Detecting gravitational waves using Cosmic Microwave Background

Suvodip Mukherjee

Tata Institute of Fundamental Research

HEARING BEYOND THE STANDARD MODEL WITH COSMIC SOURCES OF GRAVITATIONAL WAVES

ICTS-TIFR, January 6th, 2025

THE SPECTRUM OF GRAVITATIONAL WAVES

• e e sa

Suvodip Mukherjee, 2025

Next Generation CMB Experiment

Suvodip Mukherjee, 2025

Next Generation CMB Experiment

IMPRINTS OF GRAVITATIONAL WAVES

IMPRINTS OF GRAVITATIONAL WAVES

THE SPECTRUM OF GRAVITATIONAL WAVES

Suvodip Mukherjee, 2025

• e esa

THE SPECTRUM OF GRAVITATIONAL WAVES

THE SPECTRUM OF GRAVITATIONAL WAVES

THE SPECTRUM OF GRAVITATIONAL WAVES

Suvodip Mukherjee, 2025

• e e sa

IMPRINTS OF GRAVITATIONAL WAVES USING COSMIC PROBES AT THE LARGEST SCALES.

Cosmic Microwave Background

Feasible in interesting physics regime with existing technology

Galaxy Distribution

Feasible in-principle

CMB AS A PROBE TO GRAVITATIONAL WAVES

CMB as a Probe to Gravitational Waves What is the interaction between CMB and GW?

COSMIC MICROWAVE BACKGROUND TEMPERATURE AND ITS FLUCTUATIONS

COSMIC MICROWAVE BACKGROUND POLARISATION Can CMB be Polarised by Thomson scattering?

COSMIC MICROWAVE BACKGROUND POLARISATION Can CMB be Polarised by Thomson scattering?

COSMIC MICROWAVE BACKGROUND POLARISATION Can CMB be Polarised by Thomson scattering?

COSMIC MICROWAVE BACKGROUND POLARISATION Projection of GW on the sky

COSMIC MICROWAVE BACKGROUND POLARISATION Can GW also generate quadrupolar fluctuation?

COSMIC MICROWAVE BACKGROUND POLARISATION Projection of GW on the sky

COSMIC MICROWAVE BACKGROUND POLARISATION Projection of GW on the sky

COSMIC MICROWAVE BACKGROUND POLARISATION Identifying polarisation pattern on the sky

(In a coordinate independent way)

COSMIC MICROWAVE BACKGROUND POLARISATION

Projection of GW on the sky: E-mode and B-mode patterns

CMB as a Probe to Gravitational Waves What are the observables of this interaction?

CMB fluctuations are zero mean (nearly) Gaussian random field on the sky

$$T(\hat{n}) = \sum_{lm} a_{T,lm} Y_{lm}(\hat{n}) \qquad (Q \pm iU)(\hat{n}) = \sum_{lm} a_{\pm 2,lm \pm 2} Y_{lm}(\hat{n})$$

$$(Q\pm \mathrm{i}U)(\hat{n})=\sum_{lm}a_{\pm 2,lm\pm 2}Y_{lm}(\hat{n})$$

$$a_{E,lm} = -(a_{2,lm} + a_{-2,lm})/2$$

$$a_{B,lm} = i(a_{2,lm} - a_{-2,lm})/2$$

CMB fluctuations are zero mean (nearly) Gaussian random field on the sky

$$T(\hat{n}) = \sum_{lm} a_{T,lm} Y_{lm}(\hat{n}) \qquad (Q \pm iU)(\hat{n}) = \sum_{lm} a_{\pm 2,lm \pm 2} Y_{lm}(\hat{n})$$

CMB as a Probe to Gravitational Waves What is the expected strength of the observables?

