Crossed modular categories and the Verlinde formula for twisted conformal blocks

Tanmay Deshpande

(joint work with Swarnava Mukhopadhyay)

Tata Institute of Fundamental Research Mumbai, India

Twisted affine Lie algebras

Let $\mathfrak g$ be a simple Lie algebra over $\mathbb C$ and Γ a finite group acting on $\mathfrak g$.

Twisted affine Lie algebras

- Let $\mathfrak g$ be a simple Lie algebra over $\mathbb C$ and Γ a finite group acting on $\mathfrak g$.
- ▶ For $\gamma \in \Gamma$, let $|\gamma|$ denote its order and consider the root of unity $\varepsilon = e^{\frac{2\pi i}{|\gamma|}}$. Let the element γ act on $\mathbb{C}((t))$ by $t \mapsto \varepsilon^{-1}t$.

Twisted affine Lie algebras

- Let $\mathfrak g$ be a simple Lie algebra over $\mathbb C$ and Γ a finite group acting on $\mathfrak g$.
- ► For $\gamma \in \Gamma$, let $|\gamma|$ denote its order and consider the root of unity $\varepsilon = e^{\frac{2\pi i}{|\gamma|}}$. Let the element γ act on $\mathbb{C}((t))$ by $t \mapsto \varepsilon^{-1}t$.
- ► The twisted affine Lie algebra is defined as

$$\widehat{L}(\mathfrak{g},\gamma):=\left(\mathfrak{g}\otimes\mathbb{C}((t))\right)^{\gamma}\oplus\mathbb{C}c$$

with $c \in \widehat{L}(\mathfrak{g},\gamma)$ central and Lie bracket given by

$$[X \otimes f, Y \otimes g] := [X, Y] \otimes fg + \frac{(X, Y)_{\mathfrak{g}}}{|\gamma|} \cdot \mathsf{Res}_{t=0}(g \cdot df) \cdot c,$$

where $(\cdot, \cdot)_{\mathfrak{g}}$ is the normalized Killing form such that $(\theta^{\vee}, \theta^{\vee}) = 2$ for any long root θ of \mathfrak{g} .

Let us fix a positive integer ℓ called level. Let $\mathcal{C}^{\ell}(\mathfrak{g},\gamma)$ be the category of level ℓ integrable representations of $\widehat{L}(\mathfrak{g},\gamma)$, where level ℓ means that the central element c acts by the integer ℓ in the representation.

- Let us fix a positive integer ℓ called level. Let $\mathcal{C}^{\ell}(\mathfrak{g},\gamma)$ be the category of level ℓ integrable representations of $\widehat{L}(\mathfrak{g},\gamma)$, where level ℓ means that the central element c acts by the integer ℓ in the representation.
- ▶ For each $\gamma \in \Gamma$, $C^{\ell}(\mathfrak{g}, \gamma)$ is a finite semisimple abelian category with simple objects $\{\mathcal{H}_{\lambda}\}_{\lambda \in P^{\ell}(\mathfrak{g}, \gamma)}$ parametrized by a certain finite subset $P^{\ell}(\mathfrak{g}, \gamma) \subseteq P_{+}(\mathfrak{g}^{\gamma})$.

- Let us fix a positive integer ℓ called level. Let $\mathcal{C}^{\ell}(\mathfrak{g},\gamma)$ be the category of level ℓ integrable representations of $\widehat{L}(\mathfrak{g},\gamma)$, where level ℓ means that the central element c acts by the integer ℓ in the representation.
- ► For each $\gamma \in \Gamma$, $\mathcal{C}^{\ell}(\mathfrak{g}, \gamma)$ is a finite semisimple abelian category with simple objects $\{\mathcal{H}_{\lambda}\}_{\lambda \in P^{\ell}(\mathfrak{g}, \gamma)}$ parametrized by a certain finite subset $P^{\ell}(\mathfrak{g}, \gamma) \subseteq P_{+}(\mathfrak{g}^{\gamma})$.
- For $\lambda \in P^{\ell}(\mathfrak{g}, \gamma) \subseteq P_{+}(\mathfrak{g}^{\gamma})$, let V_{λ} be the finite dimensional irreducible \mathfrak{g}^{γ} -rep of highest weight λ . Via the evaluation, we can define an action of $\widehat{L}^{+}(\mathfrak{g}, \gamma) = (\mathfrak{g} \otimes \mathbb{C}[[t]])^{\gamma} \oplus \mathbb{C}c$ on V_{λ} , where we let c act by ℓ .

- Let us fix a positive integer ℓ called level. Let $\mathcal{C}^{\ell}(\mathfrak{g},\gamma)$ be the category of level ℓ integrable representations of $\widehat{L}(\mathfrak{g},\gamma)$, where level ℓ means that the central element c acts by the integer ℓ in the representation.
- ▶ For each $\gamma \in \Gamma$, $C^{\ell}(\mathfrak{g}, \gamma)$ is a finite semisimple abelian category with simple objects $\{\mathcal{H}_{\lambda}\}_{\lambda \in P^{\ell}(\mathfrak{g}, \gamma)}$ parametrized by a certain finite subset $P^{\ell}(\mathfrak{g}, \gamma) \subseteq P_{+}(\mathfrak{g}^{\gamma})$.
- For $\lambda \in P^{\ell}(\mathfrak{g}, \gamma) \subseteq P_{+}(\mathfrak{g}^{\gamma})$, let V_{λ} be the finite dimensional irreducible \mathfrak{g}^{γ} -rep of highest weight λ . Via the evaluation, we can define an action of $\widehat{L}^{+}(\mathfrak{g}, \gamma) = (\mathfrak{g} \otimes \mathbb{C}[[t]])^{\gamma} \oplus \mathbb{C}c$ on V_{λ} , where we let c act by ℓ .
- Consider the parabolic Verma module $\operatorname{Ind}_{\widehat{L}^+(\mathfrak{g},\gamma)}^{\widehat{L}(\mathfrak{g},\gamma)}V_{\lambda}$. It has a unique maximal submodule, and the quotient is \mathcal{H}_{λ} .

► For each $\gamma \in \Gamma$ we have the finite semisimple abelian category $C^{\ell}(\mathfrak{g}, \gamma)$.

