Getting started with simulations in Geant4

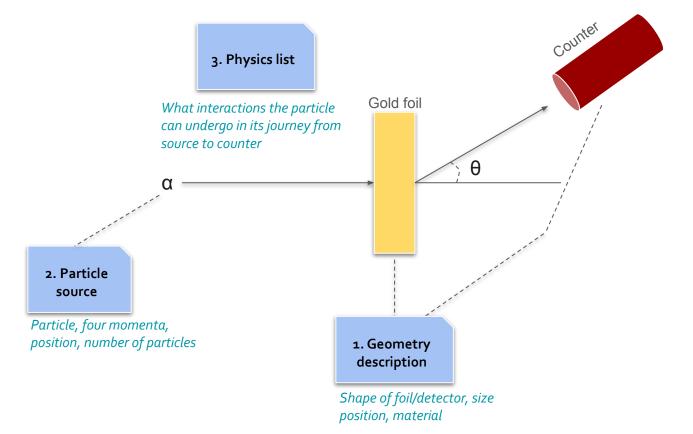
Deepak Samuel

Central University of Karnataka

UNDERSTANDING THE UNIVERSE THROUGH NEUTRINOS | ICTS BENGALURU | 22 APR - 03 MAY 2024

Schedule

DAY1	Mandatory and optional classes in Geant4	Defining a simple geometry	Simulating Rutherford's alpha scattering experiment and additional assignments
DAY 2	Particle Gun, User actions and Scoring volumes	Simulating muon lifetime measurement	Simulating proton energy loss and bethe-bloch equation based particle identification


Links and other information (posted on slack)

- Github page:
 - <u>https://github.com/deepaksamuel/neus-exercises</u>
- Material database
 - https://www.fe.infn.it/u/paterno/Geant4_tutorial/slides_further/Geometry/G4_Nist_Materials.pdf
- PDG codes:
 - https://pdg.lbl.gov/2007/reviews/montecarlorpp.pdf
- □ If you have not installed Geant4 yet, you can install it quickly using:
 - sudo snap install gate
- □ VSCode for coding
 - https://code.visualstudio.com/download

About Geant4

- C++ toolkit to simulate particle interactions with matter
- □ Not a programme, helps you build one using its classes and libraries
- Prerequisites to learn Geant4:
 - **C++**
 - Physics of particle interactions with matter
 - Physics of detectors
 - Data analysis

Mandatory classes in Geant4: Gold foil experiment

Geiger and Marsden's paper

Geiger H, Marsden E. On a diffuse reflection of the α -particles. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 1909 Jul 31;82(557):495-500.

https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1909.0054

Read the paper and note down the following:

- a. What were the primary investigations undertaken in this work?
- b. How big was the entire setup?
- c. What was the source used in the experiment?
- d. What is the typical energy and activity of the source used?
- e. Is the source monoenergetic or has a spectrum?
- f. What was the detector used in the experiment?
- g. What physical quantities does the detector measure?
- h. What targets were used and what was the thickness of the foils?
- i. How far was the detector from the foil and how far was foil from the source
- . Approximately how many alphas were reflected back

Running our first code

- Open VSCode and from the menu, open a new terminal
- On the terminal, issue the following commands
 - git clone http://github.com/deepaksamuel/neus-exercises.git
- Once cloned, go to File -> Open Folder and open neus-exercises
 - Expand the *alpha-scattering* folder and view its contents

Code structure

a. include

i. All header files (.hh extension)

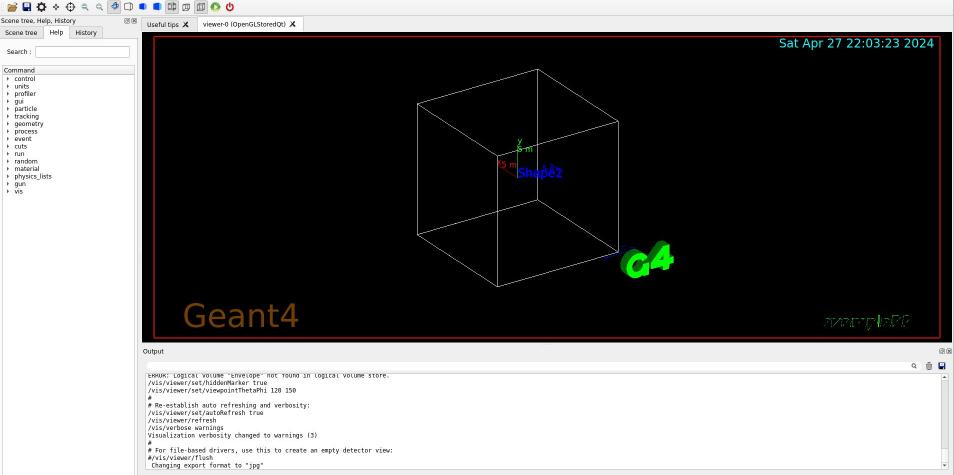
b. **src** folder

i. All source files (.cc extension)

c. exampleB1.cc

i. main file

d. **build** folder:


