

Φ = (Ω/4π)φ
0 

: 
   
φ

0
=h/e
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Structural phase transition of STO around 120K
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Spin polarized interface to spin-polarized thin film



Sr2FeMoO6Why?

Strong SOC
2DEG

Half Metal

Bulk Single crystal
~8% at RT
~31% at LT

~2.5 % at RT
~ 10% at LT

Thin films
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Question:
Can we increase this in thin film

Summary



Changing the laser fluence
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By us

Summary

Laser fluence can play a vital role !!!
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Problem with SFMO
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W: SFMO Thin Film
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Several 
magneto-electronic 

Phases???



Conclusion

Unusual Quantum oscillation in resistance : Non-trivial spin texture 
in momentum space

Material : LaVO3 – KTaO3 interface

Looking at longitudinal conductivity

Grow a oxide thin film using pulsed laser deposition system: Effect of 
laser fluence

Materials : 1. LaVO3-SrTiO3 interface
      2. Sr2FeMoO6  thin films

Unusual magneto-transport: negative MR, Anomalous Hall, Topological Hall

Material : 1. LaFeO3 – SrTiO3 interface
    2. W: SFMO

Crucial role of film stoichiometry

Non-linear Landau Fan diagram

Crystal structure driven spin 
polarization transition



Thank you !!

Our recent setected publications relevant for this talk:

1. Phys. Rev. B 109, 245405 (2024)
2. Phys. Rev. B (Lett.) 109, L201114 (2024)
3. Advanced Electronic Materials 8 (9), 2200195 (2023).
4. Adv. Quantum Technol, 2100105 (2022).
5. Adv, Mat. 34, 2106481 (2022).
6. Phys. Rev. B (Lett.) 104, L081111 (2021).
7. Adv. Quantum Technol. 2000081 (2020).
8. Advanced Materials Interfaces, 000: 2000646 (2020). 
9.  Nature communication, 11: 874(1-7) (2020).

10. Applied Surface Science, 509: 145214 (2020).
11. Advanced Material Interfaces, 1900941(1-6) (2019).
12. Journal of Applied Physics, 126: 35303 (2019).
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Conventional magnetoresistance measurements

4ml LVO-KTO

Bso ~ 4.4T : Rashba!!!
Non Trivial spin texture in
“Momentum Space”

Signature of weak-antilocalization !
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A high mobility electron gas at LaAlO3/ SrTiO3 
heterointerface

A. Ohtomo et. al. Nature 2004, 427, 423

LaAlO3 Thin Film Crystal

2DEG

SrTiO3 Substrate Crystal

KTaO3

Ba-KTaO3 : Mobility ~ 10,000

KTaO3(001) 
Single crystal: 
SOC ~ 300mEv

Phys. Rev. Lett. 108, 117602 (2012)

Possible Strong 
Spin Orbit 
Coupled 
perovskite oxides

Jpn J Appl Phys, 48(9R):097002, (2009)
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Rxx

i

 

B

kx

ky

kz
x

y

z
B

B
Closed Fermi surface: 

3D type carrier

Finite frequency in 
all direction

Finite frequency in 
only one direction

Open Fermi surface: 
2D type carrier

i

B

i B

i B

:3D type carrierFinite frequency in all direction



Precise film thickness control by RHEED technique

RHEED

Reflection High Energy Electron beam diffraction 
(RHEED) technique

RHEED before deposition RHEED after deposition
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▪ Mott Insulator with 
band gap ~1.1eV

▪ Lattice mismatch<0.4%

LaVO3 and SrTiO3 
heterostructures

Less possibility of oxygen vacancies in STO of LVO/STO 
heterostruture as compared to LAO-STO

Is cationic stoichiometry mandatory to produce 
conductivity at oxide interface?