- ► For each $\gamma \in \Gamma$ we have the finite semisimple abelian category $C^{\ell}(\mathfrak{g}, \gamma)$.
- For $g, \gamma \in \Gamma$ we have a natural isomorphism $\widehat{L}(\mathfrak{g}, \gamma) \stackrel{\cong}{\longrightarrow} \widehat{L}(\mathfrak{g}, g\gamma g^{-1})$, which gives an equivalence of categories $a_{g,\gamma} : \mathcal{C}^{\ell}(\mathfrak{g}, \gamma) \stackrel{\cong}{\longrightarrow} \mathcal{C}^{\ell}(\mathfrak{g}, g\gamma g^{-1})$.

- ► For each $\gamma \in \Gamma$ we have the finite semisimple abelian category $C^{\ell}(\mathfrak{g}, \gamma)$.
- For $g, \gamma \in \Gamma$ we have a natural isomorphism $\widehat{L}(\mathfrak{g}, \gamma) \stackrel{\cong}{\to} \widehat{L}(\mathfrak{g}, g\gamma g^{-1})$, which gives an equivalence of categories $a_{g,\gamma} : \mathcal{C}^{\ell}(\mathfrak{g}, \gamma) \stackrel{\cong}{\to} \mathcal{C}^{\ell}(\mathfrak{g}, g\gamma g^{-1})$.
- For $\mathcal{H} \in \mathcal{C}^{\ell}(\mathfrak{g}, \gamma)$, its restricted dual \mathcal{H}^{\vee} is naturally an object of $\mathcal{C}^{\ell}(\mathfrak{g}, \gamma^{-1})$ and we have a natural isomorphism $\mathcal{H}^{\vee\vee} = \mathcal{H}$. In other words we have a duality $\mathcal{C}^{\ell}(\mathfrak{g}, \gamma) \leftrightarrow \mathcal{C}^{\ell}(\mathfrak{g}, \gamma^{-1})^{op}$, which respects the Γ-action defined above.

- ► For each $\gamma \in \Gamma$ we have the finite semisimple abelian category $C^{\ell}(\mathfrak{g}, \gamma)$.
- For $g, \gamma \in \Gamma$ we have a natural isomorphism $\widehat{L}(\mathfrak{g}, \gamma) \xrightarrow{\cong} \widehat{L}(\mathfrak{g}, g\gamma g^{-1})$, which gives an equivalence of categories $a_{g,\gamma} : \mathcal{C}^{\ell}(\mathfrak{g}, \gamma) \xrightarrow{\cong} \mathcal{C}^{\ell}(\mathfrak{g}, g\gamma g^{-1})$.
- ► For $\mathcal{H} \in \mathcal{C}^{\ell}(\mathfrak{g}, \gamma)$, its restricted dual \mathcal{H}^{\vee} is naturally an object of $\mathcal{C}^{\ell}(\mathfrak{g}, \gamma^{-1})$ and we have a natural isomorphism $\mathcal{H}^{\vee\vee} = \mathcal{H}$. In other words we have a duality $\mathcal{C}^{\ell}(\mathfrak{g}, \gamma) \leftrightarrow \mathcal{C}^{\ell}(\mathfrak{g}, \gamma^{-1})^{op}$, which respects the Γ-action defined above.
- The vacuum object $\mathbb{1}:=\mathcal{H}_0\in\mathcal{C}^\ell(\mathfrak{g},1)$ is a self-dual and Γ -invariant simple object.

- ► For each $\gamma \in \Gamma$ we have the finite semisimple abelian category $C^{\ell}(\mathfrak{g}, \gamma)$.
- For $g, \gamma \in \Gamma$ we have a natural isomorphism $\widehat{L}(\mathfrak{g}, \gamma) \stackrel{\cong}{\to} \widehat{L}(\mathfrak{g}, g\gamma g^{-1})$, which gives an equivalence of categories $a_{g,\gamma} : \mathcal{C}^{\ell}(\mathfrak{g}, \gamma) \stackrel{\cong}{\to} \mathcal{C}^{\ell}(\mathfrak{g}, g\gamma g^{-1})$.
- ► For $\mathcal{H} \in \mathcal{C}^{\ell}(\mathfrak{g}, \gamma)$, its restricted dual \mathcal{H}^{\vee} is naturally an object of $\mathcal{C}^{\ell}(\mathfrak{g}, \gamma^{-1})$ and we have a natural isomorphism $\mathcal{H}^{\vee\vee} = \mathcal{H}$. In other words we have a duality $\mathcal{C}^{\ell}(\mathfrak{g}, \gamma) \leftrightarrow \mathcal{C}^{\ell}(\mathfrak{g}, \gamma^{-1})^{op}$, which respects the Γ-action defined above.
- The vacuum object $\mathbb{1}:=\mathcal{H}_0\in\mathcal{C}^\ell(\mathfrak{g},1)$ is a self-dual and Γ -invariant simple object.
- ▶ This says that $\mathcal{C}^{\ell}(\mathfrak{g}, \Gamma) := \bigoplus_{\gamma \in \Gamma} \mathcal{C}^{\ell}(\mathfrak{g}, \gamma)$ is a finite semisimple Γ-crossed abelian category. (In particular, we have a Γ-grading and a Γ-action on $\mathcal{C}^{\ell}(\mathfrak{g}, \Gamma)$.)

A Γ -crossed modular fusion category is a finite semisimple Γ -crossed abelian category $\mathcal C$ with a monoidal structure $(\mathcal C,\otimes,\mathbb 1)$ such that

 $\blacktriangleright \ \mathcal{C}_{\gamma_1} \otimes \mathcal{C}_{\gamma_2} \subseteq \mathcal{C}_{\gamma_1 \gamma_2}$

- $\blacktriangleright \ \mathcal{C}_{\gamma_1} \otimes \mathcal{C}_{\gamma_2} \subseteq \mathcal{C}_{\gamma_1 \gamma_2}$
- ightharpoonlimet The Γ-action on C is monoidal

- $\triangleright \ \mathcal{C}_{\gamma_1} \otimes \mathcal{C}_{\gamma_2} \subseteq \mathcal{C}_{\gamma_1 \gamma_2}$
- ightharpoonup The Γ -action on $\mathcal C$ is monoidal
- ▶ The duality functor $(\cdot)^{\vee}: \mathcal{C} \to \mathcal{C}^{op}$ makes \mathcal{C} a rigid monoidal category with the identification $(\cdot)^{\vee\vee} \cong id_{\mathcal{C}}$ being monoidal and defining a ribbon structure.