OBSERVABLES OF DIFFERENT PERTURBATIONS

29

OBSERVABLES OF DIFFERENT PERTURBATIONS

OBSERVABLES OF GW PERTURBATIONS ON B-MODE Different Cosmic stages

tifr

Evolution of GW signal in an expanding Universe

$$\ddot{h}_{ij} + 2\frac{\dot{a}}{a}\dot{h}_{ij} + k^2h_{ij} = 0$$

Evolution of GW signal in an expanding Universe

$$\ddot{h}_{ij}+2\frac{\dot{a}}{a}\dot{h}_{ij}+k^2h_{ij}=0$$

For super-horizon modes: $k < < \frac{\dot{a}}{a}$

 $h \sim \text{constant}$

Evolution of GW signal in an expanding Universe

$$\ddot{h}_{ij} + 2\frac{\dot{a}}{a}\dot{h}_{ij} + k^2h_{ij} = 0$$

For super-horizon modes: $k < < \frac{\dot{a}}{a}$

 $h \sim \text{constant}$

For sub-horizon modes: $k > > \frac{\dot{a}}{a}$

$$h \sim \frac{1}{a}$$

Evolution of GW signal in an expanding Universe

$$\ddot{h}_{ij} + 2\frac{\dot{a}}{a}\dot{h}_{ij} + k^2h_{ij} = 0$$

For super-horizon modes: $k < < \frac{\dot{a}}{a}$

 $h \sim \text{constant}$

For sub-horizon modes: $k > > \frac{\dot{a}}{a}$

Evolution of GW signal in an expanding Universe

$$\ddot{h}_{ij} + 2\frac{\dot{a}}{a}\dot{h}_{ij} + k^2h_{ij} = 0$$

For super-horizon modes: $k < < \frac{\dot{a}}{a}$

 $h \sim \text{constant}$

For sub-horizon modes:
$$k > > \frac{\dot{a}}{a}$$

 $h \sim \frac{1}{a}$
For modes at horizon entry:
 $a_{enter}H_{enter} \propto k$
 $a_{enter} \propto k^{-2}$ for matter-dominated Universe

Evolution of GW signal in an expanding Universe

Evolution of GW signal in an expanding Universe

OBSERVABLES OF GW PERTURBATIONS ON B-MODE

Signature of evolution on the power spectrum

$$C_{XX'l} = (4\pi)^2 \int k^2 dk P_h(k) \Delta_{Xl}(k) \Delta_{X'l}(k) = \mathbf{E}_{XX'l}(k) \Delta_{X'l}(k) \mathbf{E}_{XX'l}(k) \mathbf{E}_{X'L}(k) \mathbf{E}_{X'L}(k) \mathbf{E}_{X'L}(k)$$

Evolution of the modes

38

Initial GW fluctuation

Angular Modes - Fourier Modes

 $\ell \propto k$

OBSERVABLES OF GW PERTURBATIONS ON B-MODE

Signature of evolution on the power spectrum

$$C_{XX'l} = (4\pi)^2 \int k^2 dk P_h(k) \Delta_{Xl}(k) \Delta_{X'l}(k)$$
 EV

Evolution of the modes

Initial GW fluctuation

Angular Modes - Fourier Modes

 $\ell \propto k$

$$C_{BB,\ell}$$

OBSERVABLES OF GW PERTURBATIONS ON B-MODE

Signature of evolution on the power spectrum

$$C_{XX'l} = (4\pi)^2 \int k^2 \mathrm{d}k P_h(k) \Delta_{Xl}(k) \Delta_{X'l}(k)$$
 Evo

Evolution of the modes

OBSERVABLES OF GW PERTURBATIONS ON B-MODE

Signature of evolution on the power spectrum

$$C_{XX'l} = (4\pi)^2 \int k^2 dk P_h(k) \Delta_{Xl}(k) \Delta_{X'l}(k)$$
 Evolution

Evolution of the modes

OBSERVABLES OF GW PERTURBATIONS ON B-MODE

Signature of evolution on the power spectrum

$$C_{XX'l} = (4\pi)^2 \int k^2 dk P_h(k) \Delta_{Xl}(k) \Delta_{X'l}(k)$$
 Evolution

Evolution of the modes

From numerical code

Lewis and Challinor 2006

OBSERVABLES OF GW PERTURBATIONS ON B-MODE Different Cosmic stages

OBSERVABLES OF GW PERTURBATIONS ON B-MODE Different Cosmic stages

CMB as a Probe to Gravitational Waves What is the prospect of detection?

What is the current status?: Upper Bound

Tristram (2022)

Future Prospects: Simons Observatory

Simons Observatory Collaboration

Future Prospects: LiteBIRD

LiteBIRD Collaboration

Future Prospects: CMB-S4

CMB B-MODE TO DETECT LOW FREQUENCY GW SIGNAL

CMB B-MODE TO DETECT LOW FREQUENCY GW SIGNAL

CMB B-MODE TO DETECT LOW FREQUENCY GW SIGNAL

REFERENCES (A PARTIAL LIST)

- 1. Starobinskii, 1985
- 2. Crittenden, Davis, Steinhardt, 1993
- 3. Atrio-Barandela and Silk, 1993
- 4. Pritchard and Kamionkowski, 2005
- 5. Modern Cosmology, Dodelson
- 6. Cosmology, Weinberg