- i. You should create this folder inside the alpha-scattering folder
- ii. Use mkdir build to create one

>	File Edit Selection View Go Run Terminal Help			
Ð	EXPLORER			
5	✓ OPEN EDITORS			
Q	Preview README.md			
-	× 🔄 DetectorConstruction.cc alpha-scattering/src			
2°				
63	✓ alpha-scattering			
	> .vscode			
æ				
	\checkmark include			
₿	🕒 ActionInitialization.hh			
	🕒 DetectorConstruction.hh			
	🖙 EventAction.hh			
	🔄 PrimaryGeneratorAction.hh			
	🕒 RunAction.hh			
	🖙 SteppingAction.hh			
	G ActionInitialization.cc			
	G+ DetectorConstruction.cc	2, M		
	G+ EventAction.cc			
	C PrimaryGeneratorAction.cc	М		
	G RunAction.cc			
	C SteppingAction.cc			
	≣ .README.txt			
	🍨 analysis.py			
	M CMakeLists.txt			
	C exampleB1.cc			
	≣ exampleB1.in			
	E exampleB1.out			
	M GNUmakefile			
	≣ History			
	≣ init_vis.mac			

Compiling our code

- a. For the compilation to succeed, you must set the G4 environment variables. This is typically done by sourcing a script, in the **terminal** where you compile the code.
 - i. For snap installations: source /snap/gate/45/usr/local/bin/geant4.sh
 - ii. If compiled from source: YOUR_G4_INSTALL_FOLDER/install/bin/geant4.sh
- b. For compiling the alpha-scattering code:
 - i. cd alpha-scattering
 - ii. mkdir build
 - iii. cd build
 - iv. cmake ../
 - v. make
 - vi. ./exampleB1
- c. Note:
 - i. everytime you open a new terminal the geant4.sh file should be sourced
 - ii. everytime you make a change to your code, only the last two commands should be issued:
 - 1. make
 - 2. ./exampleB1
- d. You should see a box on your screen!

📷 🖬 🔅 🔶 🔍 🔍 🗇 🗊 🔳 🖾 🗊 🕼 🔕 🙂

exampleB1

Session :

6

 \times Å.

-**I**--/

0

_ ×

Mandatory class 1: Detector Construction (geometry)

G4Material* world_mat = nist->FindOrBuildMaterial("G4_Galactic");//Vaccum

// define sizes G4double world sizeXYZ = 2000*cm; // 2cm cube

// create world volume

//solid volume

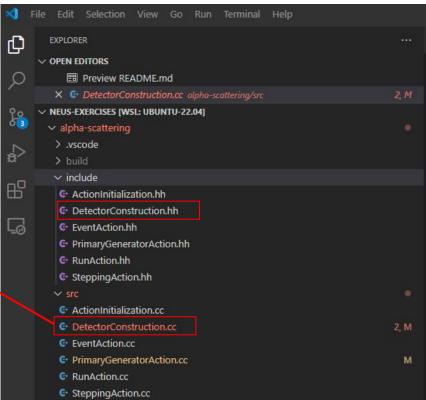
G4Box* solidWorld = new G4Box("World", //its name 0.5*world sizeXYZ, 0.5*world sizeXYZ, 0.5*world sizeXYZ); //its size

// logical volume

G4LogicalVolume* logicWorld = new G4LogicalVolume(solidWorld, world mat, "World");

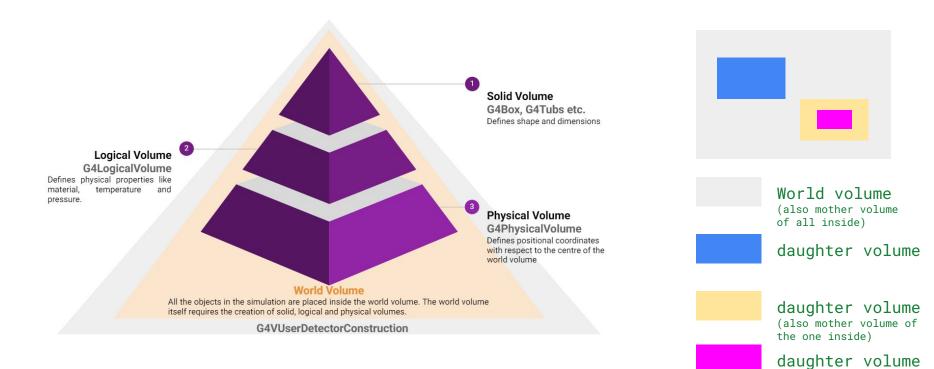
//its solid //its material

// physical volume


G4VPhysicalVolume* physWorld =

new G4PVPlacement(0.