- $ightharpoonup \mathcal{C}_{\gamma_1} \otimes \mathcal{C}_{\gamma_2} \subseteq \mathcal{C}_{\gamma_1 \gamma_2}$
- ightharpoonup The Γ -action on $\mathcal C$ is monoidal
- ▶ The duality functor $(\cdot)^{\vee}: \mathcal{C} \to \mathcal{C}^{op}$ makes \mathcal{C} a rigid monoidal category with the identification $(\cdot)^{\vee\vee} \cong id_{\mathcal{C}}$ being monoidal and defining a ribbon structure.
- ▶ Crossed braid isomorphisms: $\beta_{X,Y}: X \otimes Y \xrightarrow{\cong} \gamma(Y) \otimes X$ for $X \in \mathcal{C}_{\gamma}, Y \in \mathcal{C}$ satisfying certain compatibilities like the hexagon axiom etc and such that \mathcal{C}_1 is a modular fusion category.

A Γ -crossed modular fusion category is a finite semisimple Γ -crossed abelian category $\mathcal C$ with a monoidal structure $(\mathcal C,\otimes,\mathbb 1)$ such that

- $ightharpoonup \mathcal{C}_{\gamma_1} \otimes \mathcal{C}_{\gamma_2} \subseteq \mathcal{C}_{\gamma_1 \gamma_2}$
- ightharpoonlime The Γ-action on C is monoidal
- ▶ The duality functor $(\cdot)^{\vee}: \mathcal{C} \to \mathcal{C}^{op}$ makes \mathcal{C} a rigid monoidal category with the identification $(\cdot)^{\vee\vee} \cong id_{\mathcal{C}}$ being monoidal and defining a ribbon structure.
- ▶ Crossed braid isomorphisms: $\beta_{X,Y}: X \otimes Y \xrightarrow{\cong} \gamma(Y) \otimes X$ for $X \in \mathcal{C}_{\gamma}, Y \in \mathcal{C}$ satisfying certain compatibilities like the hexagon axiom etc and such that \mathcal{C}_1 is a modular fusion category.

Theorem (D., Mukhopadhyay)

Suppose the Γ -action on $\mathfrak g$ preserves a Borel subalgebra. Then the category $\mathcal C^\ell(\mathfrak g,\Gamma)$ has a natural structure of a Γ -crossed modular fusion category.

Ongoing work: The first restriction can be removed.

Question

Given a finite semisimple Γ -crossed abelian category, how can we upgrade it to a Γ -crossed modular fusion category?

Question

Given a finite semisimple Γ -crossed abelian category, how can we upgrade it to a Γ -crossed modular fusion category?

▶ Given objects $A_i \in \mathcal{C}_{\gamma_i}$, we must define the object $A_1 \otimes \cdots \otimes A_n \in \mathcal{C}_{\gamma_1 \cdots \gamma_n}$ satisfying the necessary compatibilities.

Question

Given a finite semisimple Γ -crossed abelian category, how can we upgrade it to a Γ -crossed modular fusion category?

- ▶ Given objects $A_i \in \mathcal{C}_{\gamma_i}$, we must define the object $A_1 \otimes \cdots \otimes A_n \in \mathcal{C}_{\gamma_1 \cdots \gamma_n}$ satisfying the necessary compatibilities.
- ▶ This is equivalent to defining the multiplicity spaces $\operatorname{Hom}(A, A_1 \otimes \cdots \otimes A_n) = \operatorname{Hom}(\mathbb{1}, A_1 \otimes \cdots \otimes A_n \otimes A^{\vee})$ for all $A \in \mathcal{C}_{\gamma_1 \cdots \gamma_n}$, and these spaces must satisfy suitable conditions.

Question

Given a finite semisimple Γ -crossed abelian category, how can we upgrade it to a Γ -crossed modular fusion category?

- ▶ Given objects $A_i \in \mathcal{C}_{\gamma_i}$, we must define the object $A_1 \otimes \cdots \otimes A_n \in \mathcal{C}_{\gamma_1 \cdots \gamma_n}$ satisfying the necessary compatibilities.
- ▶ This is equivalent to defining the multiplicity spaces $\operatorname{Hom}(A, A_1 \otimes \cdots \otimes A_n) = \operatorname{Hom}(\mathbb{1}, A_1 \otimes \cdots \otimes A_n \otimes A^{\vee})$ for all $A \in \mathcal{C}_{\gamma_1 \cdots \gamma_n}$, and these spaces must satisfy suitable conditions.
- ▶ In other words, given any finite collection of objects $A_i \in \mathcal{C}_{\gamma_i}$ with $\gamma_1 \cdots \gamma_n = 1$, we must assign a finite dimensional vector space to play the role of $\mathsf{Hom}(\mathbb{1}, A_1 \otimes \cdots \otimes A_n)$.

Question

Given a finite semisimple Γ -crossed abelian category, how can we upgrade it to a Γ -crossed modular fusion category?

- ▶ Given objects $A_i \in \mathcal{C}_{\gamma_i}$, we must define the object $A_1 \otimes \cdots \otimes A_n \in \mathcal{C}_{\gamma_1 \cdots \gamma_n}$ satisfying the necessary compatibilities.
- ▶ This is equivalent to defining the multiplicity spaces $\operatorname{Hom}(A, A_1 \otimes \cdots \otimes A_n) = \operatorname{Hom}(\mathbb{1}, A_1 \otimes \cdots \otimes A_n \otimes A^{\vee})$ for all $A \in \mathcal{C}_{\gamma_1 \cdots \gamma_n}$, and these spaces must satisfy suitable conditions.
- ▶ In other words, given any finite collection of objects $A_i \in \mathcal{C}_{\gamma_i}$ with $\gamma_1 \cdots \gamma_n = 1$, we must assign a finite dimensional vector space to play the role of $\mathsf{Hom}(\mathbb{1}, A_1 \otimes \cdots \otimes A_n)$.

Theorem (D., Mukhopadhyay)

Let $\mathcal C$ be a Γ -crossed abelian category. Then upgrading $\mathcal C$ to a Γ -crossed modular fusion category is equivalent to defining a $\mathcal C$ -extended Γ -crossed modular functor.

Some history

▶ The classical untwisted case (i.e. $\Gamma=1$) was studied in the 1980's by the physicists Wess-Zumino-Witten, Verlinde and others.

Some history

- ▶ The classical untwisted case (i.e. $\Gamma = 1$) was studied in the 1980's by the physicists Wess-Zumino-Witten, Verlinde and others.
- The mathematical foundations and proofs were worked on by Tsuchiya-Ueno-Yamada, Beauville, Laszlo, Sorger, Faltings, Huang, Teleman and others.