Ruchi et. al. Adv. Mater. Interfaces 2019, 1900941
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Electron Motion through a non-trivial spin texture

TopologySpinCharge



Target

IR laser
substrate

600
℃

Vacuum
（10-6 torr）

Pulsed laser deposition

e-beam

UV laser
pulses

Oxygen
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Thin film growth using Pulse Laser Deposition



LaVO3-SrTiO3 (001) heterostructures

Deposition parameters:

❑  Oxygen partial pressure (1x10-6 Torr)

❑  Growth temperature (Tg= 600
oC)

❑  Laser spot area (A=0.03 cm2)

❑ Frequency (2Hz)

❑  Laser fluence (Laser energy/area)

Laser fluence is varied
74



Non-trivial spin texture in real space



Multiple q-vectors

Mühlbauer et al, 
Science (2009)

skyrmion crystal

q-vector

q1

q2

q3

skyrmion crystal formation



By Lorentz TEM

Limitation : 

1. The resolution is 
~ 3nm.

2. Difficult for thin 
films (?)
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Applied magnetic field

Fictitious flux (in a continuum limit)
scalar spin chiralityLimitation : 

1. Needs large volume.

Neutron 
diffraction

Topological Hall Effect 
(THE)

Beffective=Ω

Detection techniques :

Resonant soft 
x-ray 
diffraction



t = 0

Magnetic 
field seen by 
electron 
from time 
“0” to “t”

Solid angle Ω = 4π

One Skyrmion One magnetic flux 
Φ= φ

0
=h/e

Magnetic mono pole !!!

Skyrmion : magnetic mono pole !!!

Φ = (Ω/4π)φ
0 

: 
   
φ

0
=h/e
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Fictitious flux (in a continuum limit)
scalar spin chirality

Topological Hall Effect 
(THE)

Beffective=Ω

Detection techniques :



Film stoichiometry by XPS and EDX Spectroscopy

Change in film stoichiometry with laser fluence 80

80



Change in film stoichiometry with laser fluence 81

81

Insulating Conducting

Film stoichiometry is a key to realize conducting 
interface of Perovskite oxides

2. MNat. Comm.  2013, 4, 2351
1. PRL 2013, 110, 196804



H

Vyx

I

ρyx =     RoBz

Empirical relation

Normal Hall
Lorentz force

 

ρ yx

Magnetic field

RoBz
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ρyx =     RoBz   +     RsM

Empirical relation

Normal Hall
Lorentz force

Anomalous Hall
Proportional to M

ρ yx

Magnetic field

RoBz

RsM

RoBz + RsM



Solid angle by spins acting as a Fictitious 
magnetic field

Beffective=Ω

S
j

S
i

S
k

e

Fictitious flux (in a continuum limit)

scalar spin chirality
Solid angle : Ω

Φ = (Ω/4π)φ
0 

: 
   
φ

0
=h/e
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1. Non-trivial quantum oscillation 
in magneto-transport:

a. Nonlinear Landau fan diagram
b. Angular dependent quantum mobility

What will be shown?

4. A step towards room 
temperature oxide electronics:

a. Room temperature anomalous Hall 
effect and Negative magneto resistance

LaVO3 – KTaO3: conducting interface LaFeO3 – SrTiO3: conducting interface

0. Why Such interfaces are conducting???
I. Fundamental Aspects

II. Some Possible applications
a. Holographic Memory
b. Electrostatic Memory



t = 0

Magnetic 
field seen by 
electron 
from time 
“0” to “t”

Skyrmion : magnetic mono pole !!!



t = 0

Magnetic 
field seen by 
electron 
from time 
“0” to “t”

Skyrmion : magnetic mono pole !!!



RHEED Oscillations

RHEED and AFM analysis of the surface of the samples 
grown at different laser fluence

RHEED pattern AFM images

SD: 4.0 J/cm2

SC: 2.0 J/cm2

SB: 1.0 J/cm2

SA: 0.6 J/cm2

Fluence

4 J/cm2

2 J/cm2

1 J/cm2

0.6 J/cm2

88



H = H1

Multi q single domain Single q conical Induced ferromagnetic

H = H2 > H1
H = H3 > H2

H = 0

MR measurements

M
ag

ne
to

 r
es

is
ta

nc
e

Applied Magnetic field



Today we are going to discuss on:

2DEG at the interface of 
two insulators

New aspect: Introduction of 
a. strong spin-orbit coupling.
b. magnetic interaction. 



LaVO3

KTaO3



H = H1

Multi q single domain Single q conical Induced ferromagnetic

H = H2 > H1
H = H3 > H2

M-H measurements

M
ag
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on

Applied Magnetic field



H = H1

Multi q single domain Single q conical Induced ferromagnetic

H = H2 > H1
H = H3 > H2

Hall measurements

H
al
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es
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Applied Magnetic field

Topo
log

ica
l H

all

Fictitious field



Measurements
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Applied Magnetic field
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SrFeO3 Thin film 



There is a dramatic change 
in Hall resistivity as a 
function of temperature.