G4ThreeVector(), logicWorld, "World", 0, false. 0.


checkOverlaps):

//its name //no rotation //at (0,0,0) // world usually placed at 0,0,0 //its logical volume //its name //its mother volume - world mother volume is 0 //no boolean operation //copv number //overlaps checking

UNDERSTANDING THE UNIVERSE THROUGH NEUTRINOS | ICTS BENGALURU | 22 APR - 03 MAY 2024

Detector Construction: Three volumes

Exercise 1a: Place a gold target in the world volume

// G4Material* target_mat = nist->FindOrBuildMaterial("??"); // Gold target

// G4double target_sizeXY = ??; // set lateral dimensions
// G4double target_sizeZ = ??; // set thickness

// G4Box* solidTar = // create solid volume
// new G4Box("Target", //its name
// 0.5*target_sizeXY, 0.5*target_sizeXY, 0.5*target_sizeZ); //its size

//	G4LogicalVolume* logicTar =	<pre>// create logic volume</pre>
//	<pre>new G4LogicalVolume(solidTar,</pre>	//its solid
//	target_mat,	//its material
//	"Target");	//its name

// // create physical volume

<pre>// new G4PVPlacemen</pre>	t(0,	//no rotation
//	G4ThreeVector(),	//at (0,0,0)
//	logicTar,	<pre>//its logical volume</pre>
//	"Target",	//its name
//	logicWorld,	//its mother volume
//	false,	<pre>//no boolean operation</pre>
//	0,	//copy number
//	<pre>checkOverlaps);</pre>	<pre>//overlaps checking</pre>

• Change the material to the Gold

- <u>https://www.fe.infn.it/u/paterno/Geant4_tutorial/slide</u> <u>s_further/Geometry/G4_Nist_Materials.pdf</u>
- Set the size to one similar to the one used in the experiment
- Where would you place it?
 - We will place it at the origin
 - Origin is the centre of the World volume
- Uncomment the code !
 - Lines 108-130 of DetectorConstruction.cc
- Compile the code and see how the geometry looks like

Exercise 1b: Place a detector in the world volume

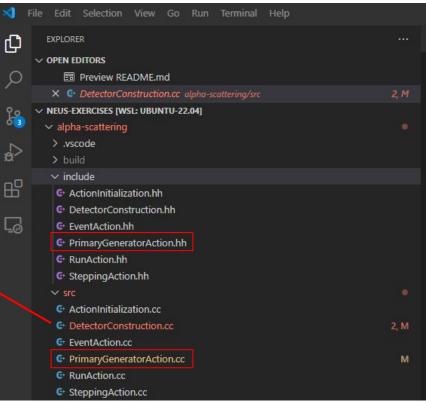
```
`// G4Material* detector_mat =
```

```
nist->FindOrBuildMaterial("??"); // use simple material like
air
```

```
// G4double detecter_inner_radius = 0.999*cm;
```

// G4double detecter_outer_radius = 1.000*cm;

```
// G4Sphere* solidDet =
```


// new G4Sphere("Detector", //its
name

// detecter_inner_radius, detecter_outer_radius, 0.*degree, 360*degree, 0*degree, 180*degree);`

- Uncomment the code
 - Lines 134 143 of DetectorConstruction.cc
- Create a sphere that:
 - Surrounds the target
 - Not extending out of the World Volume
 - o Thin
- A sample **Solid Volume** is created for you
- You should create the
 - logical volume
 - physical volume
- Compile the code and see how the geometry looks like

Mandatory class 2: Primary generator action (Particle source)

```
G4ParticleTable* particleTable =
G4ParticleTable::GetParticleTable();
    G4String particleName;
    G4ParticleDefinition* particle
      = particleTable->FindParticle(particleName="alpha");
    fParticleGun->SetParticleDefinition(particle);
    11
fParticleGun->SetParticleMomentumDirection(G4ThreeVector(??,??,??
));
    // fParticleGun->SetParticleEnergy(??.*MeV);
```


Exercise 1c: Setting particle properties

G4ParticleTable* particleTable =

G4ParticleTable::GetParticleTable();

G4String particleName;

G4ParticleDefinition* particle

```
= particleTable->FindParticle(particleName="alpha");
fParticleGun->SetParticleDefinition(particle);
```

//

fParticleGun->SetParticleMomentumDirection(G4ThreeVector(??, ??,??));

// fParticleGun->SetParticleEnergy(??.*MeV);

Session : /run/beamOn 100

- The particle is already set to **alpha**
- Uncomment the code
 - Lines 58 59 of PrimaryGeneratorAction.cc
- Set the
 - Momentum direction
 - Energy as specified in the paper
- Uncomment line 77 and set the
 - Particle position
- Compile the code and on the window the pops up, type the command in the text field at the bottom (session):
 - o \run\beamOn 100