Some history

- ▶ The classical untwisted case (i.e. $\Gamma = 1$) was studied in the 1980's by the physicists Wess-Zumino-Witten, Verlinde and others.
- The mathematical foundations and proofs were worked on by Tsuchiya-Ueno-Yamada, Beauville, Laszlo, Sorger, Faltings, Huang, Teleman and others.
- Twisted conformal blocks and their analogous properties in various settings have been studied by many authors like Birke-Fuchs-Schweigert, Shen-Wang, Frenkel-Szczesny, Damiolini, Hong-Kumar and others.

Let $\tilde{C} \to C$ be an admissible Γ -cover of (possibly nodal) complex projective curve of genus g with smooth marked points $\vec{p} = (p_1, \cdots, p_n)$ on C along with choice of lifts \tilde{p} on \tilde{C} such that outside \vec{p} and the nodes of C, we have an unramified Γ -covering.

- Let $\tilde{C} \to C$ be an admissible Γ -cover of (possibly nodal) complex projective curve of genus g with smooth marked points $\vec{p} = (p_1, \cdots, p_n)$ on C along with choice of lifts $\tilde{\vec{p}}$ on \tilde{C} such that outside \vec{p} and the nodes of C, we have an unramified Γ -covering.
- In particular, we have an action of Γ on \tilde{C} such that the stabilizer $\Gamma_{\tilde{p}}$ of any point is a cyclic subgroup of Γ .

- Let $\tilde{C} \to C$ be an admissible Γ -cover of (possibly nodal) complex projective curve of genus g with smooth marked points $\vec{p} = (p_1, \cdots, p_n)$ on C along with choice of lifts $\vec{\tilde{p}}$ on \tilde{C} such that outside \vec{p} and the nodes of C, we have an unramified Γ -covering.
 - In particular, we have an action of Γ on \tilde{C} such that the stabilizer $\Gamma_{\tilde{p}}$ of any point is a cyclic subgroup of Γ .
 - ▶ The choice of the lifts \tilde{p}_i of p_i (and the root of unity $e^{-|\tilde{\Gamma}_{\tilde{p}_i}|}$) determines a generator γ_i of $\Gamma_{\tilde{p}_i} \leq \Gamma$. Hence a Γ -cover as above determines $\vec{\gamma} \in \Gamma^n$ associated with the marked points.

- Let $\tilde{C} \to C$ be an admissible Γ -cover of (possibly nodal) complex projective curve of genus g with smooth marked points $\vec{p} = (p_1, \cdots, p_n)$ on C along with choice of lifts \tilde{p} on \tilde{C} such that outside \vec{p} and the nodes of C, we have an unramified Γ -covering.
- In particular, we have an action of Γ on \tilde{C} such that the stabilizer $\Gamma_{\tilde{p}}$ of any point is a cyclic subgroup of Γ .
- ► The choice of the lifts \tilde{p}_i of p_i (and the root of unity $e^{\frac{2\pi\sqrt{-1}}{|\Gamma_{\tilde{p}_i}|}}$) determines a generator γ_i of $\Gamma_{\tilde{p}_i} \leq \Gamma$. Hence a Γ -cover as above determines $\vec{\gamma} \in \Gamma^n$ associated with the marked points.
- Also choose special formal local parameters \tilde{t}_i at \tilde{p}_i such that $\tilde{t}_i^{|\gamma_i|}$ is a formal local parameter t_i at p_i . This choice gives us an identification $\mathcal{K}_{\tilde{p}_i} \cong \mathbb{C}((\tilde{t}_i))$ which respects the γ_i action on both sides.

- Let $\tilde{C} \to C$ be an admissible Γ -cover of (possibly nodal) complex projective curve of genus g with smooth marked points $\vec{p} = (p_1, \cdots, p_n)$ on C along with choice of lifts $\tilde{\vec{p}}$ on \tilde{C} such that outside \vec{p} and the nodes of C, we have an unramified Γ -covering.
- In particular, we have an action of Γ on \tilde{C} such that the stabilizer $\Gamma_{\tilde{p}}$ of any point is a cyclic subgroup of Γ .
- ► The choice of the lifts \tilde{p}_i of p_i (and the root of unity $e^{\frac{2\pi\sqrt{-1}}{|\Gamma_{\tilde{p}_i}|}}$) determines a generator γ_i of $\Gamma_{\tilde{p}_i} \leq \Gamma$. Hence a Γ -cover as above determines $\vec{\gamma} \in \Gamma^n$ associated with the marked points.
- Also choose special formal local parameters \tilde{t}_i at \tilde{p}_i such that $\tilde{t}_i^{|\gamma_i|}$ is a formal local parameter t_i at p_i . This choice gives us an identification $\mathcal{K}_{\tilde{p}_i} \cong \mathbb{C}((\tilde{t}_i))$ which respects the γ_i action on both sides.
- ▶ We have the moduli stacks $\overline{\mathcal{M}}_{g,n}^{\Gamma}$ of such *n*-marked admissible Γ-covers $(\tilde{C} \to C, \tilde{\vec{p}}, \tilde{\vec{t}})$.

• For $\vec{\gamma}=(\gamma_1,\cdots,\gamma_n)\in\Gamma^n$ define the Lie algebra

$$\widehat{L}_n(\mathfrak{g}, \vec{\gamma}) := \bigoplus_i \widehat{L}(\mathfrak{g}, \gamma_i)/\mathfrak{z},$$

where
$$\mathfrak{z} = \{(a_1, \cdots, a_n) \subseteq \mathbb{C} c^{\oplus n} | \Sigma a_i = 0\}.$$

▶ For $\vec{\gamma} = (\gamma_1, \dots, \gamma_n) \in \Gamma^n$ define the Lie algebra

$$\widehat{L}_n(\mathfrak{g}, \vec{\gamma}) := \bigoplus_i \widehat{L}(\mathfrak{g}, \gamma_i)/\mathfrak{z},$$

where
$$\mathfrak{z}=\{(a_1,\cdots,a_n)\subseteq\mathbb{C}c^{\oplus n}|\Sigma a_i=0\}.$$

▶ Let $\mathcal{H}_i \in \mathcal{C}^{\ell}(\mathfrak{g}, \gamma_i)$. Then the tensor product $\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n$ has a natural action of $\widehat{L}_n(\mathfrak{g}, \vec{\gamma})$.