J. Mater. Chem., 2001, 11, 
2235–2237

   Such material in cubic perovskite family : SrFeO3

Phys. Rev. B 84, 054427 (2011)

Bulk Single crystal:
Several Magnetic Phases

Phys. Rev. B 88, 220405(R)

SFO

<1
1

1>
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2. M. P. Warusawithana et. al. Nat. Comm.  2013, 4, 2351
1. E. Breckenfeld PRL 2013, 110, 196804References:

Comparison of our LVO-STO case with reported 
LAO-STO interface

Film stoichiometry is a 
key to realize 

conducting interface of 
Perovskite oxides
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Phase I (multi-Q)
Possible structure of Skyrmions

T = 3.4 K



Non-trivial spin texture in real space

Material : SrFeO3

Reflected in transverse conductivity as THE



Out line of the talk

Non-trivial spin texture in real space Non-trivial spin texture in momentum space

Material : SrFeO3

Observed in transverse conductivity

Material : LaVO3 – KTaO3 interface

Observed in longitudinal conductivity

Topological Hall Effect Non-linear Fan Diagram

?



LaVO3-KTaO3 (LVO-KTO)

Growth Parameters:

• Substrate temperature : 
600oC

• Oxygen partial pressure: 
9.7 x10-7 torr

• Laser fluence : 4Jcm-2

1. Layer by Layer growth 
of LVO

2. Epitaxial film of LVO on 
KTO

3. Atomically well defined 
interface

102
Nature Communication, 1, 874 (2020).
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Resistance vs Temperature

Q. Is interface of 
LVO-KTO or LVO 
conducting?

Different thickness of 
LVO grown

2D resistivity of the 
system is independent of 
thickness of LVO

Ans: Interface 
conducting

Nature Communication, 1, 874 (2020).
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Quantum Mobility

 

 

Rxx

B

 

Bi
φ



Charge carrier density and mobility

C

Conventional Hall Measurements

4ml
 LVO-KTO

105

Perfect Example of polar Catastrophe???

1. Carrier density ~3x1014 cm-2 : ½ electron per unit cell: 
2. Critical thickness 3 monolayers of LVO on KTO.
Compare: LAO/STO  GTO/STO LVO/KTO
Critical Thickness:   YES    No YES
½ Carrier doping No (Much less)    YES YES

Nature Communication, 1, 874 (2020).

Scientific Reports | 5:18647 | DOI: 10.1038/srep18647
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Normal vs Planar Hall
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Some analogy: Motivation for further measurements

Signatures:

1. Negative in plane Magnetoresistance.
2. Planar Hall.
3. Anisotropic Magnetoresistance.Can 

we s
ee?

??

Weyl Rashba



LVO

KTO

θ
i

Β
Β

LVO-KTO

Out of plane

LVO-KTO vs reported (Weyl)

WTe2
J. Phys.: Condens. Matter 32 (2020) 015702

Our Sample

Reported Weyl
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Calculating the effective masd of the carrier

Very low effective mass
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LVO

KTO

θ
i

Β
Β

LVO-KTO

LVO-KTO

Out of plane
In plane

LVO-KTO vs reported (Weyl)

WTe2
J. Phys.: Condens. Matter 32 (2020) 015702

Na3Bi
Science 350 (6259), 413-416

Our Sample

Reported Weyl
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Conclusion: Rashba – Weyl Or Something else???
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What is the angular dependence of AMD and PHE???
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Conducting interface of two insulating perovskite Oxides: 
polar catastrophe !!!
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Interface of two insulating perovskite Oxides: Why Conducting???
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Conducting interface of two insulating perovskite Oxides: 
polar catastrophe !!!

Polar Catastrophe : 1. ½ electron per unit cell at the interface
       2. A critical thickness of film is needed



Planar magnetotransport measurements
W

ey
l 
se

m
im

et
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o 3
Sn

2S
2

116
Nature Communication, 1, 874 (2020).
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Conclusion 1

Realization of 3D like carrier, with 
1. low effective mass
2. Doesn't follow linear 1/B relation in Landau fan diagram: topologically 

non-trivial spin texture in k-space?
3. Barry’s phase in Landau fan diagram: linear band dispersion?
4. Quantum mobility depends on the relative orientation of applied E and B 

field. ???
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