Exercise 1c: Setting particle properties

G4ParticleTable* particleTable =

G4ParticleTable::GetParticleTable();

G4String particleName;

G4ParticleDefinition* particle

```
= particleTable->FindParticle(particleName="alpha");
```

```
fParticleGun->SetParticleDefinition(particle);
```

//

fParticleGun->SetParticleMomentumDirection(G4ThreeVector(??, ??,??));

```
// fParticleGun->SetParticleEnergy(??.*MeV);
```

Session : /run/beamOn 100

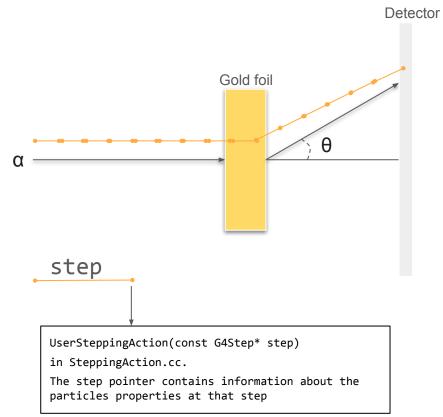
- The particle is already set to **alpha**
- Uncomment the code
 - Lines 58 59 of PrimaryGeneratorAction.cc
- Set the
 - Momentum direction
 - Energy as specified in the paper
 - o Thin
- Uncomment line 77 and set the
 - Particle position
- Compile the code and on the window the pops up, type the command in the text field at the bottom (session):
 - o \run\beamOn 100

Exercise 1d: More details on tracks

- Blue: Positive charge
- Red: Negative
- Green: Neutral

- Change the world material to G4_AIR
 - Zoom into the tracks and see if you can observe any other colours
- Guess which particles these colours represent

Mandatory class 3: Physics list


// Physics list

G4VModularPhysicsList* physicsList = new QBBC; physicsList->SetVerboseLevel(1);

runManager->SetUserInitialization(physicsList);

- Check exampleB1.cc
 - Line 71
- A physics list is responsible for:
 - specifying all the particles that will be used in the simulation application
 - list of physics processes assigned to each individual particles
- 28 packaged reference list provided by Geant4
 - QGSP_BERT, QGSP_BERT_EMV, QGSP_BERT_HP, QGSP_BIC, FTFP_BERT, LBE, LHEP ...
- For some experiments you may have to write your own physics list

Reading out data

Reading out data

- a. File is created in RunAction.cc
 - i. Line 63: BeginOfRunAction
- b. File is closed in RunAction.cci. Line 131: EndOfRunAction
- c. File is filled in SteppingAction.cc
 - i. Line 56: UserSteppingAction

Exercise 1d

- a. Inside the **build** folder, you will find a file name **output.csv**
- b. Check how the file looks like and what it contains
- c. Use the analysis.py file to perform some simple analysis
 - i. Check the particle ids of particles that hit the detector
 - 1. Use the PDG to verify the numbers
 - ii. Check the energy of the alpha particle that hits the detector
 - iii. Plot the angular distribution of the particles
 - iv. Change the thickness of the foil to 5 different values and plot the variation of transmission as a function of thickness
 - v. Check at what thickness the alpha particle stop penetrating the gold foil
 - vi. Change the foil material and plot the angular distributions

Exercise 1d

- a. Inside the **build** folder, you will find a file name **output.csv**
- b. Check how the file looks like and what it contains
- c. Use the analysis.py file to perform some simple analysis
 - i. Check the particle ids of particles that hit the detector
 - 1. Use the PDG to verify the numbers
 - ii. Check the energy of the alpha particle that hits the detector
 - iii. Plot the angular distribution of the particles
 - iv. Change the thickness of the foil to 5 different values and plot the variation of transmission as a function of thickness
 - v. Check at what thickness the alpha particle stop penetrating the gold foil
 - vi. Change the foil material and plot the angular distributions

Exercise 1f-Neutrino generation

- a. In this assignment, you will demonstrate the production of neu
- b. Read the paper at:

- The NuMI Beam at FNAL and its Use for Neutrino Cross Section Measurements: <u>https://arxiv.org/pdf/0709.2737</u>
- c. Use the neutrino-production project for this purpose
- d. Create a:
 - i. A target as mentioned in the paper
 - ii. A beam at the end of the target with energy as mentioned in the paper
 - iii. A detector (thin) at the other end of the detector
 - iv. World volume encompassing the target, detector and beam
- e. Shoot 1 proton and list down the particles you see in the detector
- f. What would you do in order to see neutrinos?

Exercise 1f-Neutrino generation

- a. Increase the world volume to add a decay volume
- b. Place a detector at the end of the decay volume:
 - i. List down the particles you see
 - ii. The energy spectrum of all the particles