▶ For $\vec{\gamma} = (\gamma_1, \dots, \gamma_n) \in \Gamma^n$ define the Lie algebra

$$\widehat{L}_n(\mathfrak{g}, \vec{\gamma}) := \bigoplus_i \widehat{L}(\mathfrak{g}, \gamma_i)/\mathfrak{z},$$

where $\mathfrak{z}=\{(a_1,\cdots,a_n)\subseteq\mathbb{C}c^{\oplus n}|\Sigma a_i=0\}.$

- ▶ Let $\mathcal{H}_i \in \mathcal{C}^{\ell}(\mathfrak{g}, \gamma_i)$. Then the tensor product $\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n$ has a natural action of $\widehat{L}_n(\mathfrak{g}, \vec{\gamma})$.
- Let $(\tilde{C} \to C, \vec{\tilde{p}}, \vec{\tilde{t}})$ be an admissible Γ-cover. This determines $\vec{\gamma}$ and a Lie algebra homomorphism $\mathfrak{g}(\tilde{C} \setminus \Gamma \cdot \vec{\tilde{p}})^{\Gamma} \to \widehat{L}_{n}(\mathfrak{g}, \vec{\gamma}).$

▶ For $\vec{\gamma} = (\gamma_1, \dots, \gamma_n) \in \Gamma^n$ define the Lie algebra

$$\widehat{L}_n(\mathfrak{g}, \vec{\gamma}) := \bigoplus_i \widehat{L}(\mathfrak{g}, \gamma_i)/\mathfrak{z},$$

where $\mathfrak{z}=\{(a_1,\cdots,a_n)\subseteq\mathbb{C}c^{\oplus n}|\Sigma a_i=0\}.$

- ▶ Let $\mathcal{H}_i \in \mathcal{C}^{\ell}(\mathfrak{g}, \gamma_i)$. Then the tensor product $\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n$ has a natural action of $\widehat{L}_n(\mathfrak{g}, \vec{\gamma})$.
- Let $(\tilde{C} \to C, \vec{\tilde{p}}, \vec{\tilde{t}})$ be an admissible Γ-cover. This determines $\vec{\gamma}$ and a Lie algebra homomorphism $\mathfrak{g}(\tilde{C} \setminus \Gamma \cdot \vec{\tilde{p}})^{\Gamma} \to \widehat{L}_n(\mathfrak{g}, \vec{\gamma}).$
- ► Hence we may consider the vector space of coinvariants:

$$\mathcal{V}_{ec{\mathcal{H}},\Gamma}(ilde{\mathcal{C}} o\mathcal{C},ec{ ilde{p}},ec{ ilde{t}}):=\left[\mathcal{H}_1\otimes\cdots\otimes\mathcal{H}_n
ight]_{\mathfrak{q}(ilde{\mathcal{C}}\setminus\Gamma\cdotec{ ilde{p}})^\Gamma}.$$

Twisted conformal blocks

▶ For $\vec{\gamma} = (\gamma_1, \dots, \gamma_n) \in \Gamma^n$ define the Lie algebra

$$\widehat{L}_n(\mathfrak{g}, \vec{\gamma}) := \bigoplus_i \widehat{L}(\mathfrak{g}, \gamma_i)/\mathfrak{z},$$

where $\mathfrak{z}=\{(a_1,\cdots,a_n)\subseteq\mathbb{C}c^{\oplus n}|\Sigma a_i=0\}.$

- ▶ Let $\mathcal{H}_i \in \mathcal{C}^{\ell}(\mathfrak{g}, \gamma_i)$. Then the tensor product $\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n$ has a natural action of $\widehat{L}_n(\mathfrak{g}, \vec{\gamma})$.
- Let $(\tilde{C} \to C, \vec{\tilde{p}}, \vec{\tilde{t}})$ be an admissible Γ-cover. This determines $\vec{\gamma}$ and a Lie algebra homomorphism $\mathfrak{q}(\tilde{C} \setminus \Gamma \cdot \vec{\tilde{p}})^{\Gamma} \to \widehat{L}_{n}(\mathfrak{q}, \vec{\gamma}).$
- ► Hence we may consider the vector space of coinvariants:

$$\mathcal{V}_{\vec{\mathcal{H}},\Gamma}(\tilde{C} \to C,\vec{\tilde{p}},\vec{\tilde{t}}) := \left[\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n\right]_{\mathfrak{g}(\tilde{C} \setminus \Gamma \cdot \vec{\tilde{p}})^{\Gamma}}.$$

• Working with families of admissible covers, we define the sheaf $\mathcal{V}_{\vec{\mathcal{H}}\,\Gamma}$ of twisted conformal blocks on $\widehat{\overline{\mathcal{M}}}_{g,n}^{\Gamma}(\vec{\gamma})$.

Twisted conformal blocks and the Γ -crossed modular functor

Theorem (D., Mukhopadhyay)

(Suppose that the action of Γ on $\mathfrak g$ preserves a Borel.) The collection of the sheaves $\mathcal V_{\vec{\mathcal H},\Gamma}$ of twisted conformal blocks on the various moduli stacks $\widehat{\overline{\mathcal M}}_{g,n}^{\Gamma}(\vec{\gamma})$ satisfy the axioms of a $\mathcal C^\ell(\mathfrak g,\Gamma)$ -extended Γ -crossed modular functor. In particular:

Twisted conformal blocks and the Γ-crossed modular functor

Theorem (D., Mukhopadhyay)

(Suppose that the action of Γ on $\mathfrak g$ preserves a Borel.) The collection of the sheaves $\mathcal V_{\vec{\mathcal H},\Gamma}$ of twisted conformal blocks on the various moduli stacks $\widehat{\overline{\mathcal M}}_{g,n}^{\Gamma}(\vec{\gamma})$ satisfy the axioms of a $\mathcal C^\ell(\mathfrak g,\Gamma)$ -extended Γ -crossed modular functor. In particular:

▶ The sheaves $V_{\vec{\mathcal{H}},\Gamma}$ are in fact vector bundles and they furthermore admit a natural flat projective log-connection.

Twisted conformal blocks and the Γ -crossed modular functor

Theorem (D., Mukhopadhyay)

(Suppose that the action of Γ on $\mathfrak g$ preserves a Borel.) The collection of the sheaves $\mathcal V_{\vec{\mathcal H},\Gamma}$ of twisted conformal blocks on the various moduli stacks $\widehat{\overline{\mathcal M}}_{g,n}^{\Gamma}(\vec{\gamma})$ satisfy the axioms of a $\mathcal C^\ell(\mathfrak g,\Gamma)$ -extended Γ -crossed modular functor. In particular:

- ▶ The sheaves $V_{\vec{\mathcal{H}},\Gamma}$ are in fact vector bundles and they furthermore admit a natural flat projective log-connection.
- The sheaves (equipped with the above connections) satisfy the propagation of vacua and factorization axioms.

Twisted conformal blocks and the Γ -crossed modular functor

Theorem (D., Mukhopadhyay)

(Suppose that the action of Γ on $\mathfrak g$ preserves a Borel.) The collection of the sheaves $\mathcal V_{\vec{\mathcal H},\Gamma}$ of twisted conformal blocks on the various moduli stacks $\widehat{\overline{\mathcal M}}_{g,n}^{\Gamma}(\vec{\gamma})$ satisfy the axioms of a $\mathcal C^\ell(\mathfrak g,\Gamma)$ -extended Γ -crossed modular functor. In particular:

- ▶ The sheaves $V_{\vec{\mathcal{H}},\Gamma}$ are in fact vector bundles and they furthermore admit a natural flat projective log-connection.
- ► The sheaves (equipped with the above connections) satisfy the propagation of vacua and factorization axioms.

Hence we see that $\mathcal{C}^{\ell}(\mathfrak{g},\Gamma)$ has the structure of a Γ -crossed modular fusion category. Let us denote the monoidal fusion product on this category by \odot .

Let $\mathcal{H}_i \in \mathcal{C}^{\ell}(\mathfrak{g}, \gamma_i)$, with $\gamma_1 \cdots \gamma_n = 1$. Consider the corresponding Γ -cover $(\widetilde{C} \to \mathbb{P}^1, \vec{\widetilde{p}})$ with ramification data $\vec{\gamma}$. Then the multiplicity space $\operatorname{Hom}(\mathbb{1}, \mathcal{H}_1 \odot \cdots \odot \mathcal{H}_n)$ is defined to be the space of coinvariants $[\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n]_{\mathfrak{g}(\widetilde{C} \setminus \Gamma : \widetilde{p})\Gamma}$.

- Let $\mathcal{H}_i \in \mathcal{C}^{\ell}(\mathfrak{g}, \gamma_i)$, with $\gamma_1 \cdots \gamma_n = 1$. Consider the corresponding Γ -cover $(\widetilde{C} \to \mathbb{P}^1, \vec{\widetilde{p}})$ with ramification data $\vec{\gamma}$. Then the multiplicity space $\operatorname{Hom}(\mathbb{1}, \mathcal{H}_1 \odot \cdots \odot \mathcal{H}_n)$ is defined to be the space of coinvariants $[\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n]_{\mathfrak{q}(\widetilde{C} \setminus \Gamma \cdot \vec{\widetilde{p}})\Gamma}$.
- ▶ Turning this around, the rank of the vector bundle $\mathcal{V}_{\vec{\mathcal{H}},\Gamma}$ of twisted conformal blocks on $\widehat{\overline{\mathcal{M}}}_{0,n}^{\Gamma}(\vec{\gamma})$ equals the dimension of this multiplicity space.

- Let $\mathcal{H}_i \in \mathcal{C}^{\ell}(\mathfrak{g}, \gamma_i)$, with $\gamma_1 \cdots \gamma_n = 1$. Consider the corresponding Γ -cover $(\widetilde{C} \to \mathbb{P}^1, \vec{\widetilde{p}})$ with ramification data $\vec{\gamma}$. Then the multiplicity space $\operatorname{Hom}(\mathbb{1}, \mathcal{H}_1 \odot \cdots \odot \mathcal{H}_n)$ is defined to be the space of coinvariants $[\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n]_{\mathfrak{q}(\widetilde{C} \setminus \Gamma \cdot \vec{\widetilde{p}})\Gamma}$.
- ▶ Turning this around, the rank of the vector bundle $\mathcal{V}_{\vec{\mathcal{H}},\Gamma}$ of twisted conformal blocks on $\widehat{\overline{\mathcal{M}}}_{0,n}^{\Gamma}(\vec{\gamma})$ equals the dimension of this multiplicity space.
- More generally, the ranks of all the vector bundles $\mathcal{V}_{\vec{\mathcal{H}},\Gamma}$ on various $\widehat{\overline{\mathcal{M}}}_{g,n}^{\Gamma}(\vec{\gamma})$ equal the dimensions of suitable defined multiplicity spaces.

- Let $\mathcal{H}_i \in \mathcal{C}^{\ell}(\mathfrak{g}, \gamma_i)$, with $\gamma_1 \cdots \gamma_n = 1$. Consider the corresponding Γ -cover $(\widetilde{C} \to \mathbb{P}^1, \vec{\widetilde{p}})$ with ramification data $\vec{\gamma}$. Then the multiplicity space $\operatorname{Hom}(\mathbb{1}, \mathcal{H}_1 \odot \cdots \odot \mathcal{H}_n)$ is defined to be the space of coinvariants $[\mathcal{H}_1 \otimes \cdots \otimes \mathcal{H}_n]_{\mathfrak{q}(\widetilde{C} \setminus \Gamma \cdot \vec{\widetilde{p}})\Gamma}$.
- ▶ Turning this around, the rank of the vector bundle $\mathcal{V}_{\vec{\mathcal{H}},\Gamma}$ of twisted conformal blocks on $\widehat{\overline{\mathcal{M}}}_{0,n}^{\Gamma}(\vec{\gamma})$ equals the dimension of this multiplicity space.
- More generally, the ranks of all the vector bundles $\mathcal{V}_{\vec{\mathcal{H}},\Gamma}$ on various $\widehat{\overline{\mathcal{M}}}_{g,n}^{\Gamma}(\vec{\gamma})$ equal the dimensions of suitable defined multiplicity spaces.
- In any Γ-crossed modular fusion category, we compute the dimensions of all the relevant multiplicity spaces in terms of certain "crossed S-matrices". This is the categorical twisted Verlinde formula.

Let $\mathcal{C} = \bigoplus_{\gamma \in \Gamma} \mathcal{C}_{\gamma}$ be a Γ -crossed modular fusion category.

Let $\gamma \in \Gamma$. Then the number of simple objects of \mathcal{C}_{γ} equals the number of γ -stable simple objects of \mathcal{C}_1 .

Cor: $|P^{\ell}(\mathfrak{g},\gamma)| = |P^{\ell}(\mathfrak{g})^{\gamma}|.$

Let $\mathcal{C} = \bigoplus_{\gamma \in \Gamma} \mathcal{C}_{\gamma}$ be a Γ -crossed modular fusion category.

- Let $\gamma \in \Gamma$. Then the number of simple objects of \mathcal{C}_{γ} equals the number of γ -stable simple objects of \mathcal{C}_1 .
 - Cor: $|P^{\ell}(\mathfrak{g},\gamma)| = |P^{\ell}(\mathfrak{g})^{\gamma}|.$
- For each γ -stable simple object C in C_1 , choose an isomorphism $\gamma(C) \xrightarrow{\psi_C} C$. Let M be a simple object of C_{γ} .

Let $\mathcal{C} = \bigoplus_{\gamma \in \Gamma} \mathcal{C}_{\gamma}$ be a Γ -crossed modular fusion category.

- Let $\gamma \in \Gamma$. Then the number of simple objects of \mathcal{C}_{γ} equals the number of γ -stable simple objects of \mathcal{C}_1 . Cor: $|P^{\ell}(\mathfrak{q}, \gamma)| = |P^{\ell}(\mathfrak{q})^{\gamma}|$.
- ► For each γ -stable simple object C in C_1 , choose an isomorphism $\gamma(C) \xrightarrow{\psi_C} C$. Let M be a simple object of C_{γ} .
- ▶ Define $\widetilde{S}_{CM}^{\gamma}$ to be the categorical trace of the composition

$$C \odot M \xrightarrow{\beta_{C,M}} M \odot C \xrightarrow{\beta_{M,C}} \gamma(C) \odot M \xrightarrow{\psi_C} C \odot M.$$

Let $\mathcal{C} = \bigoplus_{\gamma \in \Gamma} \mathcal{C}_{\gamma}$ be a Γ -crossed modular fusion category.

- Let $\gamma \in \Gamma$. Then the number of simple objects of \mathcal{C}_{γ} equals the number of γ -stable simple objects of \mathcal{C}_1 . Cor: $|P^{\ell}(\mathfrak{q}, \gamma)| = |P^{\ell}(\mathfrak{q})^{\gamma}|$.
- ► For each γ -stable simple object C in C_1 , choose an isomorphism $\gamma(C) \xrightarrow{\psi_C} C$. Let M be a simple object of C_{γ} .
- ▶ Define $\widetilde{S}_{C.M}^{\gamma}$ to be the categorical trace of the composition

$$C \odot M \xrightarrow{\beta_{C,M}} M \odot C \xrightarrow{\beta_{M,C}} \gamma(C) \odot M \xrightarrow{\psi_C} C \odot M.$$

The traces above define the unitary (after normalization) $\gamma\text{-crossed S-matrix }S^\gamma$.

Let $\mathcal{C} = \bigoplus_{\gamma \in \Gamma} \mathcal{C}_{\gamma}$ be a Γ -crossed modular fusion category.

- Let $\gamma \in \Gamma$. Then the number of simple objects of \mathcal{C}_{γ} equals the number of γ -stable simple objects of \mathcal{C}_1 . Cor: $|P^{\ell}(\mathfrak{q}, \gamma)| = |P^{\ell}(\mathfrak{q})^{\gamma}|$.
- ► For each γ -stable simple object C in C_1 , choose an isomorphism $\gamma(C) \xrightarrow{\psi_C} C$. Let M be a simple object of C_{γ} .
- ▶ Define $\widetilde{S}_{C,M}^{\gamma}$ to be the categorical trace of the composition

$$C \odot M \xrightarrow{\beta_{C,M}} M \odot C \xrightarrow{\beta_{M,C}} \gamma(C) \odot M \xrightarrow{\psi_C} C \odot M.$$

- The traces above define the unitary (after normalization) γ -crossed S-matrix S^{γ} .
- ▶ For $\mathcal{C}^{\ell}(\mathfrak{g}, \Gamma)$, the crossed S-matrices can be explicitly computed. Hence the ranks of the vector bundles of conformal blocks can be calculated using the twisted categorical Verlinde formula.

Twisted Verlinde formula for twisted conformal blocks

Consider a homomorphism $\pi_1(C \setminus \vec{p}, \star) \to \Gamma$ with image Γ° and the associated admissible cover $(\tilde{C} \to C, \tilde{\vec{p}})$ with monodromies $\vec{\gamma} \in (\Gamma^{\circ})^n \subseteq \Gamma^n$.

Theorem (D., Mukhopadhyay)

Suppose that Γ preserves a Borel subalgebra in \mathfrak{g} . Let $\lambda_i \in P^{\ell}(\mathfrak{g}, \gamma_i)$. Then

$$\dim \mathcal{V}_{\vec{\lambda},\Gamma}(\tilde{C} \to C, \vec{\tilde{p}}) = \sum_{\lambda \in P^{\ell}(\mathfrak{g})^{\Gamma^{\circ}}} \frac{S_{\lambda_{1},\lambda}^{\gamma_{1}} \cdots S_{\lambda_{n},\lambda}^{\gamma_{n}}}{\left(S_{0,\lambda}\right)^{n+2g-2}}.$$

Consider $\mathbb{Z}/3\mathbb{Z}$ acting on \mathfrak{g} of type D_4 by diagram automorphisms rotating the Dynkin diagram. In this case $\mathfrak{g}^{\mathbb{Z}/3\mathbb{Z}}$ is of type G_2 . The weight 0 of G_2 always lies in $P^{\ell}(D_4, \overline{1}) \subseteq P_+(G_2)$ for all ℓ .

- Consider $\mathbb{Z}/3\mathbb{Z}$ acting on \mathfrak{g} of type D_4 by diagram automorphisms rotating the Dynkin diagram. In this case $\mathfrak{g}^{\mathbb{Z}/3\mathbb{Z}}$ is of type G_2 . The weight 0 of G_2 always lies in $P^{\ell}(D_4, \overline{1}) \subseteq P_+(G_2)$ for all ℓ .
- Consider the $\mathbb{Z}/3\mathbb{Z}$ -cover $(E \to \mathbb{P}^1, \vec{\tilde{p}}) \in \widetilde{\overline{\mathcal{M}}}_{0,3}^{\mathbb{Z}/3\mathbb{Z}}(\overline{1}, \overline{1}, \overline{1})$ ramified at 3 points on \mathbb{P}^1 .

- Consider $\mathbb{Z}/3\mathbb{Z}$ acting on \mathfrak{g} of type D_4 by diagram automorphisms rotating the Dynkin diagram. In this case $\mathfrak{g}^{\mathbb{Z}/3\mathbb{Z}}$ is of type G_2 . The weight 0 of G_2 always lies in $P^{\ell}(D_4, \overline{1}) \subseteq P_+(G_2)$ for all ℓ .
- Consider the $\mathbb{Z}/3\mathbb{Z}$ -cover $(E \to \mathbb{P}^1, \vec{\tilde{p}}) \in \widetilde{\overline{\mathcal{M}}}_{0,3}^{\mathbb{Z}/3\mathbb{Z}}(\overline{1}, \overline{1}, \overline{1})$ ramified at 3 points on \mathbb{P}^1 .
- lacksquare At level $\ell=1$ we have: $\dim \mathbb{V}_{0,0,0,\mathbb{Z}/3\mathbb{Z}}((E o \mathbb{P}^1, ec{\widetilde{p}}))=2$

- Consider $\mathbb{Z}/3\mathbb{Z}$ acting on \mathfrak{g} of type D_4 by diagram automorphisms rotating the Dynkin diagram. In this case $\mathfrak{g}^{\mathbb{Z}/3\mathbb{Z}}$ is of type G_2 . The weight 0 of G_2 always lies in $P^{\ell}(D_4, \overline{1}) \subseteq P_+(G_2)$ for all ℓ .
- Consider the $\mathbb{Z}/3\mathbb{Z}$ -cover $(E \to \mathbb{P}^1, \vec{\tilde{p}}) \in \widetilde{\overline{\mathcal{M}}}_{0,3}^{\mathbb{Z}/3\mathbb{Z}}(\overline{1}, \overline{1}, \overline{1})$ ramified at 3 points on \mathbb{P}^1 .
- lacksquare At level $\ell=1$ we have: $\dim \mathbb{V}_{0,0,0,\mathbb{Z}/3\mathbb{Z}}((E o \mathbb{P}^1,ec{ ilde{p}}))=2$
- lacksquare At level $\ell=2$ we have: $\dim \mathbb{V}_{0,0,0,\mathbb{Z}/3\mathbb{Z}}((E o \mathbb{P}^1, ec{ ilde{p}}))=3$

We have the split short exact sequence $1 \to G_{ad} \to \operatorname{Aut}(\mathfrak{g}) \to \operatorname{Out}(\mathfrak{g}) \to 1$, where splittings correspond to pinnings of \mathfrak{g} .

- We have the split short exact sequence $1 \to G_{ad} \to \operatorname{Aut}(\mathfrak{g}) \to \operatorname{Out}(\mathfrak{g}) \to 1$, where splittings correspond to pinnings of \mathfrak{g} .
- ▶ Given any action $\phi: \Gamma \to \operatorname{Aut}(\mathfrak{g})$, we have corresponding diagram action $\psi: \Gamma \xrightarrow{\phi} \operatorname{Aut}(\mathfrak{g}) \to \operatorname{Out}(\mathfrak{g}) \hookrightarrow \operatorname{Aut}(\mathfrak{g})$, such that ϕ, ψ define the same outer action.

- We have the split short exact sequence $1 \to G_{ad} \to \operatorname{Aut}(\mathfrak{g}) \to \operatorname{Out}(\mathfrak{g}) \to 1$, where splittings correspond to pinnings of \mathfrak{g} .
- ▶ Given any action $\phi: \Gamma \to \operatorname{Aut}(\mathfrak{g})$, we have corresponding diagram action $\psi: \Gamma \xrightarrow{\phi} \operatorname{Aut}(\mathfrak{g}) \to \operatorname{Out}(\mathfrak{g}) \hookrightarrow \operatorname{Aut}(\mathfrak{g})$, such that ϕ, ψ define the same outer action.
- lacktriangle Note that the diagram action ψ preserves a Borel.

- We have the split short exact sequence $1 \to G_{ad} \to \operatorname{Aut}(\mathfrak{g}) \to \operatorname{Out}(\mathfrak{g}) \to 1$, where splittings correspond to pinnings of \mathfrak{g} .
- ▶ Given any action $\phi: \Gamma \to \operatorname{Aut}(\mathfrak{g})$, we have corresponding diagram action $\psi: \Gamma \xrightarrow{\phi} \operatorname{Aut}(\mathfrak{g}) \to \operatorname{Out}(\mathfrak{g}) \hookrightarrow \operatorname{Aut}(\mathfrak{g})$, such that ϕ, ψ define the same outer action.
- lacktriangle Note that the diagram action ψ preserves a Borel.
- ▶ Hong-Kumar proved that the vector bundles of conformal blocks for ϕ and ψ are related and essentially have the same ranks.

- We have the split short exact sequence $1 \to G_{ad} \to \operatorname{Aut}(\mathfrak{g}) \to \operatorname{Out}(\mathfrak{g}) \to 1$, where splittings correspond to pinnings of \mathfrak{g} .
- ▶ Given any action $\phi: \Gamma \to \operatorname{Aut}(\mathfrak{g})$, we have corresponding diagram action $\psi: \Gamma \xrightarrow{\phi} \operatorname{Aut}(\mathfrak{g}) \to \operatorname{Out}(\mathfrak{g}) \hookrightarrow \operatorname{Aut}(\mathfrak{g})$, such that ϕ, ψ define the same outer action.
- lacktriangle Note that the diagram action ψ preserves a Borel.
- ▶ Hong-Kumar proved that the vector bundles of conformal blocks for ϕ and ψ are related and essentially have the same ranks.
- Etingof-Nikshych-Ostrik describe a classification of Γ-crossed modular fusion categories \mathcal{C} with a given \mathcal{C}_1 in terms of certain group cohomological data.

- We have the split short exact sequence $1 \to G_{ad} \to \operatorname{Aut}(\mathfrak{g}) \to \operatorname{Out}(\mathfrak{g}) \to 1$, where splittings correspond to pinnings of \mathfrak{g} .
- ▶ Given any action $\phi: \Gamma \to \operatorname{Aut}(\mathfrak{g})$, we have corresponding diagram action $\psi: \Gamma \xrightarrow{\phi} \operatorname{Aut}(\mathfrak{g}) \to \operatorname{Out}(\mathfrak{g}) \hookrightarrow \operatorname{Aut}(\mathfrak{g})$, such that ϕ, ψ define the same outer action.
- Note that the diagram action ψ preserves a Borel.
- ▶ Hong-Kumar proved that the vector bundles of conformal blocks for ϕ and ψ are related and essentially have the same ranks.
- Etingof-Nikshych-Ostrik describe a classification of Γ-crossed modular fusion categories \mathcal{C} with a given \mathcal{C}_1 in terms of certain group cohomological data.
- In ongoing joint work with S. Mukhopadhyay, we describe the group cohomological data that relate the Γ-crossed modular fusion categories corresponding to the actions ϕ and ψ .

